// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "liveedit.h" #include "macro-assembler.h" #include "prettyprinter.h" #include "scopes.h" #include "scopeinfo.h" #include "snapshot.h" #include "stub-cache.h" namespace v8 { namespace internal { void BreakableStatementChecker::Check(Statement* stmt) { Visit(stmt); } void BreakableStatementChecker::Check(Expression* expr) { Visit(expr); } void BreakableStatementChecker::VisitVariableDeclaration( VariableDeclaration* decl) { } void BreakableStatementChecker::VisitFunctionDeclaration( FunctionDeclaration* decl) { } void BreakableStatementChecker::VisitModuleDeclaration( ModuleDeclaration* decl) { } void BreakableStatementChecker::VisitImportDeclaration( ImportDeclaration* decl) { } void BreakableStatementChecker::VisitExportDeclaration( ExportDeclaration* decl) { } void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) { } void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) { } void BreakableStatementChecker::VisitModulePath(ModulePath* module) { } void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) { } void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) { } void BreakableStatementChecker::VisitBlock(Block* stmt) { } void BreakableStatementChecker::VisitExpressionStatement( ExpressionStatement* stmt) { // Check if expression is breakable. Visit(stmt->expression()); } void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) { } void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) { // If the condition is breakable the if statement is breakable. Visit(stmt->condition()); } void BreakableStatementChecker::VisitContinueStatement( ContinueStatement* stmt) { } void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) { } void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) { // Return is breakable if the expression is. Visit(stmt->expression()); } void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) { Visit(stmt->expression()); } void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) { // Switch statements breakable if the tag expression is. Visit(stmt->tag()); } void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) { // Mark do while as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) { // Mark while statements breakable if the condition expression is. Visit(stmt->cond()); } void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) { // Mark for statements breakable if the condition expression is. if (stmt->cond() != NULL) { Visit(stmt->cond()); } } void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) { // Mark for in statements breakable if the enumerable expression is. Visit(stmt->enumerable()); } void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) { // For-of is breakable because of the next() call. is_breakable_ = true; } void BreakableStatementChecker::VisitTryCatchStatement( TryCatchStatement* stmt) { // Mark try catch as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitTryFinallyStatement( TryFinallyStatement* stmt) { // Mark try finally as breakable to avoid adding a break slot in front of it. is_breakable_ = true; } void BreakableStatementChecker::VisitDebuggerStatement( DebuggerStatement* stmt) { // The debugger statement is breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) { } void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) { } void BreakableStatementChecker::VisitNativeFunctionLiteral( NativeFunctionLiteral* expr) { } void BreakableStatementChecker::VisitConditional(Conditional* expr) { } void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) { } void BreakableStatementChecker::VisitLiteral(Literal* expr) { } void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) { } void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) { } void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) { } void BreakableStatementChecker::VisitAssignment(Assignment* expr) { // If assigning to a property (including a global property) the assignment is // breakable. VariableProxy* proxy = expr->target()->AsVariableProxy(); Property* prop = expr->target()->AsProperty(); if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) { is_breakable_ = true; return; } // Otherwise the assignment is breakable if the assigned value is. Visit(expr->value()); } void BreakableStatementChecker::VisitYield(Yield* expr) { // Yield is breakable if the expression is. Visit(expr->expression()); } void BreakableStatementChecker::VisitThrow(Throw* expr) { // Throw is breakable if the expression is. Visit(expr->exception()); } void BreakableStatementChecker::VisitProperty(Property* expr) { // Property load is breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCall(Call* expr) { // Function calls both through IC and call stub are breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCallNew(CallNew* expr) { // Function calls through new are breakable. is_breakable_ = true; } void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) { } void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) { Visit(expr->expression()); } void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) { Visit(expr->expression()); } void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) { Visit(expr->left()); if (expr->op() != Token::AND && expr->op() != Token::OR) { Visit(expr->right()); } } void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) { Visit(expr->left()); Visit(expr->right()); } void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) { } #define __ ACCESS_MASM(masm()) bool FullCodeGenerator::MakeCode(CompilationInfo* info) { Isolate* isolate = info->isolate(); Handle<Script> script = info->script(); if (!script->IsUndefined() && !script->source()->IsUndefined()) { int len = String::cast(script->source())->length(); isolate->counters()->total_full_codegen_source_size()->Increment(len); } CodeGenerator::MakeCodePrologue(info, "full"); const int kInitialBufferSize = 4 * KB; MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize); #ifdef ENABLE_GDB_JIT_INTERFACE masm.positions_recorder()->StartGDBJITLineInfoRecording(); #endif LOG_CODE_EVENT(isolate, CodeStartLinePosInfoRecordEvent(masm.positions_recorder())); FullCodeGenerator cgen(&masm, info); cgen.Generate(); if (cgen.HasStackOverflow()) { ASSERT(!isolate->has_pending_exception()); return false; } unsigned table_offset = cgen.EmitBackEdgeTable(); Code::Flags flags = Code::ComputeFlags(Code::FUNCTION); Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info); code->set_optimizable(info->IsOptimizable() && !info->function()->dont_optimize() && info->function()->scope()->AllowsLazyCompilation()); cgen.PopulateDeoptimizationData(code); cgen.PopulateTypeFeedbackInfo(code); cgen.PopulateTypeFeedbackCells(code); code->set_has_deoptimization_support(info->HasDeoptimizationSupport()); code->set_handler_table(*cgen.handler_table()); #ifdef ENABLE_DEBUGGER_SUPPORT code->set_compiled_optimizable(info->IsOptimizable()); #endif // ENABLE_DEBUGGER_SUPPORT code->set_allow_osr_at_loop_nesting_level(0); code->set_profiler_ticks(0); code->set_back_edge_table_offset(table_offset); code->set_back_edges_patched_for_osr(false); CodeGenerator::PrintCode(code, info); info->SetCode(code); #ifdef ENABLE_GDB_JIT_INTERFACE if (FLAG_gdbjit) { GDBJITLineInfo* lineinfo = masm.positions_recorder()->DetachGDBJITLineInfo(); GDBJIT(RegisterDetailedLineInfo(*code, lineinfo)); } #endif void* line_info = masm.positions_recorder()->DetachJITHandlerData(); LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info)); return true; } unsigned FullCodeGenerator::EmitBackEdgeTable() { // The back edge table consists of a length (in number of entries) // field, and then a sequence of entries. Each entry is a pair of AST id // and code-relative pc offset. masm()->Align(kIntSize); unsigned offset = masm()->pc_offset(); unsigned length = back_edges_.length(); __ dd(length); for (unsigned i = 0; i < length; ++i) { __ dd(back_edges_[i].id.ToInt()); __ dd(back_edges_[i].pc); __ dd(back_edges_[i].loop_depth); } return offset; } void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) { // Fill in the deoptimization information. ASSERT(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty()); if (!info_->HasDeoptimizationSupport()) return; int length = bailout_entries_.length(); Handle<DeoptimizationOutputData> data = isolate()->factory()-> NewDeoptimizationOutputData(length, TENURED); for (int i = 0; i < length; i++) { data->SetAstId(i, bailout_entries_[i].id); data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state)); } code->set_deoptimization_data(*data); } void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) { Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo(); info->set_ic_total_count(ic_total_count_); ASSERT(!isolate()->heap()->InNewSpace(*info)); code->set_type_feedback_info(*info); } void FullCodeGenerator::Initialize() { // The generation of debug code must match between the snapshot code and the // code that is generated later. This is assumed by the debugger when it is // calculating PC offsets after generating a debug version of code. Therefore // we disable the production of debug code in the full compiler if we are // either generating a snapshot or we booted from a snapshot. generate_debug_code_ = FLAG_debug_code && !Serializer::enabled() && !Snapshot::HaveASnapshotToStartFrom(); masm_->set_emit_debug_code(generate_debug_code_); masm_->set_predictable_code_size(true); InitializeAstVisitor(info_->isolate()); } void FullCodeGenerator::PopulateTypeFeedbackCells(Handle<Code> code) { if (type_feedback_cells_.is_empty()) return; int length = type_feedback_cells_.length(); int array_size = TypeFeedbackCells::LengthOfFixedArray(length); Handle<TypeFeedbackCells> cache = Handle<TypeFeedbackCells>::cast( isolate()->factory()->NewFixedArray(array_size, TENURED)); for (int i = 0; i < length; i++) { cache->SetAstId(i, type_feedback_cells_[i].ast_id); cache->SetCell(i, *type_feedback_cells_[i].cell); } TypeFeedbackInfo::cast(code->type_feedback_info())->set_type_feedback_cells( *cache); } void FullCodeGenerator::PrepareForBailout(Expression* node, State state) { PrepareForBailoutForId(node->id(), state); } void FullCodeGenerator::RecordJSReturnSite(Call* call) { // We record the offset of the function return so we can rebuild the frame // if the function was inlined, i.e., this is the return address in the // inlined function's frame. // // The state is ignored. We defensively set it to TOS_REG, which is the // real state of the unoptimized code at the return site. PrepareForBailoutForId(call->ReturnId(), TOS_REG); #ifdef DEBUG // In debug builds, mark the return so we can verify that this function // was called. ASSERT(!call->return_is_recorded_); call->return_is_recorded_ = true; #endif } void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) { // There's no need to prepare this code for bailouts from already optimized // code or code that can't be optimized. if (!info_->HasDeoptimizationSupport()) return; unsigned pc_and_state = StateField::encode(state) | PcField::encode(masm_->pc_offset()); ASSERT(Smi::IsValid(pc_and_state)); BailoutEntry entry = { id, pc_and_state }; ASSERT(!prepared_bailout_ids_.Contains(id.ToInt())); prepared_bailout_ids_.Add(id.ToInt(), zone()); bailout_entries_.Add(entry, zone()); } void FullCodeGenerator::RecordTypeFeedbackCell( TypeFeedbackId id, Handle<Cell> cell) { TypeFeedbackCellEntry entry = { id, cell }; type_feedback_cells_.Add(entry, zone()); } void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) { // The pc offset does not need to be encoded and packed together with a state. ASSERT(masm_->pc_offset() > 0); ASSERT(loop_depth() > 0); uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker); BackEdgeEntry entry = { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth }; back_edges_.Add(entry, zone()); } bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) { // Inline smi case inside loops, but not division and modulo which // are too complicated and take up too much space. if (op == Token::DIV ||op == Token::MOD) return false; if (FLAG_always_inline_smi_code) return true; return loop_depth_ > 0; } void FullCodeGenerator::EffectContext::Plug(Register reg) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const { __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::Plug(Register reg) const { __ Push(reg); } void FullCodeGenerator::TestContext::Plug(Register reg) const { // For simplicity we always test the accumulator register. __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::PlugTOS() const { __ Drop(1); } void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const { __ Pop(result_register()); } void FullCodeGenerator::StackValueContext::PlugTOS() const { } void FullCodeGenerator::TestContext::PlugTOS() const { // For simplicity we always test the accumulator register. __ Pop(result_register()); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { // In an effect context, the true and the false case branch to the // same label. *if_true = *if_false = *fall_through = materialize_true; } void FullCodeGenerator::AccumulatorValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::StackValueContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = *fall_through = materialize_true; *if_false = materialize_false; } void FullCodeGenerator::TestContext::PrepareTest( Label* materialize_true, Label* materialize_false, Label** if_true, Label** if_false, Label** fall_through) const { *if_true = true_label_; *if_false = false_label_; *fall_through = fall_through_; } void FullCodeGenerator::DoTest(const TestContext* context) { DoTest(context->condition(), context->true_label(), context->false_label(), context->fall_through()); } void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) { ASSERT(scope_->is_global_scope()); for (int i = 0; i < declarations->length(); i++) { ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration(); if (declaration != NULL) { ModuleLiteral* module = declaration->module()->AsModuleLiteral(); if (module != NULL) { Comment cmnt(masm_, "[ Link nested modules"); Scope* scope = module->body()->scope(); Interface* interface = scope->interface(); ASSERT(interface->IsModule() && interface->IsFrozen()); interface->Allocate(scope->module_var()->index()); // Set up module context. ASSERT(scope->interface()->Index() >= 0); __ Push(Smi::FromInt(scope->interface()->Index())); __ Push(scope->GetScopeInfo()); __ CallRuntime(Runtime::kPushModuleContext, 2); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); AllocateModules(scope->declarations()); // Pop module context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } } } } // Modules have their own local scope, represented by their own context. // Module instance objects have an accessor for every export that forwards // access to the respective slot from the module's context. (Exports that are // modules themselves, however, are simple data properties.) // // All modules have a _hosting_ scope/context, which (currently) is the // (innermost) enclosing global scope. To deal with recursion, nested modules // are hosted by the same scope as global ones. // // For every (global or nested) module literal, the hosting context has an // internal slot that points directly to the respective module context. This // enables quick access to (statically resolved) module members by 2-dimensional // access through the hosting context. For example, // // module A { // let x; // module B { let y; } // } // module C { let z; } // // allocates contexts as follows: // // [header| .A | .B | .C | A | C ] (global) // | | | // | | +-- [header| z ] (module) // | | // | +------- [header| y ] (module) // | // +------------ [header| x | B ] (module) // // Here, .A, .B, .C are the internal slots pointing to the hosted module // contexts, whereas A, B, C hold the actual instance objects (note that every // module context also points to the respective instance object through its // extension slot in the header). // // To deal with arbitrary recursion and aliases between modules, // they are created and initialized in several stages. Each stage applies to // all modules in the hosting global scope, including nested ones. // // 1. Allocate: for each module _literal_, allocate the module contexts and // respective instance object and wire them up. This happens in the // PushModuleContext runtime function, as generated by AllocateModules // (invoked by VisitDeclarations in the hosting scope). // // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases), // assign the respective instance object to respective local variables. This // happens in VisitModuleDeclaration, and uses the instance objects created // in the previous stage. // For each module _literal_, this phase also constructs a module descriptor // for the next stage. This happens in VisitModuleLiteral. // // 3. Populate: invoke the DeclareModules runtime function to populate each // _instance_ object with accessors for it exports. This is generated by // DeclareModules (invoked by VisitDeclarations in the hosting scope again), // and uses the descriptors generated in the previous stage. // // 4. Initialize: execute the module bodies (and other code) in sequence. This // happens by the separate statements generated for module bodies. To reenter // the module scopes properly, the parser inserted ModuleStatements. void FullCodeGenerator::VisitDeclarations( ZoneList<Declaration*>* declarations) { Handle<FixedArray> saved_modules = modules_; int saved_module_index = module_index_; ZoneList<Handle<Object> >* saved_globals = globals_; ZoneList<Handle<Object> > inner_globals(10, zone()); globals_ = &inner_globals; if (scope_->num_modules() != 0) { // This is a scope hosting modules. Allocate a descriptor array to pass // to the runtime for initialization. Comment cmnt(masm_, "[ Allocate modules"); ASSERT(scope_->is_global_scope()); modules_ = isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED); module_index_ = 0; // Generate code for allocating all modules, including nested ones. // The allocated contexts are stored in internal variables in this scope. AllocateModules(declarations); } AstVisitor::VisitDeclarations(declarations); if (scope_->num_modules() != 0) { // Initialize modules from descriptor array. ASSERT(module_index_ == modules_->length()); DeclareModules(modules_); modules_ = saved_modules; module_index_ = saved_module_index; } if (!globals_->is_empty()) { // Invoke the platform-dependent code generator to do the actual // declaration of the global functions and variables. Handle<FixedArray> array = isolate()->factory()->NewFixedArray(globals_->length(), TENURED); for (int i = 0; i < globals_->length(); ++i) array->set(i, *globals_->at(i)); DeclareGlobals(array); } globals_ = saved_globals; } void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) { Block* block = module->body(); Scope* saved_scope = scope(); scope_ = block->scope(); Interface* interface = scope_->interface(); Comment cmnt(masm_, "[ ModuleLiteral"); SetStatementPosition(block); ASSERT(!modules_.is_null()); ASSERT(module_index_ < modules_->length()); int index = module_index_++; // Set up module context. ASSERT(interface->Index() >= 0); __ Push(Smi::FromInt(interface->Index())); __ Push(Smi::FromInt(0)); __ CallRuntime(Runtime::kPushModuleContext, 2); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope_->declarations()); } // Populate the module description. Handle<ModuleInfo> description = ModuleInfo::Create(isolate(), interface, scope_); modules_->set(index, *description); scope_ = saved_scope; // Pop module context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) { // Nothing to do. // The instance object is resolved statically through the module's interface. } void FullCodeGenerator::VisitModulePath(ModulePath* module) { // Nothing to do. // The instance object is resolved statically through the module's interface. } void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) { // TODO(rossberg): dummy allocation for now. Scope* scope = module->body()->scope(); Interface* interface = scope_->interface(); ASSERT(interface->IsModule() && interface->IsFrozen()); ASSERT(!modules_.is_null()); ASSERT(module_index_ < modules_->length()); interface->Allocate(scope->module_var()->index()); int index = module_index_++; Handle<ModuleInfo> description = ModuleInfo::Create(isolate(), interface, scope_); modules_->set(index, *description); } int FullCodeGenerator::DeclareGlobalsFlags() { ASSERT(DeclareGlobalsLanguageMode::is_valid(language_mode())); return DeclareGlobalsEvalFlag::encode(is_eval()) | DeclareGlobalsNativeFlag::encode(is_native()) | DeclareGlobalsLanguageMode::encode(language_mode()); } void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) { CodeGenerator::RecordPositions(masm_, fun->start_position()); } void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) { CodeGenerator::RecordPositions(masm_, fun->end_position() - 1); } void FullCodeGenerator::SetStatementPosition(Statement* stmt) { #ifdef ENABLE_DEBUGGER_SUPPORT if (!isolate()->debugger()->IsDebuggerActive()) { CodeGenerator::RecordPositions(masm_, stmt->position()); } else { // Check if the statement will be breakable without adding a debug break // slot. BreakableStatementChecker checker(isolate()); checker.Check(stmt); // Record the statement position right here if the statement is not // breakable. For breakable statements the actual recording of the // position will be postponed to the breakable code (typically an IC). bool position_recorded = CodeGenerator::RecordPositions( masm_, stmt->position(), !checker.is_breakable()); // If the position recording did record a new position generate a debug // break slot to make the statement breakable. if (position_recorded) { Debug::GenerateSlot(masm_); } } #else CodeGenerator::RecordPositions(masm_, stmt->position()); #endif } void FullCodeGenerator::SetExpressionPosition(Expression* expr) { #ifdef ENABLE_DEBUGGER_SUPPORT if (!isolate()->debugger()->IsDebuggerActive()) { CodeGenerator::RecordPositions(masm_, expr->position()); } else { // Check if the expression will be breakable without adding a debug break // slot. BreakableStatementChecker checker(isolate()); checker.Check(expr); // Record a statement position right here if the expression is not // breakable. For breakable expressions the actual recording of the // position will be postponed to the breakable code (typically an IC). // NOTE this will record a statement position for something which might // not be a statement. As stepping in the debugger will only stop at // statement positions this is used for e.g. the condition expression of // a do while loop. bool position_recorded = CodeGenerator::RecordPositions( masm_, expr->position(), !checker.is_breakable()); // If the position recording did record a new position generate a debug // break slot to make the statement breakable. if (position_recorded) { Debug::GenerateSlot(masm_); } } #else CodeGenerator::RecordPositions(masm_, pos); #endif } void FullCodeGenerator::SetStatementPosition(int pos) { CodeGenerator::RecordPositions(masm_, pos); } void FullCodeGenerator::SetSourcePosition(int pos) { if (pos != RelocInfo::kNoPosition) { masm_->positions_recorder()->RecordPosition(pos); } } // Lookup table for code generators for special runtime calls which are // generated inline. #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \ &FullCodeGenerator::Emit##Name, const FullCodeGenerator::InlineFunctionGenerator FullCodeGenerator::kInlineFunctionGenerators[] = { INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS) }; #undef INLINE_FUNCTION_GENERATOR_ADDRESS FullCodeGenerator::InlineFunctionGenerator FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) { int lookup_index = static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction); ASSERT(lookup_index >= 0); ASSERT(static_cast<size_t>(lookup_index) < ARRAY_SIZE(kInlineFunctionGenerators)); return kInlineFunctionGenerators[lookup_index]; } void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) { const Runtime::Function* function = expr->function(); ASSERT(function != NULL); ASSERT(function->intrinsic_type == Runtime::INLINE); InlineFunctionGenerator generator = FindInlineFunctionGenerator(function->function_id); ((*this).*(generator))(expr); } void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT); } void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW); } void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) { context()->Plug(handle(Smi::FromInt(0), isolate())); } void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { switch (expr->op()) { case Token::COMMA: return VisitComma(expr); case Token::OR: case Token::AND: return VisitLogicalExpression(expr); default: return VisitArithmeticExpression(expr); } } void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) { if (context()->IsEffect()) { VisitForEffect(expr); } else if (context()->IsAccumulatorValue()) { VisitForAccumulatorValue(expr); } else if (context()->IsStackValue()) { VisitForStackValue(expr); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); VisitForControl(expr, test->true_label(), test->false_label(), test->fall_through()); } } void FullCodeGenerator::VisitComma(BinaryOperation* expr) { Comment cmnt(masm_, "[ Comma"); VisitForEffect(expr->left()); VisitInDuplicateContext(expr->right()); } void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) { bool is_logical_and = expr->op() == Token::AND; Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR"); Expression* left = expr->left(); Expression* right = expr->right(); BailoutId right_id = expr->RightId(); Label done; if (context()->IsTest()) { Label eval_right; const TestContext* test = TestContext::cast(context()); if (is_logical_and) { VisitForControl(left, &eval_right, test->false_label(), &eval_right); } else { VisitForControl(left, test->true_label(), &eval_right, &eval_right); } PrepareForBailoutForId(right_id, NO_REGISTERS); __ bind(&eval_right); } else if (context()->IsAccumulatorValue()) { VisitForAccumulatorValue(left); // We want the value in the accumulator for the test, and on the stack in // case we need it. __ Push(result_register()); Label discard, restore; if (is_logical_and) { DoTest(left, &discard, &restore, &restore); } else { DoTest(left, &restore, &discard, &restore); } __ bind(&restore); __ Pop(result_register()); __ jmp(&done); __ bind(&discard); __ Drop(1); PrepareForBailoutForId(right_id, NO_REGISTERS); } else if (context()->IsStackValue()) { VisitForAccumulatorValue(left); // We want the value in the accumulator for the test, and on the stack in // case we need it. __ Push(result_register()); Label discard; if (is_logical_and) { DoTest(left, &discard, &done, &discard); } else { DoTest(left, &done, &discard, &discard); } __ bind(&discard); __ Drop(1); PrepareForBailoutForId(right_id, NO_REGISTERS); } else { ASSERT(context()->IsEffect()); Label eval_right; if (is_logical_and) { VisitForControl(left, &eval_right, &done, &eval_right); } else { VisitForControl(left, &done, &eval_right, &eval_right); } PrepareForBailoutForId(right_id, NO_REGISTERS); __ bind(&eval_right); } VisitInDuplicateContext(right); __ bind(&done); } void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) { Token::Value op = expr->op(); Comment cmnt(masm_, "[ ArithmeticExpression"); Expression* left = expr->left(); Expression* right = expr->right(); OverwriteMode mode = left->ResultOverwriteAllowed() ? OVERWRITE_LEFT : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE); VisitForStackValue(left); VisitForAccumulatorValue(right); SetSourcePosition(expr->position()); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr, op, mode, left, right); } else { EmitBinaryOp(expr, op, mode); } } void FullCodeGenerator::VisitBlock(Block* stmt) { Comment cmnt(masm_, "[ Block"); NestedBlock nested_block(this, stmt); SetStatementPosition(stmt); Scope* saved_scope = scope(); // Push a block context when entering a block with block scoped variables. if (stmt->scope() != NULL) { scope_ = stmt->scope(); ASSERT(!scope_->is_module_scope()); { Comment cmnt(masm_, "[ Extend block context"); Handle<ScopeInfo> scope_info = scope_->GetScopeInfo(); int heap_slots = scope_info->ContextLength() - Context::MIN_CONTEXT_SLOTS; __ Push(scope_info); PushFunctionArgumentForContextAllocation(); if (heap_slots <= FastNewBlockContextStub::kMaximumSlots) { FastNewBlockContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kPushBlockContext, 2); } // Replace the context stored in the frame. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope_->declarations()); } } PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); VisitStatements(stmt->statements()); scope_ = saved_scope; __ bind(nested_block.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); // Pop block context if necessary. if (stmt->scope() != NULL) { LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } } void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) { Comment cmnt(masm_, "[ Module context"); __ Push(Smi::FromInt(stmt->proxy()->interface()->Index())); __ Push(Smi::FromInt(0)); __ CallRuntime(Runtime::kPushModuleContext, 2); StoreToFrameField( StandardFrameConstants::kContextOffset, context_register()); Scope* saved_scope = scope_; scope_ = stmt->body()->scope(); VisitStatements(stmt->body()->statements()); scope_ = saved_scope; LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) { Comment cmnt(masm_, "[ ExpressionStatement"); SetStatementPosition(stmt); VisitForEffect(stmt->expression()); } void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) { Comment cmnt(masm_, "[ EmptyStatement"); SetStatementPosition(stmt); } void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) { Comment cmnt(masm_, "[ IfStatement"); SetStatementPosition(stmt); Label then_part, else_part, done; if (stmt->HasElseStatement()) { VisitForControl(stmt->condition(), &then_part, &else_part, &then_part); PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); __ jmp(&done); PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS); __ bind(&else_part); Visit(stmt->else_statement()); } else { VisitForControl(stmt->condition(), &then_part, &done, &then_part); PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS); __ bind(&then_part); Visit(stmt->then_statement()); PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS); } __ bind(&done); PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS); } void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) { Comment cmnt(masm_, "[ ContinueStatement"); SetStatementPosition(stmt); NestedStatement* current = nesting_stack_; int stack_depth = 0; int context_length = 0; // When continuing, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsContinueTarget(stmt->target())) { current = current->Exit(&stack_depth, &context_length); } __ Drop(stack_depth); if (context_length > 0) { while (context_length > 0) { LoadContextField(context_register(), Context::PREVIOUS_INDEX); --context_length; } StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } __ jmp(current->AsIteration()->continue_label()); } void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) { Comment cmnt(masm_, "[ BreakStatement"); SetStatementPosition(stmt); NestedStatement* current = nesting_stack_; int stack_depth = 0; int context_length = 0; // When breaking, we clobber the unpredictable value in the accumulator // with one that's safe for GC. If we hit an exit from the try block of // try...finally on our way out, we will unconditionally preserve the // accumulator on the stack. ClearAccumulator(); while (!current->IsBreakTarget(stmt->target())) { current = current->Exit(&stack_depth, &context_length); } __ Drop(stack_depth); if (context_length > 0) { while (context_length > 0) { LoadContextField(context_register(), Context::PREVIOUS_INDEX); --context_length; } StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } __ jmp(current->AsBreakable()->break_label()); } void FullCodeGenerator::EmitUnwindBeforeReturn() { NestedStatement* current = nesting_stack_; int stack_depth = 0; int context_length = 0; while (current != NULL) { current = current->Exit(&stack_depth, &context_length); } __ Drop(stack_depth); } void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { Comment cmnt(masm_, "[ ReturnStatement"); SetStatementPosition(stmt); Expression* expr = stmt->expression(); VisitForAccumulatorValue(expr); EmitUnwindBeforeReturn(); EmitReturnSequence(); } void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) { Comment cmnt(masm_, "[ WithStatement"); SetStatementPosition(stmt); VisitForStackValue(stmt->expression()); PushFunctionArgumentForContextAllocation(); __ CallRuntime(Runtime::kPushWithContext, 2); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); Scope* saved_scope = scope(); scope_ = stmt->scope(); { WithOrCatch body(this); Visit(stmt->statement()); } scope_ = saved_scope; // Pop context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); // Update local stack frame context field. StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) { Comment cmnt(masm_, "[ DoWhileStatement"); SetStatementPosition(stmt); Label body, book_keeping; Iteration loop_statement(this, stmt); increment_loop_depth(); __ bind(&body); Visit(stmt->body()); // Record the position of the do while condition and make sure it is // possible to break on the condition. __ bind(loop_statement.continue_label()); PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS); SetExpressionPosition(stmt->cond()); VisitForControl(stmt->cond(), &book_keeping, loop_statement.break_label(), &book_keeping); // Check stack before looping. PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS); __ bind(&book_keeping); EmitBackEdgeBookkeeping(stmt, &body); __ jmp(&body); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) { Comment cmnt(masm_, "[ WhileStatement"); Label test, body; Iteration loop_statement(this, stmt); increment_loop_depth(); // Emit the test at the bottom of the loop. __ jmp(&test); PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&body); Visit(stmt->body()); // Emit the statement position here as this is where the while // statement code starts. __ bind(loop_statement.continue_label()); SetStatementPosition(stmt); // Check stack before looping. EmitBackEdgeBookkeeping(stmt, &body); __ bind(&test); VisitForControl(stmt->cond(), &body, loop_statement.break_label(), loop_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitForStatement(ForStatement* stmt) { Comment cmnt(masm_, "[ ForStatement"); Label test, body; Iteration loop_statement(this, stmt); // Set statement position for a break slot before entering the for-body. SetStatementPosition(stmt); if (stmt->init() != NULL) { Visit(stmt->init()); } increment_loop_depth(); // Emit the test at the bottom of the loop (even if empty). __ jmp(&test); PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&body); Visit(stmt->body()); PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS); __ bind(loop_statement.continue_label()); if (stmt->next() != NULL) { Visit(stmt->next()); } // Emit the statement position here as this is where the for // statement code starts. SetStatementPosition(stmt); // Check stack before looping. EmitBackEdgeBookkeeping(stmt, &body); __ bind(&test); if (stmt->cond() != NULL) { VisitForControl(stmt->cond(), &body, loop_statement.break_label(), loop_statement.break_label()); } else { __ jmp(&body); } PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) { Comment cmnt(masm_, "[ TryCatchStatement"); SetStatementPosition(stmt); // The try block adds a handler to the exception handler chain before // entering, and removes it again when exiting normally. If an exception // is thrown during execution of the try block, the handler is consumed // and control is passed to the catch block with the exception in the // result register. Label try_entry, handler_entry, exit; __ jmp(&try_entry); __ bind(&handler_entry); handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos())); // Exception handler code, the exception is in the result register. // Extend the context before executing the catch block. { Comment cmnt(masm_, "[ Extend catch context"); __ Push(stmt->variable()->name()); __ Push(result_register()); PushFunctionArgumentForContextAllocation(); __ CallRuntime(Runtime::kPushCatchContext, 3); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); } Scope* saved_scope = scope(); scope_ = stmt->scope(); ASSERT(scope_->declarations()->is_empty()); { WithOrCatch catch_body(this); Visit(stmt->catch_block()); } // Restore the context. LoadContextField(context_register(), Context::PREVIOUS_INDEX); StoreToFrameField(StandardFrameConstants::kContextOffset, context_register()); scope_ = saved_scope; __ jmp(&exit); // Try block code. Sets up the exception handler chain. __ bind(&try_entry); __ PushTryHandler(StackHandler::CATCH, stmt->index()); { TryCatch try_body(this); Visit(stmt->try_block()); } __ PopTryHandler(); __ bind(&exit); } void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) { Comment cmnt(masm_, "[ TryFinallyStatement"); SetStatementPosition(stmt); // Try finally is compiled by setting up a try-handler on the stack while // executing the try body, and removing it again afterwards. // // The try-finally construct can enter the finally block in three ways: // 1. By exiting the try-block normally. This removes the try-handler and // calls the finally block code before continuing. // 2. By exiting the try-block with a function-local control flow transfer // (break/continue/return). The site of the, e.g., break removes the // try handler and calls the finally block code before continuing // its outward control transfer. // 3. By exiting the try-block with a thrown exception. // This can happen in nested function calls. It traverses the try-handler // chain and consumes the try-handler entry before jumping to the // handler code. The handler code then calls the finally-block before // rethrowing the exception. // // The finally block must assume a return address on top of the stack // (or in the link register on ARM chips) and a value (return value or // exception) in the result register (rax/eax/r0), both of which must // be preserved. The return address isn't GC-safe, so it should be // cooked before GC. Label try_entry, handler_entry, finally_entry; // Jump to try-handler setup and try-block code. __ jmp(&try_entry); __ bind(&handler_entry); handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos())); // Exception handler code. This code is only executed when an exception // is thrown. The exception is in the result register, and must be // preserved by the finally block. Call the finally block and then // rethrow the exception if it returns. __ Call(&finally_entry); __ Push(result_register()); __ CallRuntime(Runtime::kReThrow, 1); // Finally block implementation. __ bind(&finally_entry); EnterFinallyBlock(); { Finally finally_body(this); Visit(stmt->finally_block()); } ExitFinallyBlock(); // Return to the calling code. // Set up try handler. __ bind(&try_entry); __ PushTryHandler(StackHandler::FINALLY, stmt->index()); { TryFinally try_body(this, &finally_entry); Visit(stmt->try_block()); } __ PopTryHandler(); // Execute the finally block on the way out. Clobber the unpredictable // value in the result register with one that's safe for GC because the // finally block will unconditionally preserve the result register on the // stack. ClearAccumulator(); __ Call(&finally_entry); } void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) { #ifdef ENABLE_DEBUGGER_SUPPORT Comment cmnt(masm_, "[ DebuggerStatement"); SetStatementPosition(stmt); __ DebugBreak(); // Ignore the return value. #endif } void FullCodeGenerator::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); } void FullCodeGenerator::VisitConditional(Conditional* expr) { Comment cmnt(masm_, "[ Conditional"); Label true_case, false_case, done; VisitForControl(expr->condition(), &true_case, &false_case, &true_case); PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS); __ bind(&true_case); SetExpressionPosition(expr->then_expression()); if (context()->IsTest()) { const TestContext* for_test = TestContext::cast(context()); VisitForControl(expr->then_expression(), for_test->true_label(), for_test->false_label(), NULL); } else { VisitInDuplicateContext(expr->then_expression()); __ jmp(&done); } PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS); __ bind(&false_case); SetExpressionPosition(expr->else_expression()); VisitInDuplicateContext(expr->else_expression()); // If control flow falls through Visit, merge it with true case here. if (!context()->IsTest()) { __ bind(&done); } } void FullCodeGenerator::VisitLiteral(Literal* expr) { Comment cmnt(masm_, "[ Literal"); context()->Plug(expr->value()); } void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<SharedFunctionInfo> function_info = Compiler::BuildFunctionInfo(expr, script()); if (function_info.is_null()) { SetStackOverflow(); return; } EmitNewClosure(function_info, expr->pretenure()); } void FullCodeGenerator::VisitNativeFunctionLiteral( NativeFunctionLiteral* expr) { Comment cmnt(masm_, "[ NativeFunctionLiteral"); // Compute the function template for the native function. Handle<String> name = expr->name(); v8::Handle<v8::FunctionTemplate> fun_template = expr->extension()->GetNativeFunctionTemplate( reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name)); ASSERT(!fun_template.IsEmpty()); // Instantiate the function and create a shared function info from it. Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction()); const int literals = fun->NumberOfLiterals(); Handle<Code> code = Handle<Code>(fun->shared()->code()); Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub()); bool is_generator = false; Handle<SharedFunctionInfo> shared = isolate()->factory()->NewSharedFunctionInfo(name, literals, is_generator, code, Handle<ScopeInfo>(fun->shared()->scope_info())); shared->set_construct_stub(*construct_stub); // Copy the function data to the shared function info. shared->set_function_data(fun->shared()->function_data()); int parameters = fun->shared()->formal_parameter_count(); shared->set_formal_parameter_count(parameters); EmitNewClosure(shared, false); } void FullCodeGenerator::VisitThrow(Throw* expr) { Comment cmnt(masm_, "[ Throw"); VisitForStackValue(expr->exception()); __ CallRuntime(Runtime::kThrow, 1); // Never returns here. } FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit( int* stack_depth, int* context_length) { // The macros used here must preserve the result register. __ Drop(*stack_depth); __ PopTryHandler(); *stack_depth = 0; return previous_; } bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) { Expression* sub_expr; Handle<String> check; if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) { EmitLiteralCompareTypeof(expr, sub_expr, check); return true; } if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) { EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue); return true; } if (expr->IsLiteralCompareNull(&sub_expr)) { EmitLiteralCompareNil(expr, sub_expr, kNullValue); return true; } return false; } void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) { DisallowHeapAllocation no_gc; Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement); // Iterate over the back edge table and patch every interrupt // call to an unconditional call to the replacement code. int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level(); BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) { ASSERT_EQ(INTERRUPT, GetBackEdgeState(isolate, unoptimized, back_edges.pc(i))); PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch); } } unoptimized->set_back_edges_patched_for_osr(true); ASSERT(Verify(isolate, unoptimized, loop_nesting_level)); } void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) { DisallowHeapAllocation no_gc; Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck); // Iterate over the back edge table and revert the patched interrupt calls. ASSERT(unoptimized->back_edges_patched_for_osr()); int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level(); BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) { ASSERT_NE(INTERRUPT, GetBackEdgeState(isolate, unoptimized, back_edges.pc(i))); PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch); } } unoptimized->set_back_edges_patched_for_osr(false); unoptimized->set_allow_osr_at_loop_nesting_level(0); // Assert that none of the back edges are patched anymore. ASSERT(Verify(isolate, unoptimized, -1)); } void BackEdgeTable::AddStackCheck(CompilationInfo* info) { DisallowHeapAllocation no_gc; Isolate* isolate = info->isolate(); Code* code = info->shared_info()->code(); Address pc = code->instruction_start() + info->osr_pc_offset(); ASSERT_EQ(ON_STACK_REPLACEMENT, GetBackEdgeState(isolate, code, pc)); Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck); PatchAt(code, pc, OSR_AFTER_STACK_CHECK, patch); } void BackEdgeTable::RemoveStackCheck(CompilationInfo* info) { DisallowHeapAllocation no_gc; Isolate* isolate = info->isolate(); Code* code = info->shared_info()->code(); Address pc = code->instruction_start() + info->osr_pc_offset(); if (GetBackEdgeState(isolate, code, pc) == OSR_AFTER_STACK_CHECK) { Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement); PatchAt(code, pc, ON_STACK_REPLACEMENT, patch); } } #ifdef DEBUG bool BackEdgeTable::Verify(Isolate* isolate, Code* unoptimized, int loop_nesting_level) { DisallowHeapAllocation no_gc; BackEdgeTable back_edges(unoptimized, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { uint32_t loop_depth = back_edges.loop_depth(i); CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker); // Assert that all back edges for shallower loops (and only those) // have already been patched. CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level), GetBackEdgeState(isolate, unoptimized, back_edges.pc(i)) != INTERRUPT); } return true; } #endif // DEBUG #undef __ } } // namespace v8::internal