// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_GLOBALS_H_ #define V8_GLOBALS_H_ #include "../include/v8stdint.h" // Unfortunately, the INFINITY macro cannot be used with the '-pedantic' // warning flag and certain versions of GCC due to a bug: // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931 // For now, we use the more involved template-based version from <limits>, but // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x) #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0) # include <limits> // NOLINT # define V8_INFINITY std::numeric_limits<double>::infinity() #elif V8_CC_MSVC # define V8_INFINITY HUGE_VAL #else # define V8_INFINITY INFINITY #endif namespace v8 { namespace internal { // Processor architecture detection. For more info on what's defined, see: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx // http://www.agner.org/optimize/calling_conventions.pdf // or with gcc, run: "echo | gcc -E -dM -" #if defined(_M_X64) || defined(__x86_64__) #if defined(__native_client__) // For Native Client builds of V8, use V8_TARGET_ARCH_ARM, so that V8 // generates ARM machine code, together with a portable ARM simulator // compiled for the host architecture in question. // // Since Native Client is ILP-32 on all architectures we use // V8_HOST_ARCH_IA32 on both 32- and 64-bit x86. #define V8_HOST_ARCH_IA32 1 #define V8_HOST_ARCH_32_BIT 1 #define V8_HOST_CAN_READ_UNALIGNED 1 #else #define V8_HOST_ARCH_X64 1 #define V8_HOST_ARCH_64_BIT 1 #define V8_HOST_CAN_READ_UNALIGNED 1 #endif // __native_client__ #elif defined(_M_IX86) || defined(__i386__) #define V8_HOST_ARCH_IA32 1 #define V8_HOST_ARCH_32_BIT 1 #define V8_HOST_CAN_READ_UNALIGNED 1 #elif defined(__ARMEL__) #define V8_HOST_ARCH_ARM 1 #define V8_HOST_ARCH_32_BIT 1 #elif defined(__MIPSEL__) #define V8_HOST_ARCH_MIPS 1 #define V8_HOST_ARCH_32_BIT 1 #else #error Host architecture was not detected as supported by v8 #endif #if defined(__ARM_ARCH_7A__) || \ defined(__ARM_ARCH_7R__) || \ defined(__ARM_ARCH_7__) # define CAN_USE_ARMV7_INSTRUCTIONS 1 # ifndef CAN_USE_VFP3_INSTRUCTIONS # define CAN_USE_VFP3_INSTRUCTIONS # endif #endif // Target architecture detection. This may be set externally. If not, detect // in the same way as the host architecture, that is, target the native // environment as presented by the compiler. #if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_IA32 && \ !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_MIPS #if defined(_M_X64) || defined(__x86_64__) #define V8_TARGET_ARCH_X64 1 #elif defined(_M_IX86) || defined(__i386__) #define V8_TARGET_ARCH_IA32 1 #elif defined(__ARMEL__) #define V8_TARGET_ARCH_ARM 1 #elif defined(__MIPSEL__) #define V8_TARGET_ARCH_MIPS 1 #else #error Target architecture was not detected as supported by v8 #endif #endif // Check for supported combinations of host and target architectures. #if V8_TARGET_ARCH_IA32 && !V8_HOST_ARCH_IA32 #error Target architecture ia32 is only supported on ia32 host #endif #if V8_TARGET_ARCH_X64 && !V8_HOST_ARCH_X64 #error Target architecture x64 is only supported on x64 host #endif #if (V8_TARGET_ARCH_ARM && !(V8_HOST_ARCH_IA32 || V8_HOST_ARCH_ARM)) #error Target architecture arm is only supported on arm and ia32 host #endif #if (V8_TARGET_ARCH_MIPS && !(V8_HOST_ARCH_IA32 || V8_HOST_ARCH_MIPS)) #error Target architecture mips is only supported on mips and ia32 host #endif // Determine whether we are running in a simulated environment. // Setting USE_SIMULATOR explicitly from the build script will force // the use of a simulated environment. #if !defined(USE_SIMULATOR) #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) #define USE_SIMULATOR 1 #endif #endif // Determine architecture endiannes (we only support little-endian). #if V8_TARGET_ARCH_IA32 #define V8_TARGET_LITTLE_ENDIAN 1 #elif V8_TARGET_ARCH_X64 #define V8_TARGET_LITTLE_ENDIAN 1 #elif V8_TARGET_ARCH_ARM #define V8_TARGET_LITTLE_ENDIAN 1 #elif V8_TARGET_ARCH_MIPS #define V8_TARGET_LITTLE_ENDIAN 1 #else #error Unknown target architecture endiannes #endif // Support for alternative bool type. This is only enabled if the code is // compiled with USE_MYBOOL defined. This catches some nasty type bugs. // For instance, 'bool b = "false";' results in b == true! This is a hidden // source of bugs. // However, redefining the bool type does have some negative impact on some // platforms. It gives rise to compiler warnings (i.e. with // MSVC) in the API header files when mixing code that uses the standard // bool with code that uses the redefined version. // This does not actually belong in the platform code, but needs to be // defined here because the platform code uses bool, and platform.h is // include very early in the main include file. #ifdef USE_MYBOOL typedef unsigned int __my_bool__; #define bool __my_bool__ // use 'indirection' to avoid name clashes #endif typedef uint8_t byte; typedef byte* Address; // Define our own macros for writing 64-bit constants. This is less fragile // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it // works on compilers that don't have it (like MSVC). #if V8_CC_MSVC # define V8_UINT64_C(x) (x ## UI64) # define V8_INT64_C(x) (x ## I64) # if V8_HOST_ARCH_64_BIT # define V8_INTPTR_C(x) (x ## I64) # define V8_PTR_PREFIX "ll" # else # define V8_INTPTR_C(x) (x) # define V8_PTR_PREFIX "" # endif // V8_HOST_ARCH_64_BIT #elif V8_CC_MINGW64 # define V8_UINT64_C(x) (x ## ULL) # define V8_INT64_C(x) (x ## LL) # define V8_INTPTR_C(x) (x ## LL) # define V8_PTR_PREFIX "I64" #elif V8_HOST_ARCH_64_BIT # if V8_OS_MACOSX # define V8_UINT64_C(x) (x ## ULL) # define V8_INT64_C(x) (x ## LL) # else # define V8_UINT64_C(x) (x ## UL) # define V8_INT64_C(x) (x ## L) # endif # define V8_INTPTR_C(x) (x ## L) # define V8_PTR_PREFIX "l" #else # define V8_UINT64_C(x) (x ## ULL) # define V8_INT64_C(x) (x ## LL) # define V8_INTPTR_C(x) (x) # define V8_PTR_PREFIX "" #endif // The following macro works on both 32 and 64-bit platforms. // Usage: instead of writing 0x1234567890123456 // write V8_2PART_UINT64_C(0x12345678,90123456); #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) #define V8PRIxPTR V8_PTR_PREFIX "x" #define V8PRIdPTR V8_PTR_PREFIX "d" #define V8PRIuPTR V8_PTR_PREFIX "u" // Fix for Mac OS X defining uintptr_t as "unsigned long": #if V8_OS_MACOSX #undef V8PRIxPTR #define V8PRIxPTR "lx" #endif #if V8_OS_MACOSX || defined(__FreeBSD__) || defined(__OpenBSD__) #define USING_BSD_ABI #endif // ----------------------------------------------------------------------------- // Constants const int KB = 1024; const int MB = KB * KB; const int GB = KB * KB * KB; const int kMaxInt = 0x7FFFFFFF; const int kMinInt = -kMaxInt - 1; const int kMaxInt8 = (1 << 7) - 1; const int kMinInt8 = -(1 << 7); const int kMaxUInt8 = (1 << 8) - 1; const int kMinUInt8 = 0; const int kMaxInt16 = (1 << 15) - 1; const int kMinInt16 = -(1 << 15); const int kMaxUInt16 = (1 << 16) - 1; const int kMinUInt16 = 0; const uint32_t kMaxUInt32 = 0xFFFFFFFFu; const int kCharSize = sizeof(char); // NOLINT const int kShortSize = sizeof(short); // NOLINT const int kIntSize = sizeof(int); // NOLINT const int kInt32Size = sizeof(int32_t); // NOLINT const int kInt64Size = sizeof(int64_t); // NOLINT const int kDoubleSize = sizeof(double); // NOLINT const int kIntptrSize = sizeof(intptr_t); // NOLINT const int kPointerSize = sizeof(void*); // NOLINT const int kRegisterSize = kPointerSize; const int kPCOnStackSize = kRegisterSize; const int kFPOnStackSize = kRegisterSize; const int kDoubleSizeLog2 = 3; #if V8_HOST_ARCH_64_BIT const int kPointerSizeLog2 = 3; const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000); const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF); const bool kIs64BitArch = true; #else const int kPointerSizeLog2 = 2; const intptr_t kIntptrSignBit = 0x80000000; const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu; const bool kIs64BitArch = false; #endif const int kBitsPerByte = 8; const int kBitsPerByteLog2 = 3; const int kBitsPerPointer = kPointerSize * kBitsPerByte; const int kBitsPerInt = kIntSize * kBitsPerByte; // IEEE 754 single precision floating point number bit layout. const uint32_t kBinary32SignMask = 0x80000000u; const uint32_t kBinary32ExponentMask = 0x7f800000u; const uint32_t kBinary32MantissaMask = 0x007fffffu; const int kBinary32ExponentBias = 127; const int kBinary32MaxExponent = 0xFE; const int kBinary32MinExponent = 0x01; const int kBinary32MantissaBits = 23; const int kBinary32ExponentShift = 23; // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no // other bits set. const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51; // Latin1/UTF-16 constants // Code-point values in Unicode 4.0 are 21 bits wide. // Code units in UTF-16 are 16 bits wide. typedef uint16_t uc16; typedef int32_t uc32; const int kOneByteSize = kCharSize; const int kUC16Size = sizeof(uc16); // NOLINT // Round up n to be a multiple of sz, where sz is a power of 2. #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1)) // The expression OFFSET_OF(type, field) computes the byte-offset // of the specified field relative to the containing type. This // corresponds to 'offsetof' (in stddef.h), except that it doesn't // use 0 or NULL, which causes a problem with the compiler warnings // we have enabled (which is also why 'offsetof' doesn't seem to work). // Here we simply use the non-zero value 4, which seems to work. #define OFFSET_OF(type, field) \ (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(4)->field)) - 4) // The expression ARRAY_SIZE(a) is a compile-time constant of type // size_t which represents the number of elements of the given // array. You should only use ARRAY_SIZE on statically allocated // arrays. #define ARRAY_SIZE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) // The USE(x) template is used to silence C++ compiler warnings // issued for (yet) unused variables (typically parameters). template <typename T> inline void USE(T) { } // FUNCTION_ADDR(f) gets the address of a C function f. #define FUNCTION_ADDR(f) \ (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f))) // FUNCTION_CAST<F>(addr) casts an address into a function // of type F. Used to invoke generated code from within C. template <typename F> F FUNCTION_CAST(Address addr) { return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr)); } // A macro to disallow the evil copy constructor and operator= functions // This should be used in the private: declarations for a class #define DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&) V8_DELETE; \ void operator=(const TypeName&) V8_DELETE // A macro to disallow all the implicit constructors, namely the // default constructor, copy constructor and operator= functions. // // This should be used in the private: declarations for a class // that wants to prevent anyone from instantiating it. This is // especially useful for classes containing only static methods. #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ TypeName() V8_DELETE; \ DISALLOW_COPY_AND_ASSIGN(TypeName) // Newly written code should use V8_INLINE and V8_NOINLINE directly. #define INLINE(declarator) V8_INLINE declarator #define NO_INLINE(declarator) V8_NOINLINE declarator // Newly written code should use V8_WARN_UNUSED_RESULT. #define MUST_USE_RESULT V8_WARN_UNUSED_RESULT // Define DISABLE_ASAN macros. #if defined(__has_feature) #if __has_feature(address_sanitizer) #define DISABLE_ASAN __attribute__((no_sanitize_address)) #endif #endif #ifndef DISABLE_ASAN #define DISABLE_ASAN #endif // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes // (sorted alphabetically) class FreeStoreAllocationPolicy; template <typename T, class P = FreeStoreAllocationPolicy> class List; // ----------------------------------------------------------------------------- // Declarations for use in both the preparser and the rest of V8. // The different language modes that V8 implements. ES5 defines two language // modes: an unrestricted mode respectively a strict mode which are indicated by // CLASSIC_MODE respectively STRICT_MODE in the enum. The harmony spec drafts // for the next ES standard specify a new third mode which is called 'extended // mode'. The extended mode is only available if the harmony flag is set. It is // based on the 'strict mode' and adds new functionality to it. This means that // most of the semantics of these two modes coincide. // // In the current draft the term 'base code' is used to refer to code that is // neither in strict nor extended mode. However, the more distinguishing term // 'classic mode' is used in V8 instead to avoid mix-ups. enum LanguageMode { CLASSIC_MODE, STRICT_MODE, EXTENDED_MODE }; // The Strict Mode (ECMA-262 5th edition, 4.2.2). // // This flag is used in the backend to represent the language mode. So far // there is no semantic difference between the strict and the extended mode in // the backend, so both modes are represented by the kStrictMode value. enum StrictModeFlag { kNonStrictMode, kStrictMode }; } } // namespace v8::internal #endif // V8_GLOBALS_H_