/* ********************************************************************** * Copyright (C) 1999-2009, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 10/20/99 alan Creation. ********************************************************************** */ #include "unicode/utypes.h" #include "unicode/uniset.h" #include "unicode/parsepos.h" #include "unicode/symtable.h" #include "ruleiter.h" #include "cmemory.h" #include "cstring.h" #include "uhash.h" #include "util.h" #include "uvector.h" #include "charstr.h" #include "ustrfmt.h" #include "uassert.h" #include "hash.h" #include "bmpset.h" #include "unisetspan.h" // Define UChar constants using hex for EBCDIC compatibility // Used #define to reduce private static exports and memory access time. #define SET_OPEN ((UChar)0x005B) /*[*/ #define SET_CLOSE ((UChar)0x005D) /*]*/ #define HYPHEN ((UChar)0x002D) /*-*/ #define COMPLEMENT ((UChar)0x005E) /*^*/ #define COLON ((UChar)0x003A) /*:*/ #define BACKSLASH ((UChar)0x005C) /*\*/ #define INTERSECTION ((UChar)0x0026) /*&*/ #define UPPER_U ((UChar)0x0055) /*U*/ #define LOWER_U ((UChar)0x0075) /*u*/ #define OPEN_BRACE ((UChar)123) /*{*/ #define CLOSE_BRACE ((UChar)125) /*}*/ #define UPPER_P ((UChar)0x0050) /*P*/ #define LOWER_P ((UChar)0x0070) /*p*/ #define UPPER_N ((UChar)78) /*N*/ #define EQUALS ((UChar)0x003D) /*=*/ // HIGH_VALUE > all valid values. 110000 for codepoints #define UNICODESET_HIGH 0x0110000 // LOW <= all valid values. ZERO for codepoints #define UNICODESET_LOW 0x000000 // initial storage. Must be >= 0 #define START_EXTRA 16 // extra amount for growth. Must be >= 0 #define GROW_EXTRA START_EXTRA U_NAMESPACE_BEGIN SymbolTable::~SymbolTable() {} UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeSet) /** * Modify the given UChar32 variable so that it is in range, by * pinning values < UNICODESET_LOW to UNICODESET_LOW, and * pinning values > UNICODESET_HIGH-1 to UNICODESET_HIGH-1. * It modifies its argument in-place and also returns it. */ static inline UChar32 pinCodePoint(UChar32& c) { if (c < UNICODESET_LOW) { c = UNICODESET_LOW; } else if (c > (UNICODESET_HIGH-1)) { c = (UNICODESET_HIGH-1); } return c; } //---------------------------------------------------------------- // Debugging //---------------------------------------------------------------- // DO NOT DELETE THIS CODE. This code is used to debug memory leaks. // To enable the debugging, define the symbol DEBUG_MEM in the line // below. This will result in text being sent to stdout that looks // like this: // DEBUG UnicodeSet: ct 0x00A39B20; 397 [\u0A81-\u0A83\u0A85- // DEBUG UnicodeSet: dt 0x00A39B20; 396 [\u0A81-\u0A83\u0A85- // Each line lists a construction (ct) or destruction (dt) event, the // object address, the number of outstanding objects after the event, // and the pattern of the object in question. // #define DEBUG_MEM #ifdef DEBUG_MEM #include <stdio.h> static int32_t _dbgCount = 0; static inline void _dbgct(UnicodeSet* set) { UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: ct 0x%08X; %d %s\n", set, ++_dbgCount, buf); } static inline void _dbgdt(UnicodeSet* set) { UnicodeString str; set->toPattern(str, TRUE); char buf[40]; str.extract(0, 39, buf, ""); printf("DEBUG UnicodeSet: dt 0x%08X; %d %s\n", set, --_dbgCount, buf); } #else #define _dbgct(set) #define _dbgdt(set) #endif //---------------------------------------------------------------- // UnicodeString in UVector support //---------------------------------------------------------------- static void U_CALLCONV cloneUnicodeString(UHashTok *dst, UHashTok *src) { dst->pointer = new UnicodeString(*(UnicodeString*)src->pointer); } static int8_t U_CALLCONV compareUnicodeString(UHashTok t1, UHashTok t2) { const UnicodeString &a = *(const UnicodeString*)t1.pointer; const UnicodeString &b = *(const UnicodeString*)t2.pointer; return a.compare(b); } //---------------------------------------------------------------- // Constructors &c //---------------------------------------------------------------- /** * Constructs an empty set. */ UnicodeSet::UnicodeSet() : len(1), capacity(1 + START_EXTRA), list(0), bmpSet(0), buffer(0), bufferCapacity(0), patLen(0), pat(NULL), strings(NULL), stringSpan(NULL), fFlags(0) { UErrorCode status = U_ZERO_ERROR; allocateStrings(status); if (U_FAILURE(status)) { return; } list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ list[0] = UNICODESET_HIGH; } else { // If memory allocation failed, set to bogus state. setToBogus(); return; } _dbgct(this); } /** * Constructs a set containing the given range. If <code>end > * start</code> then an empty set is created. * * @param start first character, inclusive, of range * @param end last character, inclusive, of range */ UnicodeSet::UnicodeSet(UChar32 start, UChar32 end) : len(1), capacity(1 + START_EXTRA), list(0), bmpSet(0), buffer(0), bufferCapacity(0), patLen(0), pat(NULL), strings(NULL), stringSpan(NULL), fFlags(0) { UErrorCode status = U_ZERO_ERROR; allocateStrings(status); if (U_FAILURE(status)) { return; } list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ list[0] = UNICODESET_HIGH; complement(start, end); } else { // If memory allocation failed, set to bogus state. setToBogus(); return; } _dbgct(this); } /** * Constructs a set that is identical to the given UnicodeSet. */ UnicodeSet::UnicodeSet(const UnicodeSet& o) : UnicodeFilter(o), len(0), capacity(o.isFrozen() ? o.len : o.len + GROW_EXTRA), list(0), bmpSet(0), buffer(0), bufferCapacity(0), patLen(0), pat(NULL), strings(NULL), stringSpan(NULL), fFlags(0) { UErrorCode status = U_ZERO_ERROR; allocateStrings(status); if (U_FAILURE(status)) { return; } list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ *this = o; } else { // If memory allocation failed, set to bogus state. setToBogus(); return; } _dbgct(this); } // Copy-construct as thawed. UnicodeSet::UnicodeSet(const UnicodeSet& o, UBool /* asThawed */) : UnicodeFilter(o), len(0), capacity(o.len + GROW_EXTRA), list(0), bmpSet(0), buffer(0), bufferCapacity(0), patLen(0), pat(NULL), strings(NULL), stringSpan(NULL), fFlags(0) { UErrorCode status = U_ZERO_ERROR; allocateStrings(status); if (U_FAILURE(status)) { return; } list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity); if(list!=NULL){ // *this = o except for bmpSet and stringSpan len = o.len; uprv_memcpy(list, o.list, len*sizeof(UChar32)); if (strings != NULL && o.strings != NULL) { strings->assign(*o.strings, cloneUnicodeString, status); } else { // Invalid strings. setToBogus(); return; } if (o.pat) { setPattern(UnicodeString(o.pat, o.patLen)); } } else { // If memory allocation failed, set to bogus state. setToBogus(); return; } _dbgct(this); } /** * Destructs the set. */ UnicodeSet::~UnicodeSet() { _dbgdt(this); // first! uprv_free(list); delete bmpSet; if (buffer) { uprv_free(buffer); } delete strings; delete stringSpan; releasePattern(); } /** * Assigns this object to be a copy of another. */ UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) { if (this == &o) { return *this; } if (isFrozen()) { return *this; } if (o.isBogus()) { setToBogus(); return *this; } UErrorCode ec = U_ZERO_ERROR; ensureCapacity(o.len, ec); if (U_FAILURE(ec)) { return *this; // There is no way to report this error :-( } len = o.len; uprv_memcpy(list, o.list, len*sizeof(UChar32)); if (o.bmpSet == NULL) { bmpSet = NULL; } else { bmpSet = new BMPSet(*o.bmpSet, list, len); if (bmpSet == NULL) { // Check for memory allocation error. setToBogus(); return *this; } } if (strings != NULL && o.strings != NULL) { strings->assign(*o.strings, cloneUnicodeString, ec); } else { // Invalid strings. setToBogus(); return *this; } if (o.stringSpan == NULL) { stringSpan = NULL; } else { stringSpan = new UnicodeSetStringSpan(*o.stringSpan, *strings); if (stringSpan == NULL) { // Check for memory allocation error. setToBogus(); return *this; } } releasePattern(); if (o.pat) { setPattern(UnicodeString(o.pat, o.patLen)); } return *this; } /** * Returns a copy of this object. All UnicodeMatcher objects have * to support cloning in order to allow classes using * UnicodeMatchers, such as Transliterator, to implement cloning. */ UnicodeFunctor* UnicodeSet::clone() const { return new UnicodeSet(*this); } UnicodeFunctor *UnicodeSet::cloneAsThawed() const { return new UnicodeSet(*this, TRUE); } /** * Compares the specified object with this set for equality. Returns * <tt>true</tt> if the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). * * @param o set to be compared for equality with this set. * @return <tt>true</tt> if the specified set is equal to this set. */ UBool UnicodeSet::operator==(const UnicodeSet& o) const { if (len != o.len) return FALSE; for (int32_t i = 0; i < len; ++i) { if (list[i] != o.list[i]) return FALSE; } if (*strings != *o.strings) return FALSE; return TRUE; } /** * Returns the hash code value for this set. * * @return the hash code value for this set. * @see Object#hashCode() */ int32_t UnicodeSet::hashCode(void) const { int32_t result = len; for (int32_t i = 0; i < len; ++i) { result *= 1000003; result += list[i]; } return result; } //---------------------------------------------------------------- // Public API //---------------------------------------------------------------- /** * Returns the number of elements in this set (its cardinality), * Note than the elements of a set may include both individual * codepoints and strings. * * @return the number of elements in this set (its cardinality). */ int32_t UnicodeSet::size(void) const { int32_t n = 0; int32_t count = getRangeCount(); for (int32_t i = 0; i < count; ++i) { n += getRangeEnd(i) - getRangeStart(i) + 1; } return n + strings->size(); } /** * Returns <tt>true</tt> if this set contains no elements. * * @return <tt>true</tt> if this set contains no elements. */ UBool UnicodeSet::isEmpty(void) const { return len == 1 && strings->size() == 0; } /** * Returns true if this set contains the given character. * @param c character to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 c) const { // Set i to the index of the start item greater than ch // We know we will terminate without length test! // LATER: for large sets, add binary search //int32_t i = -1; //for (;;) { // if (c < list[++i]) break; //} if (bmpSet != NULL) { return bmpSet->contains(c); } if (stringSpan != NULL) { return stringSpan->contains(c); } if (c >= UNICODESET_HIGH) { // Don't need to check LOW bound return FALSE; } int32_t i = findCodePoint(c); return (UBool)(i & 1); // return true if odd } /** * Returns the smallest value i such that c < list[i]. Caller * must ensure that c is a legal value or this method will enter * an infinite loop. This method performs a binary search. * @param c a character in the range MIN_VALUE..MAX_VALUE * inclusive * @return the smallest integer i in the range 0..len-1, * inclusive, such that c < list[i] */ int32_t UnicodeSet::findCodePoint(UChar32 c) const { /* Examples: findCodePoint(c) set list[] c=0 1 3 4 7 8 === ============== =========== [] [110000] 0 0 0 0 0 0 [\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2 [\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2 [:Any:] [0, 110000] 1 1 1 1 1 1 */ // Return the smallest i such that c < list[i]. Assume // list[len - 1] == HIGH and that c is legal (0..HIGH-1). if (c < list[0]) return 0; // High runner test. c is often after the last range, so an // initial check for this condition pays off. int32_t lo = 0; int32_t hi = len - 1; if (lo >= hi || c >= list[hi-1]) return hi; // invariant: c >= list[lo] // invariant: c < list[hi] for (;;) { int32_t i = (lo + hi) >> 1; if (i == lo) { break; // Found! } else if (c < list[i]) { hi = i; } else { lo = i; } } return hi; } /** * Returns true if this set contains every character * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::contains(UChar32 start, UChar32 end) const { //int32_t i = -1; //for (;;) { // if (start < list[++i]) break; //} int32_t i = findCodePoint(start); return ((i & 1) != 0 && end < list[i]); } /** * Returns <tt>true</tt> if this set contains the given * multicharacter string. * @param s string to be checked for containment * @return <tt>true</tt> if this set contains the specified string */ UBool UnicodeSet::contains(const UnicodeString& s) const { if (s.length() == 0) return FALSE; int32_t cp = getSingleCP(s); if (cp < 0) { return strings->contains((void*) &s); } else { return contains((UChar32) cp); } } /** * Returns true if this set contains all the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int i=0; i<n; ++i) { if (!contains(c.getRangeStart(i), c.getRangeEnd(i))) { return FALSE; } } if (!strings->containsAll(*c.strings)) return FALSE; return TRUE; } /** * Returns true if this set contains all the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsAll(const UnicodeString& s) const { return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_CONTAINED) == s.length()); } /** * Returns true if this set contains none of the characters * of the given range. * @param start first character, inclusive, of the range * @param end last character, inclusive, of the range * @return true if the test condition is met */ UBool UnicodeSet::containsNone(UChar32 start, UChar32 end) const { //int32_t i = -1; //for (;;) { // if (start < list[++i]) break; //} int32_t i = findCodePoint(start); return ((i & 1) == 0 && end < list[i]); } /** * Returns true if this set contains none of the characters and strings * of the given set. * @param c set to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained in // this set. It's possible to code this more efficiently in terms of // direct manipulation of the inversion lists if the need arises. int32_t n = c.getRangeCount(); for (int32_t i=0; i<n; ++i) { if (!containsNone(c.getRangeStart(i), c.getRangeEnd(i))) { return FALSE; } } if (!strings->containsNone(*c.strings)) return FALSE; return TRUE; } /** * Returns true if this set contains none of the characters * of the given string. * @param s string containing characters to be checked for containment * @return true if the test condition is met */ UBool UnicodeSet::containsNone(const UnicodeString& s) const { return (UBool)(span(s.getBuffer(), s.length(), USET_SPAN_NOT_CONTAINED) == s.length()); } /** * Returns <tt>true</tt> if this set contains any character whose low byte * is the given value. This is used by <tt>RuleBasedTransliterator</tt> for * indexing. */ UBool UnicodeSet::matchesIndexValue(uint8_t v) const { /* The index value v, in the range [0,255], is contained in this set if * it is contained in any pair of this set. Pairs either have the high * bytes equal, or unequal. If the high bytes are equal, then we have * aaxx..aayy, where aa is the high byte. Then v is contained if xx <= * v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa. * Then v is contained if xx <= v || v <= yy. (This is identical to the * time zone month containment logic.) */ int32_t i; int32_t rangeCount=getRangeCount(); for (i=0; i<rangeCount; ++i) { UChar32 low = getRangeStart(i); UChar32 high = getRangeEnd(i); if ((low & ~0xFF) == (high & ~0xFF)) { if ((low & 0xFF) <= v && v <= (high & 0xFF)) { return TRUE; } } else if ((low & 0xFF) <= v || v <= (high & 0xFF)) { return TRUE; } } if (strings->size() != 0) { for (i=0; i<strings->size(); ++i) { const UnicodeString& s = *(const UnicodeString*)strings->elementAt(i); //if (s.length() == 0) { // // Empty strings match everything // return TRUE; //} // assert(s.length() != 0); // We enforce this elsewhere UChar32 c = s.char32At(0); if ((c & 0xFF) == v) { return TRUE; } } } return FALSE; } /** * Implementation of UnicodeMatcher::matches(). Always matches the * longest possible multichar string. */ UMatchDegree UnicodeSet::matches(const Replaceable& text, int32_t& offset, int32_t limit, UBool incremental) { if (offset == limit) { // Strings, if any, have length != 0, so we don't worry // about them here. If we ever allow zero-length strings // we much check for them here. if (contains(U_ETHER)) { return incremental ? U_PARTIAL_MATCH : U_MATCH; } else { return U_MISMATCH; } } else { if (strings->size() != 0) { // try strings first // might separate forward and backward loops later // for now they are combined // TODO Improve efficiency of this, at least in the forward // direction, if not in both. In the forward direction we // can assume the strings are sorted. int32_t i; UBool forward = offset < limit; // firstChar is the leftmost char to match in the // forward direction or the rightmost char to match in // the reverse direction. UChar firstChar = text.charAt(offset); // If there are multiple strings that can match we // return the longest match. int32_t highWaterLength = 0; for (i=0; i<strings->size(); ++i) { const UnicodeString& trial = *(const UnicodeString*)strings->elementAt(i); //if (trial.length() == 0) { // return U_MATCH; // null-string always matches //} // assert(trial.length() != 0); // We ensure this elsewhere UChar c = trial.charAt(forward ? 0 : trial.length() - 1); // Strings are sorted, so we can optimize in the // forward direction. if (forward && c > firstChar) break; if (c != firstChar) continue; int32_t matchLen = matchRest(text, offset, limit, trial); if (incremental) { int32_t maxLen = forward ? limit-offset : offset-limit; if (matchLen == maxLen) { // We have successfully matched but only up to limit. return U_PARTIAL_MATCH; } } if (matchLen == trial.length()) { // We have successfully matched the whole string. if (matchLen > highWaterLength) { highWaterLength = matchLen; } // In the forward direction we know strings // are sorted so we can bail early. if (forward && matchLen < highWaterLength) { break; } continue; } } // We've checked all strings without a partial match. // If we have full matches, return the longest one. if (highWaterLength != 0) { offset += forward ? highWaterLength : -highWaterLength; return U_MATCH; } } return UnicodeFilter::matches(text, offset, limit, incremental); } } /** * Returns the longest match for s in text at the given position. * If limit > start then match forward from start+1 to limit * matching all characters except s.charAt(0). If limit < start, * go backward starting from start-1 matching all characters * except s.charAt(s.length()-1). This method assumes that the * first character, text.charAt(start), matches s, so it does not * check it. * @param text the text to match * @param start the first character to match. In the forward * direction, text.charAt(start) is matched against s.charAt(0). * In the reverse direction, it is matched against * s.charAt(s.length()-1). * @param limit the limit offset for matching, either last+1 in * the forward direction, or last-1 in the reverse direction, * where last is the index of the last character to match. * @return If part of s matches up to the limit, return |limit - * start|. If all of s matches before reaching the limit, return * s.length(). If there is a mismatch between s and text, return * 0 */ int32_t UnicodeSet::matchRest(const Replaceable& text, int32_t start, int32_t limit, const UnicodeString& s) { int32_t i; int32_t maxLen; int32_t slen = s.length(); if (start < limit) { maxLen = limit - start; if (maxLen > slen) maxLen = slen; for (i = 1; i < maxLen; ++i) { if (text.charAt(start + i) != s.charAt(i)) return 0; } } else { maxLen = start - limit; if (maxLen > slen) maxLen = slen; --slen; // <=> slen = s.length() - 1; for (i = 1; i < maxLen; ++i) { if (text.charAt(start - i) != s.charAt(slen - i)) return 0; } } return maxLen; } /** * Implement of UnicodeMatcher */ void UnicodeSet::addMatchSetTo(UnicodeSet& toUnionTo) const { toUnionTo.addAll(*this); } /** * Returns the index of the given character within this set, where * the set is ordered by ascending code point. If the character * is not in this set, return -1. The inverse of this method is * <code>charAt()</code>. * @return an index from 0..size()-1, or -1 */ int32_t UnicodeSet::indexOf(UChar32 c) const { if (c < MIN_VALUE || c > MAX_VALUE) { return -1; } int32_t i = 0; int32_t n = 0; for (;;) { UChar32 start = list[i++]; if (c < start) { return -1; } UChar32 limit = list[i++]; if (c < limit) { return n + c - start; } n += limit - start; } } /** * Returns the character at the given index within this set, where * the set is ordered by ascending code point. If the index is * out of range, return (UChar32)-1. The inverse of this method is * <code>indexOf()</code>. * @param index an index from 0..size()-1 * @return the character at the given index, or (UChar32)-1. */ UChar32 UnicodeSet::charAt(int32_t index) const { if (index >= 0) { // len2 is the largest even integer <= len, that is, it is len // for even values and len-1 for odd values. With odd values // the last entry is UNICODESET_HIGH. int32_t len2 = len & ~1; for (int32_t i=0; i < len2;) { UChar32 start = list[i++]; int32_t count = list[i++] - start; if (index < count) { return (UChar32)(start + index); } index -= count; } } return (UChar32)-1; } /** * Make this object represent the range <code>start - end</code>. * If <code>end > start</code> then this object is set to an * an empty range. * * @param start first character in the set, inclusive * @rparam end last character in the set, inclusive */ UnicodeSet& UnicodeSet::set(UChar32 start, UChar32 end) { clear(); complement(start, end); return *this; } /** * Adds the specified range to this set if it is not already * present. If this set already contains the specified range, * the call leaves this set unchanged. If <code>end > start</code> * then an empty range is added, leaving the set unchanged. * * @param start first character, inclusive, of range to be added * to this set. * @param end last character, inclusive, of range to be added * to this set. */ UnicodeSet& UnicodeSet::add(UChar32 start, UChar32 end) { if (pinCodePoint(start) < pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; add(range, 2, 0); } else if (start == end) { add(start); } return *this; } // #define DEBUG_US_ADD #ifdef DEBUG_US_ADD #include <stdio.h> void dump(UChar32 c) { if (c <= 0xFF) { printf("%c", (char)c); } else { printf("U+%04X", c); } } void dump(const UChar32* list, int32_t len) { printf("["); for (int32_t i=0; i<len; ++i) { if (i != 0) printf(", "); dump(list[i]); } printf("]"); } #endif /** * Adds the specified character to this set if it is not already * present. If this set already contains the specified character, * the call leaves this set unchanged. */ UnicodeSet& UnicodeSet::add(UChar32 c) { // find smallest i such that c < list[i] // if odd, then it is IN the set // if even, then it is OUT of the set int32_t i = findCodePoint(pinCodePoint(c)); // already in set? if ((i & 1) != 0 || isFrozen() || isBogus()) return *this; // HIGH is 0x110000 // assert(list[len-1] == HIGH); // empty = [HIGH] // [start_0, limit_0, start_1, limit_1, HIGH] // [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH] // ^ // list[i] // i == 0 means c is before the first range #ifdef DEBUG_US_ADD printf("Add of "); dump(c); printf(" found at %d", i); printf(": "); dump(list, len); printf(" => "); #endif if (c == list[i]-1) { // c is before start of next range list[i] = c; // if we touched the HIGH mark, then add a new one if (c == (UNICODESET_HIGH - 1)) { UErrorCode status = U_ZERO_ERROR; ensureCapacity(len+1, status); if (U_FAILURE(status)) { return *this; // There is no way to report this error :-( } list[len++] = UNICODESET_HIGH; } if (i > 0 && c == list[i-1]) { // collapse adjacent ranges // [..., start_k-1, c, c, limit_k, ..., HIGH] // ^ // list[i] //for (int32_t k=i-1; k<len-2; ++k) { // list[k] = list[k+2]; //} UChar32* dst = list + i - 1; UChar32* src = dst + 2; UChar32* srclimit = list + len; while (src < srclimit) *(dst++) = *(src++); len -= 2; } } else if (i > 0 && c == list[i-1]) { // c is after end of prior range list[i-1]++; // no need to check for collapse here } else { // At this point we know the new char is not adjacent to // any existing ranges, and it is not 10FFFF. // [..., start_k-1, limit_k-1, start_k, limit_k, ..., HIGH] // ^ // list[i] // [..., start_k-1, limit_k-1, c, c+1, start_k, limit_k, ..., HIGH] // ^ // list[i] UErrorCode status = U_ZERO_ERROR; ensureCapacity(len+2, status); if (U_FAILURE(status)) { return *this; // There is no way to report this error :-( } //for (int32_t k=len-1; k>=i; --k) { // list[k+2] = list[k]; //} UChar32* src = list + len; UChar32* dst = src + 2; UChar32* srclimit = list + i; while (src > srclimit) *(--dst) = *(--src); list[i] = c; list[i+1] = c+1; len += 2; } #ifdef DEBUG_US_ADD dump(list, len); printf("\n"); for (i=1; i<len; ++i) { if (list[i] <= list[i-1]) { // Corrupt array! printf("ERROR: list has been corrupted\n"); exit(1); } } #endif releasePattern(); return *this; } /** * Adds the specified multicharacter to this set if it is not already * present. If this set already contains the multicharacter, * the call leaves this set unchanged. * Thus "ch" => {"ch"} * <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b> * @param s the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::add(const UnicodeString& s) { if (s.length() == 0 || isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (!strings->contains((void*) &s)) { _add(s); releasePattern(); } } else { add((UChar32)cp); } return *this; } /** * Adds the given string, in order, to 'strings'. The given string * must have been checked by the caller to not be empty and to not * already be in 'strings'. */ void UnicodeSet::_add(const UnicodeString& s) { if (isFrozen() || isBogus()) { return; } UnicodeString* t = new UnicodeString(s); if (t == NULL) { // Check for memory allocation error. setToBogus(); return; } UErrorCode ec = U_ZERO_ERROR; strings->sortedInsert(t, compareUnicodeString, ec); if (U_FAILURE(ec)) { setToBogus(); delete t; } } /** * @return a code point IF the string consists of a single one. * otherwise returns -1. * @param string to test */ int32_t UnicodeSet::getSingleCP(const UnicodeString& s) { //if (s.length() < 1) { // throw new IllegalArgumentException("Can't use zero-length strings in UnicodeSet"); //} if (s.length() > 2) return -1; if (s.length() == 1) return s.charAt(0); // at this point, len = 2 UChar32 cp = s.char32At(0); if (cp > 0xFFFF) { // is surrogate pair return cp; } return -1; } /** * Adds each of the characters in this string to the set. Thus "ch" => {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::addAll(const UnicodeString& s) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { cp = s.char32At(i); add(cp); } return *this; } /** * Retains EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::retainAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); retainAll(set); return *this; } /** * Complement EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::complementAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); complementAll(set); return *this; } /** * Remove EACH of the characters in this string. Note: "ch" == {"c", "h"} * If this set already any particular character, it has no effect on that character. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::removeAll(const UnicodeString& s) { UnicodeSet set; set.addAll(s); removeAll(set); return *this; } UnicodeSet& UnicodeSet::removeAllStrings() { strings->removeAllElements(); return *this; } /** * Makes a set from a multicharacter string. Thus "ch" => {"ch"} * <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b> * @param the source string * @return a newly created set containing the given string */ UnicodeSet* U_EXPORT2 UnicodeSet::createFrom(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); if (set != NULL) { // Check for memory allocation error. set->add(s); } return set; } /** * Makes a set from each of the characters in the string. Thus "ch" => {"c", "h"} * @param the source string * @return a newly created set containing the given characters */ UnicodeSet* U_EXPORT2 UnicodeSet::createFromAll(const UnicodeString& s) { UnicodeSet *set = new UnicodeSet(); if (set != NULL) { // Check for memory allocation error. set->addAll(s); } return set; } /** * Retain only the elements in this set that are contained in the * specified range. If <code>end > start</code> then an empty range is * retained, leaving the set empty. * * @param start first character, inclusive, of range to be retained * to this set. * @param end last character, inclusive, of range to be retained * to this set. */ UnicodeSet& UnicodeSet::retain(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 0); } else { clear(); } return *this; } UnicodeSet& UnicodeSet::retain(UChar32 c) { return retain(c, c); } /** * Removes the specified range from this set if it is present. * The set will not contain the specified range once the call * returns. If <code>end > start</code> then an empty range is * removed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::remove(UChar32 start, UChar32 end) { if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; retain(range, 2, 2); } return *this; } /** * Removes the specified character from this set if it is present. * The set will not contain the specified range once the call * returns. */ UnicodeSet& UnicodeSet::remove(UChar32 c) { return remove(c, c); } /** * Removes the specified string from this set if it is present. * The set will not contain the specified character once the call * returns. * @param the source string * @return the modified set, for chaining */ UnicodeSet& UnicodeSet::remove(const UnicodeString& s) { if (s.length() == 0 || isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { strings->removeElement((void*) &s); releasePattern(); } else { remove((UChar32)cp, (UChar32)cp); } return *this; } /** * Complements the specified range in this set. Any character in * the range will be removed if it is in this set, or will be * added if it is not in this set. If <code>end > start</code> * then an empty range is xor'ed, leaving the set unchanged. * * @param start first character, inclusive, of range to be removed * from this set. * @param end last character, inclusive, of range to be removed * from this set. */ UnicodeSet& UnicodeSet::complement(UChar32 start, UChar32 end) { if (isFrozen() || isBogus()) { return *this; } if (pinCodePoint(start) <= pinCodePoint(end)) { UChar32 range[3] = { start, end+1, UNICODESET_HIGH }; exclusiveOr(range, 2, 0); } releasePattern(); return *this; } UnicodeSet& UnicodeSet::complement(UChar32 c) { return complement(c, c); } /** * This is equivalent to * <code>complement(MIN_VALUE, MAX_VALUE)</code>. */ UnicodeSet& UnicodeSet::complement(void) { if (isFrozen() || isBogus()) { return *this; } UErrorCode status = U_ZERO_ERROR; if (list[0] == UNICODESET_LOW) { ensureBufferCapacity(len-1, status); if (U_FAILURE(status)) { return *this; } uprv_memcpy(buffer, list + 1, (len-1)*sizeof(UChar32)); --len; } else { ensureBufferCapacity(len+1, status); if (U_FAILURE(status)) { return *this; } uprv_memcpy(buffer + 1, list, len*sizeof(UChar32)); buffer[0] = UNICODESET_LOW; ++len; } swapBuffers(); releasePattern(); return *this; } /** * Complement the specified string in this set. * The set will not contain the specified string once the call * returns. * <br><b>Warning: you cannot add an empty string ("") to a UnicodeSet.</b> * @param s the string to complement * @return this object, for chaining */ UnicodeSet& UnicodeSet::complement(const UnicodeString& s) { if (s.length() == 0 || isFrozen() || isBogus()) return *this; int32_t cp = getSingleCP(s); if (cp < 0) { if (strings->contains((void*) &s)) { strings->removeElement((void*) &s); } else { _add(s); } releasePattern(); } else { complement((UChar32)cp, (UChar32)cp); } return *this; } /** * Adds all of the elements in the specified set to this set if * they're not already present. This operation effectively * modifies this set so that its value is the <i>union</i> of the two * sets. The behavior of this operation is unspecified if the specified * collection is modified while the operation is in progress. * * @param c set whose elements are to be added to this set. * @see #add(char, char) */ UnicodeSet& UnicodeSet::addAll(const UnicodeSet& c) { if ( c.len>0 && c.list!=NULL ) { add(c.list, c.len, 0); } // Add strings in order if ( c.strings!=NULL ) { for (int32_t i=0; i<c.strings->size(); ++i) { const UnicodeString* s = (const UnicodeString*)c.strings->elementAt(i); if (!strings->contains((void*) s)) { _add(*s); } } } return *this; } /** * Retains only the elements in this set that are contained in the * specified set. In other words, removes from this set all of * its elements that are not contained in the specified set. This * operation effectively modifies this set so that its value is * the <i>intersection</i> of the two sets. * * @param c set that defines which elements this set will retain. */ UnicodeSet& UnicodeSet::retainAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } retain(c.list, c.len, 0); strings->retainAll(*c.strings); return *this; } /** * Removes from this set all of its elements that are contained in the * specified set. This operation effectively modifies this * set so that its value is the <i>asymmetric set difference</i> of * the two sets. * * @param c set that defines which elements will be removed from * this set. */ UnicodeSet& UnicodeSet::removeAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } retain(c.list, c.len, 2); strings->removeAll(*c.strings); return *this; } /** * Complements in this set all elements contained in the specified * set. Any character in the other set will be removed if it is * in this set, or will be added if it is not in this set. * * @param c set that defines which elements will be xor'ed from * this set. */ UnicodeSet& UnicodeSet::complementAll(const UnicodeSet& c) { if (isFrozen() || isBogus()) { return *this; } exclusiveOr(c.list, c.len, 0); for (int32_t i=0; i<c.strings->size(); ++i) { void* e = c.strings->elementAt(i); if (!strings->removeElement(e)) { _add(*(const UnicodeString*)e); } } return *this; } /** * Removes all of the elements from this set. This set will be * empty after this call returns. */ UnicodeSet& UnicodeSet::clear(void) { if (isFrozen()) { return *this; } if (list != NULL) { list[0] = UNICODESET_HIGH; } len = 1; releasePattern(); if (strings != NULL) { strings->removeAllElements(); } if (list != NULL && strings != NULL) { // Remove bogus fFlags = 0; } return *this; } /** * Iteration method that returns the number of ranges contained in * this set. * @see #getRangeStart * @see #getRangeEnd */ int32_t UnicodeSet::getRangeCount() const { return len/2; } /** * Iteration method that returns the first character in the * specified range of this set. * @see #getRangeCount * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeStart(int32_t index) const { return list[index*2]; } /** * Iteration method that returns the last character in the * specified range of this set. * @see #getRangeStart * @see #getRangeEnd */ UChar32 UnicodeSet::getRangeEnd(int32_t index) const { return list[index*2 + 1] - 1; } int32_t UnicodeSet::getStringCount() const { return strings->size(); } const UnicodeString* UnicodeSet::getString(int32_t index) const { return (const UnicodeString*) strings->elementAt(index); } /** * Reallocate this objects internal structures to take up the least * possible space, without changing this object's value. */ UnicodeSet& UnicodeSet::compact() { if (isFrozen() || isBogus()) { return *this; } // Delete buffer first to defragment memory less. if (buffer != NULL) { uprv_free(buffer); buffer = NULL; } if (len < capacity) { // Make the capacity equal to len or 1. // We don't want to realloc of 0 size. int32_t newCapacity = len + (len == 0); UChar32* temp = (UChar32*) uprv_realloc(list, sizeof(UChar32) * newCapacity); if (temp) { list = temp; capacity = newCapacity; } // else what the heck happened?! We allocated less memory! // Oh well. We'll keep our original array. } return *this; } int32_t UnicodeSet::serialize(uint16_t *dest, int32_t destCapacity, UErrorCode& ec) const { int32_t bmpLength, length, destLength; if (U_FAILURE(ec)) { return 0; } if (destCapacity<0 || (destCapacity>0 && dest==NULL)) { ec=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* count necessary 16-bit units */ length=this->len-1; // Subtract 1 to ignore final UNICODESET_HIGH // assert(length>=0); if (length==0) { /* empty set */ if (destCapacity>0) { *dest=0; } else { ec=U_BUFFER_OVERFLOW_ERROR; } return 1; } /* now length>0 */ if (this->list[length-1]<=0xffff) { /* all BMP */ bmpLength=length; } else if (this->list[0]>=0x10000) { /* all supplementary */ bmpLength=0; length*=2; } else { /* some BMP, some supplementary */ for (bmpLength=0; bmpLength<length && this->list[bmpLength]<=0xffff; ++bmpLength) {} length=bmpLength+2*(length-bmpLength); } /* length: number of 16-bit array units */ if (length>0x7fff) { /* there are only 15 bits for the length in the first serialized word */ ec=U_INDEX_OUTOFBOUNDS_ERROR; return 0; } /* * total serialized length: * number of 16-bit array units (length) + * 1 length unit (always) + * 1 bmpLength unit (if there are supplementary values) */ destLength=length+((length>bmpLength)?2:1); if (destLength<=destCapacity) { const UChar32 *p; int32_t i; *dest=(uint16_t)length; if (length>bmpLength) { *dest|=0x8000; *++dest=(uint16_t)bmpLength; } ++dest; /* write the BMP part of the array */ p=this->list; for (i=0; i<bmpLength; ++i) { *dest++=(uint16_t)*p++; } /* write the supplementary part of the array */ for (; i<length; i+=2) { *dest++=(uint16_t)(*p>>16); *dest++=(uint16_t)*p++; } } else { ec=U_BUFFER_OVERFLOW_ERROR; } return destLength; } //---------------------------------------------------------------- // Implementation: Utility methods //---------------------------------------------------------------- /** * Allocate our strings vector and return TRUE if successful. */ UBool UnicodeSet::allocateStrings(UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } strings = new UVector(uhash_deleteUnicodeString, uhash_compareUnicodeString, 1, status); if (strings == NULL) { // Check for memory allocation error. status = U_MEMORY_ALLOCATION_ERROR; return FALSE; } if (U_FAILURE(status)) { delete strings; strings = NULL; return FALSE; } return TRUE; } void UnicodeSet::ensureCapacity(int32_t newLen, UErrorCode& ec) { if (newLen <= capacity) return; UChar32* temp = (UChar32*) uprv_realloc(list, sizeof(UChar32) * (newLen + GROW_EXTRA)); if (temp == NULL) { ec = U_MEMORY_ALLOCATION_ERROR; setToBogus(); return; } list = temp; capacity = newLen + GROW_EXTRA; // else we keep the original contents on the memory failure. } void UnicodeSet::ensureBufferCapacity(int32_t newLen, UErrorCode& ec) { if (buffer != NULL && newLen <= bufferCapacity) return; UChar32* temp = (UChar32*) uprv_realloc(buffer, sizeof(UChar32) * (newLen + GROW_EXTRA)); if (temp == NULL) { ec = U_MEMORY_ALLOCATION_ERROR; setToBogus(); return; } buffer = temp; bufferCapacity = newLen + GROW_EXTRA; // else we keep the original contents on the memory failure. } /** * Swap list and buffer. */ void UnicodeSet::swapBuffers(void) { // swap list and buffer UChar32* temp = list; list = buffer; buffer = temp; int32_t c = capacity; capacity = bufferCapacity; bufferCapacity = c; } void UnicodeSet::setToBogus() { clear(); // Remove everything in the set. fFlags = kIsBogus; } //---------------------------------------------------------------- // Implementation: Fundamental operators //---------------------------------------------------------------- static inline UChar32 max(UChar32 a, UChar32 b) { return (a > b) ? a : b; } // polarity = 0, 3 is normal: x xor y // polarity = 1, 2: x xor ~y == x === y void UnicodeSet::exclusiveOr(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus()) { return; } UErrorCode status = U_ZERO_ERROR; ensureBufferCapacity(len + otherLen, status); if (U_FAILURE(status)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b; if (polarity == 1 || polarity == 2) { b = UNICODESET_LOW; if (other[j] == UNICODESET_LOW) { // skip base if already LOW ++j; b = other[j]; } } else { b = other[j++]; } // simplest of all the routines // sort the values, discarding identicals! for (;;) { if (a < b) { buffer[k++] = a; a = list[i++]; } else if (b < a) { buffer[k++] = b; b = other[j++]; } else if (a != UNICODESET_HIGH) { // at this point, a == b // discard both values! a = list[i++]; b = other[j++]; } else { // DONE! buffer[k++] = UNICODESET_HIGH; len = k; break; } } swapBuffers(); releasePattern(); } // polarity = 0 is normal: x union y // polarity = 2: x union ~y // polarity = 1: ~x union y // polarity = 3: ~x union ~y void UnicodeSet::add(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus() || other==NULL) { return; } UErrorCode status = U_ZERO_ERROR; ensureBufferCapacity(len + otherLen, status); if (U_FAILURE(status)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; take lower if unequal if (a < b) { // take a // Back up over overlapping ranges in buffer[] if (k > 0 && a <= buffer[k-1]) { // Pick latter end value in buffer[] vs. list[] a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; // Common if/else code factored out polarity ^= 1; } else if (b < a) { // take b if (k > 0 && b <= buffer[k-1]) { b = max(other[j], buffer[--k]); } else { buffer[k++] = b; b = other[j]; } j++; polarity ^= 2; } else { // a == b, take a, drop b if (a == UNICODESET_HIGH) goto loop_end; // This is symmetrical; it doesn't matter if // we backtrack with a or b. - liu if (k > 0 && a <= buffer[k-1]) { a = max(list[i], buffer[--k]); } else { // No overlap buffer[k++] = a; a = list[i]; } i++; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take higher if unequal, and drop other if (b <= a) { // take a if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; } else { // take b if (b == UNICODESET_HIGH) goto loop_end; buffer[k++] = b; } a = list[i++]; polarity ^= 1; // factored common code b = other[j++]; polarity ^= 2; break; case 1: // a second, b first; if b < a, overlap if (a < b) { // no overlap, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, drop b b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, drop a a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); releasePattern(); } // polarity = 0 is normal: x intersect y // polarity = 2: x intersect ~y == set-minus // polarity = 1: ~x intersect y // polarity = 3: ~x intersect ~y void UnicodeSet::retain(const UChar32* other, int32_t otherLen, int8_t polarity) { if (isFrozen() || isBogus()) { return; } UErrorCode status = U_ZERO_ERROR; ensureBufferCapacity(len + otherLen, status); if (U_FAILURE(status)) { return; } int32_t i = 0, j = 0, k = 0; UChar32 a = list[i++]; UChar32 b = other[j++]; // change from xor is that we have to check overlapping pairs // polarity bit 1 means a is second, bit 2 means b is. for (;;) { switch (polarity) { case 0: // both first; drop the smaller if (a < b) { // drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // drop b b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 3: // both second; take lower if unequal if (a < b) { // take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else if (b < a) { // take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, take one, drop other if (a == UNICODESET_HIGH) goto loop_end; buffer[k++] = a; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 1: // a second, b first; if (a < b) { // NO OVERLAP, drop a a = list[i++]; polarity ^= 1; } else if (b < a) { // OVERLAP, take b buffer[k++] = b; b = other[j++]; polarity ^= 2; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; case 2: // a first, b second; if a < b, overlap if (b < a) { // no overlap, drop b b = other[j++]; polarity ^= 2; } else if (a < b) { // OVERLAP, take a buffer[k++] = a; a = list[i++]; polarity ^= 1; } else { // a == b, drop both! if (a == UNICODESET_HIGH) goto loop_end; a = list[i++]; polarity ^= 1; b = other[j++]; polarity ^= 2; } break; } } loop_end: buffer[k++] = UNICODESET_HIGH; // terminate len = k; swapBuffers(); releasePattern(); } /** * Append the <code>toPattern()</code> representation of a * string to the given <code>StringBuffer</code>. */ void UnicodeSet::_appendToPat(UnicodeString& buf, const UnicodeString& s, UBool escapeUnprintable) { UChar32 cp; for (int32_t i = 0; i < s.length(); i += UTF_CHAR_LENGTH(cp)) { _appendToPat(buf, cp = s.char32At(i), escapeUnprintable); } } /** * Append the <code>toPattern()</code> representation of a * character to the given <code>StringBuffer</code>. */ void UnicodeSet::_appendToPat(UnicodeString& buf, UChar32 c, UBool escapeUnprintable) { if (escapeUnprintable && ICU_Utility::isUnprintable(c)) { // Use hex escape notation (\uxxxx or \Uxxxxxxxx) for anything // unprintable if (ICU_Utility::escapeUnprintable(buf, c)) { return; } } // Okay to let ':' pass through switch (c) { case SET_OPEN: case SET_CLOSE: case HYPHEN: case COMPLEMENT: case INTERSECTION: case BACKSLASH: case OPEN_BRACE: case CLOSE_BRACE: case COLON: case SymbolTable::SYMBOL_REF: buf.append(BACKSLASH); break; default: // Escape whitespace if (uprv_isRuleWhiteSpace(c)) { buf.append(BACKSLASH); } break; } buf.append(c); } /** * Append a string representation of this set to result. This will be * a cleaned version of the string passed to applyPattern(), if there * is one. Otherwise it will be generated. */ UnicodeString& UnicodeSet::_toPattern(UnicodeString& result, UBool escapeUnprintable) const { if (pat != NULL) { int32_t i; int32_t backslashCount = 0; for (i=0; i<patLen; ) { UChar32 c; U16_NEXT(pat, i, patLen, c); if (escapeUnprintable && ICU_Utility::isUnprintable(c)) { // If the unprintable character is preceded by an odd // number of backslashes, then it has been escaped. // Before unescaping it, we delete the final // backslash. if ((backslashCount % 2) == 1) { result.truncate(result.length() - 1); } ICU_Utility::escapeUnprintable(result, c); backslashCount = 0; } else { result.append(c); if (c == BACKSLASH) { ++backslashCount; } else { backslashCount = 0; } } } return result; } return _generatePattern(result, escapeUnprintable); } /** * Returns a string representation of this set. If the result of * calling this function is passed to a UnicodeSet constructor, it * will produce another set that is equal to this one. */ UnicodeString& UnicodeSet::toPattern(UnicodeString& result, UBool escapeUnprintable) const { result.truncate(0); return _toPattern(result, escapeUnprintable); } /** * Generate and append a string representation of this set to result. * This does not use this.pat, the cleaned up copy of the string * passed to applyPattern(). */ UnicodeString& UnicodeSet::_generatePattern(UnicodeString& result, UBool escapeUnprintable) const { result.append(SET_OPEN); // // Check against the predefined categories. We implicitly build // // up ALL category sets the first time toPattern() is called. // for (int8_t cat=0; cat<Unicode::GENERAL_TYPES_COUNT; ++cat) { // if (*this == getCategorySet(cat)) { // result.append(COLON); // result.append(CATEGORY_NAMES, cat*2, 2); // return result.append(CATEGORY_CLOSE); // } // } int32_t count = getRangeCount(); // If the set contains at least 2 intervals and includes both // MIN_VALUE and MAX_VALUE, then the inverse representation will // be more economical. if (count > 1 && getRangeStart(0) == MIN_VALUE && getRangeEnd(count-1) == MAX_VALUE) { // Emit the inverse result.append(COMPLEMENT); for (int32_t i = 1; i < count; ++i) { UChar32 start = getRangeEnd(i-1)+1; UChar32 end = getRangeStart(i)-1; _appendToPat(result, start, escapeUnprintable); if (start != end) { if ((start+1) != end) { result.append(HYPHEN); } _appendToPat(result, end, escapeUnprintable); } } } // Default; emit the ranges as pairs else { for (int32_t i = 0; i < count; ++i) { UChar32 start = getRangeStart(i); UChar32 end = getRangeEnd(i); _appendToPat(result, start, escapeUnprintable); if (start != end) { if ((start+1) != end) { result.append(HYPHEN); } _appendToPat(result, end, escapeUnprintable); } } } for (int32_t i = 0; i<strings->size(); ++i) { result.append(OPEN_BRACE); _appendToPat(result, *(const UnicodeString*) strings->elementAt(i), escapeUnprintable); result.append(CLOSE_BRACE); } return result.append(SET_CLOSE); } /** * Release existing cached pattern */ void UnicodeSet::releasePattern() { if (pat) { uprv_free(pat); pat = NULL; patLen = 0; } } /** * Set the new pattern to cache. */ void UnicodeSet::setPattern(const UnicodeString& newPat) { releasePattern(); int32_t newPatLen = newPat.length(); pat = (UChar *)uprv_malloc((newPatLen + 1) * sizeof(UChar)); if (pat) { patLen = newPatLen; newPat.extractBetween(0, patLen, pat); pat[patLen] = 0; } // else we don't care if malloc failed. This was just a nice cache. // We can regenerate an equivalent pattern later when requested. } UnicodeFunctor *UnicodeSet::freeze() { if(!isFrozen() && !isBogus()) { // Do most of what compact() does before freezing because // compact() will not work when the set is frozen. // Small modification: Don't shrink if the savings would be tiny (<=GROW_EXTRA). // Delete buffer first to defragment memory less. if (buffer != NULL) { uprv_free(buffer); buffer = NULL; } if (capacity > (len + GROW_EXTRA)) { // Make the capacity equal to len or 1. // We don't want to realloc of 0 size. capacity = len + (len == 0); list = (UChar32*) uprv_realloc(list, sizeof(UChar32) * capacity); if (list == NULL) { // Check for memory allocation error. setToBogus(); return this; } } // Optimize contains() and span() and similar functions. if (!strings->isEmpty()) { stringSpan = new UnicodeSetStringSpan(*this, *strings, UnicodeSetStringSpan::ALL); if (stringSpan != NULL && !stringSpan->needsStringSpanUTF16()) { // All strings are irrelevant for span() etc. because // all of each string's code points are contained in this set. // Do not check needsStringSpanUTF8() because UTF-8 has at most as // many relevant strings as UTF-16. // (Thus needsStringSpanUTF8() implies needsStringSpanUTF16().) delete stringSpan; stringSpan = NULL; } } if (stringSpan == NULL) { // No span-relevant strings: Optimize for code point spans. bmpSet=new BMPSet(list, len); if (bmpSet == NULL) { // Check for memory allocation error. setToBogus(); } } } return this; } int32_t UnicodeSet::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { return (int32_t)(bmpSet->span(s, s+length, spanCondition)-s); } if(length<0) { length=u_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->span(s, length, spanCondition); } else if(!strings->isEmpty()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::FWD_UTF16_NOT_CONTAINED : UnicodeSetStringSpan::FWD_UTF16_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF16()) { return strSpan.span(s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev=0; do { U16_NEXT(s, start, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=start)<length); return prev; } int32_t UnicodeSet::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { return (int32_t)(bmpSet->spanBack(s, s+length, spanCondition)-s); } if(length<0) { length=u_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanBack(s, length, spanCondition); } else if(!strings->isEmpty()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::BACK_UTF16_NOT_CONTAINED : UnicodeSetStringSpan::BACK_UTF16_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF16()) { return strSpan.spanBack(s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U16_PREV(s, 0, length, c); if(spanCondition!=contains(c)) { break; } } while((prev=length)>0); return prev; } int32_t UnicodeSet::spanUTF8(const char *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { const uint8_t *s0=(const uint8_t *)s; return (int32_t)(bmpSet->spanUTF8(s0, length, spanCondition)-s0); } if(length<0) { length=(int32_t)uprv_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanUTF8((const uint8_t *)s, length, spanCondition); } else if(!strings->isEmpty()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::FWD_UTF8_NOT_CONTAINED : UnicodeSetStringSpan::FWD_UTF8_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF8()) { return strSpan.spanUTF8((const uint8_t *)s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t start=0, prev=0; do { U8_NEXT(s, start, length, c); if(c<0) { c=0xfffd; } if(spanCondition!=contains(c)) { break; } } while((prev=start)<length); return prev; } int32_t UnicodeSet::spanBackUTF8(const char *s, int32_t length, USetSpanCondition spanCondition) const { if(length>0 && bmpSet!=NULL) { const uint8_t *s0=(const uint8_t *)s; return bmpSet->spanBackUTF8(s0, length, spanCondition); } if(length<0) { length=(int32_t)uprv_strlen(s); } if(length==0) { return 0; } if(stringSpan!=NULL) { return stringSpan->spanBackUTF8((const uint8_t *)s, length, spanCondition); } else if(!strings->isEmpty()) { uint32_t which= spanCondition==USET_SPAN_NOT_CONTAINED ? UnicodeSetStringSpan::BACK_UTF8_NOT_CONTAINED : UnicodeSetStringSpan::BACK_UTF8_CONTAINED; UnicodeSetStringSpan strSpan(*this, *strings, which); if(strSpan.needsStringSpanUTF8()) { return strSpan.spanBackUTF8((const uint8_t *)s, length, spanCondition); } } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } UChar32 c; int32_t prev=length; do { U8_PREV(s, 0, length, c); if(c<0) { c=0xfffd; } if(spanCondition!=contains(c)) { break; } } while((prev=length)>0); return prev; } U_NAMESPACE_END