/* * Copyright © 2007,2008,2009,2010 Red Hat, Inc. * Copyright © 2010,2012 Google, Inc. * * This is part of HarfBuzz, a text shaping library. * * Permission is hereby granted, without written agreement and without * license or royalty fees, to use, copy, modify, and distribute this * software and its documentation for any purpose, provided that the * above copyright notice and the following two paragraphs appear in * all copies of this software. * * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * * Red Hat Author(s): Behdad Esfahbod * Google Author(s): Behdad Esfahbod */ #ifndef HB_OT_LAYOUT_GSUBGPOS_PRIVATE_HH #define HB_OT_LAYOUT_GSUBGPOS_PRIVATE_HH #include "hb-buffer-private.hh" #include "hb-ot-layout-gdef-table.hh" #include "hb-set-private.hh" namespace OT { #define TRACE_DISPATCH(this) \ hb_auto_trace_t<context_t::max_debug_depth, typename context_t::return_t> trace \ (&c->debug_depth, c->get_name (), this, HB_FUNC, \ ""); #ifndef HB_DEBUG_CLOSURE #define HB_DEBUG_CLOSURE (HB_DEBUG+0) #endif #define TRACE_CLOSURE(this) \ hb_auto_trace_t<HB_DEBUG_CLOSURE, hb_void_t> trace \ (&c->debug_depth, c->get_name (), this, HB_FUNC, \ ""); struct hb_closure_context_t { inline const char *get_name (void) { return "CLOSURE"; } static const unsigned int max_debug_depth = HB_DEBUG_CLOSURE; typedef hb_void_t return_t; typedef return_t (*recurse_func_t) (hb_closure_context_t *c, unsigned int lookup_index); template <typename T> inline return_t dispatch (const T &obj) { obj.closure (this); return HB_VOID; } static return_t default_return_value (void) { return HB_VOID; } bool stop_sublookup_iteration (return_t r HB_UNUSED) const { return false; } return_t recurse (unsigned int lookup_index) { if (unlikely (nesting_level_left == 0 || !recurse_func)) return default_return_value (); nesting_level_left--; recurse_func (this, lookup_index); nesting_level_left++; return HB_VOID; } hb_face_t *face; hb_set_t *glyphs; recurse_func_t recurse_func; unsigned int nesting_level_left; unsigned int debug_depth; hb_closure_context_t (hb_face_t *face_, hb_set_t *glyphs_, unsigned int nesting_level_left_ = MAX_NESTING_LEVEL) : face (face_), glyphs (glyphs_), recurse_func (NULL), nesting_level_left (nesting_level_left_), debug_depth (0) {} void set_recurse_func (recurse_func_t func) { recurse_func = func; } }; #ifndef HB_DEBUG_WOULD_APPLY #define HB_DEBUG_WOULD_APPLY (HB_DEBUG+0) #endif #define TRACE_WOULD_APPLY(this) \ hb_auto_trace_t<HB_DEBUG_WOULD_APPLY, bool> trace \ (&c->debug_depth, c->get_name (), this, HB_FUNC, \ "%d glyphs", c->len); struct hb_would_apply_context_t { inline const char *get_name (void) { return "WOULD_APPLY"; } static const unsigned int max_debug_depth = HB_DEBUG_WOULD_APPLY; typedef bool return_t; template <typename T> inline return_t dispatch (const T &obj) { return obj.would_apply (this); } static return_t default_return_value (void) { return false; } bool stop_sublookup_iteration (return_t r) const { return r; } hb_face_t *face; const hb_codepoint_t *glyphs; unsigned int len; bool zero_context; unsigned int debug_depth; hb_would_apply_context_t (hb_face_t *face_, const hb_codepoint_t *glyphs_, unsigned int len_, bool zero_context_) : face (face_), glyphs (glyphs_), len (len_), zero_context (zero_context_), debug_depth (0) {} }; #ifndef HB_DEBUG_COLLECT_GLYPHS #define HB_DEBUG_COLLECT_GLYPHS (HB_DEBUG+0) #endif #define TRACE_COLLECT_GLYPHS(this) \ hb_auto_trace_t<HB_DEBUG_COLLECT_GLYPHS, hb_void_t> trace \ (&c->debug_depth, c->get_name (), this, HB_FUNC, \ ""); struct hb_collect_glyphs_context_t { inline const char *get_name (void) { return "COLLECT_GLYPHS"; } static const unsigned int max_debug_depth = HB_DEBUG_COLLECT_GLYPHS; typedef hb_void_t return_t; typedef return_t (*recurse_func_t) (hb_collect_glyphs_context_t *c, unsigned int lookup_index); template <typename T> inline return_t dispatch (const T &obj) { obj.collect_glyphs (this); return HB_VOID; } static return_t default_return_value (void) { return HB_VOID; } bool stop_sublookup_iteration (return_t r HB_UNUSED) const { return false; } return_t recurse (unsigned int lookup_index) { if (unlikely (nesting_level_left == 0 || !recurse_func)) return default_return_value (); /* Note that GPOS sets recurse_func to NULL already, so it doesn't get * past the previous check. For GSUB, we only want to collect the output * glyphs in the recursion. If output is not requested, we can go home now. * * Note further, that the above is not exactly correct. A recursed lookup * is allowed to match input that is not matched in the context, but that's * not how most fonts are built. It's possible to relax that and recurse * with all sets here if it proves to be an issue. */ if (output == hb_set_get_empty ()) return HB_VOID; hb_set_t *old_before = before; hb_set_t *old_input = input; hb_set_t *old_after = after; before = input = after = hb_set_get_empty (); nesting_level_left--; recurse_func (this, lookup_index); nesting_level_left++; before = old_before; input = old_input; after = old_after; return HB_VOID; } hb_face_t *face; hb_set_t *before; hb_set_t *input; hb_set_t *after; hb_set_t *output; recurse_func_t recurse_func; unsigned int nesting_level_left; unsigned int debug_depth; hb_collect_glyphs_context_t (hb_face_t *face_, hb_set_t *glyphs_before, /* OUT. May be NULL */ hb_set_t *glyphs_input, /* OUT. May be NULL */ hb_set_t *glyphs_after, /* OUT. May be NULL */ hb_set_t *glyphs_output, /* OUT. May be NULL */ unsigned int nesting_level_left_ = MAX_NESTING_LEVEL) : face (face_), before (glyphs_before ? glyphs_before : hb_set_get_empty ()), input (glyphs_input ? glyphs_input : hb_set_get_empty ()), after (glyphs_after ? glyphs_after : hb_set_get_empty ()), output (glyphs_output ? glyphs_output : hb_set_get_empty ()), recurse_func (NULL), nesting_level_left (nesting_level_left_), debug_depth (0) {} void set_recurse_func (recurse_func_t func) { recurse_func = func; } }; struct hb_get_coverage_context_t { inline const char *get_name (void) { return "GET_COVERAGE"; } static const unsigned int max_debug_depth = 0; typedef const Coverage &return_t; template <typename T> inline return_t dispatch (const T &obj) { return obj.get_coverage (); } static return_t default_return_value (void) { return Null(Coverage); } hb_get_coverage_context_t (void) : debug_depth (0) {} unsigned int debug_depth; }; #ifndef HB_DEBUG_APPLY #define HB_DEBUG_APPLY (HB_DEBUG+0) #endif #define TRACE_APPLY(this) \ hb_auto_trace_t<HB_DEBUG_APPLY, bool> trace \ (&c->debug_depth, c->get_name (), this, HB_FUNC, \ "idx %d codepoint %u", c->buffer->idx, c->buffer->cur().codepoint); struct hb_apply_context_t { inline const char *get_name (void) { return "APPLY"; } static const unsigned int max_debug_depth = HB_DEBUG_APPLY; typedef bool return_t; typedef return_t (*recurse_func_t) (hb_apply_context_t *c, unsigned int lookup_index); template <typename T> inline return_t dispatch (const T &obj) { return obj.apply (this); } static return_t default_return_value (void) { return false; } bool stop_sublookup_iteration (return_t r) const { return r; } return_t recurse (unsigned int lookup_index) { if (unlikely (nesting_level_left == 0 || !recurse_func)) return default_return_value (); nesting_level_left--; bool ret = recurse_func (this, lookup_index); nesting_level_left++; return ret; } unsigned int table_index; /* GSUB/GPOS */ hb_font_t *font; hb_face_t *face; hb_buffer_t *buffer; hb_direction_t direction; hb_mask_t lookup_mask; bool auto_zwj; recurse_func_t recurse_func; unsigned int nesting_level_left; unsigned int lookup_props; const GDEF &gdef; bool has_glyph_classes; unsigned int debug_depth; hb_apply_context_t (unsigned int table_index_, hb_font_t *font_, hb_buffer_t *buffer_) : table_index (table_index_), font (font_), face (font->face), buffer (buffer_), direction (buffer_->props.direction), lookup_mask (1), auto_zwj (true), recurse_func (NULL), nesting_level_left (MAX_NESTING_LEVEL), lookup_props (0), gdef (*hb_ot_layout_from_face (face)->gdef), has_glyph_classes (gdef.has_glyph_classes ()), debug_depth (0) {} inline void set_lookup_mask (hb_mask_t mask) { lookup_mask = mask; } inline void set_auto_zwj (bool auto_zwj_) { auto_zwj = auto_zwj_; } inline void set_recurse_func (recurse_func_t func) { recurse_func = func; } inline void set_lookup_props (unsigned int lookup_props_) { lookup_props = lookup_props_; } inline void set_lookup (const Lookup &l) { lookup_props = l.get_props (); } struct matcher_t { inline matcher_t (void) : lookup_props (0), ignore_zwnj (false), ignore_zwj (false), mask (-1), #define arg1(arg) (arg) /* Remove the macro to see why it's needed! */ syllable arg1(0), #undef arg1 match_func (NULL), match_data (NULL) {}; typedef bool (*match_func_t) (hb_codepoint_t glyph_id, const USHORT &value, const void *data); inline void set_ignore_zwnj (bool ignore_zwnj_) { ignore_zwnj = ignore_zwnj_; } inline void set_ignore_zwj (bool ignore_zwj_) { ignore_zwj = ignore_zwj_; } inline void set_lookup_props (unsigned int lookup_props_) { lookup_props = lookup_props_; } inline void set_mask (hb_mask_t mask_) { mask = mask_; } inline void set_syllable (uint8_t syllable_) { syllable = syllable_; } inline void set_match_func (match_func_t match_func_, const void *match_data_) { match_func = match_func_; match_data = match_data_; } enum may_match_t { MATCH_NO, MATCH_YES, MATCH_MAYBE }; inline may_match_t may_match (const hb_glyph_info_t &info, const USHORT *glyph_data) const { if (!(info.mask & mask) || (syllable && syllable != info.syllable ())) return MATCH_NO; if (match_func) return match_func (info.codepoint, *glyph_data, match_data) ? MATCH_YES : MATCH_NO; return MATCH_MAYBE; } enum may_skip_t { SKIP_NO, SKIP_YES, SKIP_MAYBE }; inline may_skip_t may_skip (const hb_apply_context_t *c, const hb_glyph_info_t &info) const { unsigned int property; property = _hb_glyph_info_get_glyph_props (&info); if (!c->match_properties (info.codepoint, property, lookup_props)) return SKIP_YES; if (unlikely (_hb_glyph_info_is_default_ignorable (&info) && (ignore_zwnj || !_hb_glyph_info_is_zwnj (&info)) && (ignore_zwj || !_hb_glyph_info_is_zwj (&info)) && !_hb_glyph_info_ligated (&info))) return SKIP_MAYBE; return SKIP_NO; } protected: unsigned int lookup_props; bool ignore_zwnj; bool ignore_zwj; hb_mask_t mask; uint8_t syllable; match_func_t match_func; const void *match_data; }; struct skipping_forward_iterator_t { inline skipping_forward_iterator_t (hb_apply_context_t *c_, unsigned int start_index_, unsigned int num_items_, bool context_match = false) : idx (start_index_), c (c_), match_glyph_data (NULL), num_items (num_items_), end (c->buffer->len) { matcher.set_lookup_props (c->lookup_props); /* Ignore ZWNJ if we are matching GSUB context, or matching GPOS. */ matcher.set_ignore_zwnj (context_match || c->table_index == 1); /* Ignore ZWJ if we are matching GSUB context, or matching GPOS, or if asked to. */ matcher.set_ignore_zwj (context_match || c->table_index == 1 || c->auto_zwj); if (!context_match) matcher.set_mask (c->lookup_mask); matcher.set_syllable (start_index_ == c->buffer->idx ? c->buffer->cur().syllable () : 0); } inline void set_lookup_props (unsigned int lookup_props) { matcher.set_lookup_props (lookup_props); } inline void set_syllable (unsigned int syllable) { matcher.set_syllable (syllable); } inline void set_match_func (matcher_t::match_func_t match_func, const void *match_data, const USHORT glyph_data[]) { matcher.set_match_func (match_func, match_data); match_glyph_data = glyph_data; } inline bool has_no_chance (void) const { return unlikely (num_items && idx + num_items >= end); } inline void reject (void) { num_items++; match_glyph_data--; } inline bool next (void) { assert (num_items > 0); while (!has_no_chance ()) { idx++; const hb_glyph_info_t &info = c->buffer->info[idx]; matcher_t::may_skip_t skip = matcher.may_skip (c, info); if (unlikely (skip == matcher_t::SKIP_YES)) continue; matcher_t::may_match_t match = matcher.may_match (info, match_glyph_data); if (match == matcher_t::MATCH_YES || (match == matcher_t::MATCH_MAYBE && skip == matcher_t::SKIP_NO)) { num_items--; match_glyph_data++; return true; } if (skip == matcher_t::SKIP_NO) return false; } return false; } unsigned int idx; protected: hb_apply_context_t *c; matcher_t matcher; const USHORT *match_glyph_data; unsigned int num_items; unsigned int end; }; struct skipping_backward_iterator_t { inline skipping_backward_iterator_t (hb_apply_context_t *c_, unsigned int start_index_, unsigned int num_items_, bool context_match = false) : idx (start_index_), c (c_), match_glyph_data (NULL), num_items (num_items_) { matcher.set_lookup_props (c->lookup_props); /* Ignore ZWNJ if we are matching GSUB context, or matching GPOS. */ matcher.set_ignore_zwnj (context_match || c->table_index == 1); /* Ignore ZWJ if we are matching GSUB context, or matching GPOS, or if asked to. */ matcher.set_ignore_zwj (context_match || c->table_index == 1 || c->auto_zwj); if (!context_match) matcher.set_mask (c->lookup_mask); matcher.set_syllable (start_index_ == c->buffer->idx ? c->buffer->cur().syllable () : 0); } inline void set_lookup_props (unsigned int lookup_props) { matcher.set_lookup_props (lookup_props); } inline void set_syllable (unsigned int syllable) { matcher.set_syllable (syllable); } inline void set_match_func (matcher_t::match_func_t match_func, const void *match_data, const USHORT glyph_data[]) { matcher.set_match_func (match_func, match_data); match_glyph_data = glyph_data; } inline bool has_no_chance (void) const { return unlikely (idx < num_items); } inline void reject (void) { num_items++; } inline bool prev (void) { assert (num_items > 0); while (!has_no_chance ()) { idx--; const hb_glyph_info_t &info = c->buffer->out_info[idx]; matcher_t::may_skip_t skip = matcher.may_skip (c, info); if (unlikely (skip == matcher_t::SKIP_YES)) continue; matcher_t::may_match_t match = matcher.may_match (info, match_glyph_data); if (match == matcher_t::MATCH_YES || (match == matcher_t::MATCH_MAYBE && skip == matcher_t::SKIP_NO)) { num_items--; match_glyph_data++; return true; } if (skip == matcher_t::SKIP_NO) return false; } return false; } unsigned int idx; protected: hb_apply_context_t *c; matcher_t matcher; const USHORT *match_glyph_data; unsigned int num_items; }; inline bool match_properties_mark (hb_codepoint_t glyph, unsigned int glyph_props, unsigned int lookup_props) const { /* If using mark filtering sets, the high short of * lookup_props has the set index. */ if (lookup_props & LookupFlag::UseMarkFilteringSet) return gdef.mark_set_covers (lookup_props >> 16, glyph); /* The second byte of lookup_props has the meaning * "ignore marks of attachment type different than * the attachment type specified." */ if (lookup_props & LookupFlag::MarkAttachmentType) return (lookup_props & LookupFlag::MarkAttachmentType) == (glyph_props & LookupFlag::MarkAttachmentType); return true; } inline bool match_properties (hb_codepoint_t glyph, unsigned int glyph_props, unsigned int lookup_props) const { /* Not covered, if, for example, glyph class is ligature and * lookup_props includes LookupFlags::IgnoreLigatures */ if (glyph_props & lookup_props & LookupFlag::IgnoreFlags) return false; if (unlikely (glyph_props & HB_OT_LAYOUT_GLYPH_PROPS_MARK)) return match_properties_mark (glyph, glyph_props, lookup_props); return true; } inline bool check_glyph_property (hb_glyph_info_t *info, unsigned int lookup_props) const { unsigned int property; property = _hb_glyph_info_get_glyph_props (info); return match_properties (info->codepoint, property, lookup_props); } inline void _set_glyph_props (hb_codepoint_t glyph_index, unsigned int class_guess = 0, bool ligature = false) const { unsigned int add_in = _hb_glyph_info_get_glyph_props (&buffer->cur()) & HB_OT_LAYOUT_GLYPH_PROPS_PRESERVE; add_in |= HB_OT_LAYOUT_GLYPH_PROPS_SUBSTITUTED; if (ligature) add_in |= HB_OT_LAYOUT_GLYPH_PROPS_LIGATED; if (likely (has_glyph_classes)) _hb_glyph_info_set_glyph_props (&buffer->cur(), add_in | gdef.get_glyph_props (glyph_index)); else if (class_guess) _hb_glyph_info_set_glyph_props (&buffer->cur(), add_in | class_guess); } inline void replace_glyph (hb_codepoint_t glyph_index) const { _set_glyph_props (glyph_index); buffer->replace_glyph (glyph_index); } inline void replace_glyph_inplace (hb_codepoint_t glyph_index) const { _set_glyph_props (glyph_index); buffer->cur().codepoint = glyph_index; } inline void replace_glyph_with_ligature (hb_codepoint_t glyph_index, unsigned int class_guess) const { _set_glyph_props (glyph_index, class_guess, true); buffer->replace_glyph (glyph_index); } inline void output_glyph (hb_codepoint_t glyph_index, unsigned int class_guess) const { _set_glyph_props (glyph_index, class_guess); buffer->output_glyph (glyph_index); } }; typedef bool (*intersects_func_t) (hb_set_t *glyphs, const USHORT &value, const void *data); typedef void (*collect_glyphs_func_t) (hb_set_t *glyphs, const USHORT &value, const void *data); typedef bool (*match_func_t) (hb_codepoint_t glyph_id, const USHORT &value, const void *data); struct ContextClosureFuncs { intersects_func_t intersects; }; struct ContextCollectGlyphsFuncs { collect_glyphs_func_t collect; }; struct ContextApplyFuncs { match_func_t match; }; static inline bool intersects_glyph (hb_set_t *glyphs, const USHORT &value, const void *data HB_UNUSED) { return glyphs->has (value); } static inline bool intersects_class (hb_set_t *glyphs, const USHORT &value, const void *data) { const ClassDef &class_def = *reinterpret_cast<const ClassDef *>(data); return class_def.intersects_class (glyphs, value); } static inline bool intersects_coverage (hb_set_t *glyphs, const USHORT &value, const void *data) { const OffsetTo<Coverage> &coverage = (const OffsetTo<Coverage>&)value; return (data+coverage).intersects (glyphs); } static inline bool intersects_array (hb_closure_context_t *c, unsigned int count, const USHORT values[], intersects_func_t intersects_func, const void *intersects_data) { for (unsigned int i = 0; i < count; i++) if (likely (!intersects_func (c->glyphs, values[i], intersects_data))) return false; return true; } static inline void collect_glyph (hb_set_t *glyphs, const USHORT &value, const void *data HB_UNUSED) { glyphs->add (value); } static inline void collect_class (hb_set_t *glyphs, const USHORT &value, const void *data) { const ClassDef &class_def = *reinterpret_cast<const ClassDef *>(data); class_def.add_class (glyphs, value); } static inline void collect_coverage (hb_set_t *glyphs, const USHORT &value, const void *data) { const OffsetTo<Coverage> &coverage = (const OffsetTo<Coverage>&)value; (data+coverage).add_coverage (glyphs); } static inline void collect_array (hb_collect_glyphs_context_t *c HB_UNUSED, hb_set_t *glyphs, unsigned int count, const USHORT values[], collect_glyphs_func_t collect_func, const void *collect_data) { for (unsigned int i = 0; i < count; i++) collect_func (glyphs, values[i], collect_data); } static inline bool match_glyph (hb_codepoint_t glyph_id, const USHORT &value, const void *data HB_UNUSED) { return glyph_id == value; } static inline bool match_class (hb_codepoint_t glyph_id, const USHORT &value, const void *data) { const ClassDef &class_def = *reinterpret_cast<const ClassDef *>(data); return class_def.get_class (glyph_id) == value; } static inline bool match_coverage (hb_codepoint_t glyph_id, const USHORT &value, const void *data) { const OffsetTo<Coverage> &coverage = (const OffsetTo<Coverage>&)value; return (data+coverage).get_coverage (glyph_id) != NOT_COVERED; } static inline bool would_match_input (hb_would_apply_context_t *c, unsigned int count, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ match_func_t match_func, const void *match_data) { if (count != c->len) return false; for (unsigned int i = 1; i < count; i++) if (likely (!match_func (c->glyphs[i], input[i - 1], match_data))) return false; return true; } static inline bool match_input (hb_apply_context_t *c, unsigned int count, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ match_func_t match_func, const void *match_data, unsigned int *end_offset, unsigned int match_positions[MAX_CONTEXT_LENGTH], bool *p_is_mark_ligature = NULL, unsigned int *p_total_component_count = NULL) { TRACE_APPLY (NULL); if (unlikely (count > MAX_CONTEXT_LENGTH)) TRACE_RETURN (false); hb_buffer_t *buffer = c->buffer; hb_apply_context_t::skipping_forward_iterator_t skippy_iter (c, buffer->idx, count - 1); skippy_iter.set_match_func (match_func, match_data, input); if (skippy_iter.has_no_chance ()) return TRACE_RETURN (false); /* * This is perhaps the trickiest part of OpenType... Remarks: * * - If all components of the ligature were marks, we call this a mark ligature. * * - If there is no GDEF, and the ligature is NOT a mark ligature, we categorize * it as a ligature glyph. * * - Ligatures cannot be formed across glyphs attached to different components * of previous ligatures. Eg. the sequence is LAM,SHADDA,LAM,FATHA,HEH, and * LAM,LAM,HEH form a ligature, leaving SHADDA,FATHA next to eachother. * However, it would be wrong to ligate that SHADDA,FATHA sequence.o * There is an exception to this: If a ligature tries ligating with marks that * belong to it itself, go ahead, assuming that the font designer knows what * they are doing (otherwise it can break Indic stuff when a matra wants to * ligate with a conjunct...) */ bool is_mark_ligature = _hb_glyph_info_is_mark (&buffer->cur()); unsigned int total_component_count = 0; total_component_count += _hb_glyph_info_get_lig_num_comps (&buffer->cur()); unsigned int first_lig_id = _hb_glyph_info_get_lig_id (&buffer->cur()); unsigned int first_lig_comp = _hb_glyph_info_get_lig_comp (&buffer->cur()); match_positions[0] = buffer->idx; for (unsigned int i = 1; i < count; i++) { if (!skippy_iter.next ()) return TRACE_RETURN (false); match_positions[i] = skippy_iter.idx; unsigned int this_lig_id = _hb_glyph_info_get_lig_id (&buffer->info[skippy_iter.idx]); unsigned int this_lig_comp = _hb_glyph_info_get_lig_comp (&buffer->info[skippy_iter.idx]); if (first_lig_id && first_lig_comp) { /* If first component was attached to a previous ligature component, * all subsequent components should be attached to the same ligature * component, otherwise we shouldn't ligate them. */ if (first_lig_id != this_lig_id || first_lig_comp != this_lig_comp) return TRACE_RETURN (false); } else { /* If first component was NOT attached to a previous ligature component, * all subsequent components should also NOT be attached to any ligature * component, unless they are attached to the first component itself! */ if (this_lig_id && this_lig_comp && (this_lig_id != first_lig_id)) return TRACE_RETURN (false); } is_mark_ligature = is_mark_ligature && _hb_glyph_info_is_mark (&buffer->info[skippy_iter.idx]); total_component_count += _hb_glyph_info_get_lig_num_comps (&buffer->info[skippy_iter.idx]); } *end_offset = skippy_iter.idx - buffer->idx + 1; if (p_is_mark_ligature) *p_is_mark_ligature = is_mark_ligature; if (p_total_component_count) *p_total_component_count = total_component_count; return TRACE_RETURN (true); } static inline void ligate_input (hb_apply_context_t *c, unsigned int count, /* Including the first glyph */ unsigned int match_positions[MAX_CONTEXT_LENGTH], /* Including the first glyph */ unsigned int match_length, hb_codepoint_t lig_glyph, bool is_mark_ligature, unsigned int total_component_count) { TRACE_APPLY (NULL); hb_buffer_t *buffer = c->buffer; buffer->merge_clusters (buffer->idx, buffer->idx + match_length); /* * - If it *is* a mark ligature, we don't allocate a new ligature id, and leave * the ligature to keep its old ligature id. This will allow it to attach to * a base ligature in GPOS. Eg. if the sequence is: LAM,LAM,SHADDA,FATHA,HEH, * and LAM,LAM,HEH for a ligature, they will leave SHADDA and FATHA wit a * ligature id and component value of 2. Then if SHADDA,FATHA form a ligature * later, we don't want them to lose their ligature id/component, otherwise * GPOS will fail to correctly position the mark ligature on top of the * LAM,LAM,HEH ligature. See: * https://bugzilla.gnome.org/show_bug.cgi?id=676343 * * - If a ligature is formed of components that some of which are also ligatures * themselves, and those ligature components had marks attached to *their* * components, we have to attach the marks to the new ligature component * positions! Now *that*'s tricky! And these marks may be following the * last component of the whole sequence, so we should loop forward looking * for them and update them. * * Eg. the sequence is LAM,LAM,SHADDA,FATHA,HEH, and the font first forms a * 'calt' ligature of LAM,HEH, leaving the SHADDA and FATHA with a ligature * id and component == 1. Now, during 'liga', the LAM and the LAM-HEH ligature * form a LAM-LAM-HEH ligature. We need to reassign the SHADDA and FATHA to * the new ligature with a component value of 2. * * This in fact happened to a font... See: * https://bugzilla.gnome.org/show_bug.cgi?id=437633 */ unsigned int klass = is_mark_ligature ? 0 : HB_OT_LAYOUT_GLYPH_PROPS_LIGATURE; unsigned int lig_id = is_mark_ligature ? 0 : _hb_allocate_lig_id (buffer); unsigned int last_lig_id = _hb_glyph_info_get_lig_id (&buffer->cur()); unsigned int last_num_components = _hb_glyph_info_get_lig_num_comps (&buffer->cur()); unsigned int components_so_far = last_num_components; if (!is_mark_ligature) { _hb_glyph_info_set_lig_props_for_ligature (&buffer->cur(), lig_id, total_component_count); if (_hb_glyph_info_get_general_category (&buffer->cur()) == HB_UNICODE_GENERAL_CATEGORY_NON_SPACING_MARK) { _hb_glyph_info_set_general_category (&buffer->cur(), HB_UNICODE_GENERAL_CATEGORY_OTHER_LETTER); _hb_glyph_info_set_modified_combining_class (&buffer->cur(), 0); } } c->replace_glyph_with_ligature (lig_glyph, klass); for (unsigned int i = 1; i < count; i++) { while (buffer->idx < match_positions[i]) { if (!is_mark_ligature) { unsigned int new_lig_comp = components_so_far - last_num_components + MIN (MAX (_hb_glyph_info_get_lig_comp (&buffer->cur()), 1u), last_num_components); _hb_glyph_info_set_lig_props_for_mark (&buffer->cur(), lig_id, new_lig_comp); } buffer->next_glyph (); } last_lig_id = _hb_glyph_info_get_lig_id (&buffer->cur()); last_num_components = _hb_glyph_info_get_lig_num_comps (&buffer->cur()); components_so_far += last_num_components; /* Skip the base glyph */ buffer->idx++; } if (!is_mark_ligature && last_lig_id) { /* Re-adjust components for any marks following. */ for (unsigned int i = buffer->idx; i < buffer->len; i++) { if (last_lig_id == _hb_glyph_info_get_lig_id (&buffer->info[i])) { unsigned int new_lig_comp = components_so_far - last_num_components + MIN (MAX (_hb_glyph_info_get_lig_comp (&buffer->info[i]), 1u), last_num_components); _hb_glyph_info_set_lig_props_for_mark (&buffer->info[i], lig_id, new_lig_comp); } else break; } } } static inline bool match_backtrack (hb_apply_context_t *c, unsigned int count, const USHORT backtrack[], match_func_t match_func, const void *match_data) { TRACE_APPLY (NULL); hb_apply_context_t::skipping_backward_iterator_t skippy_iter (c, c->buffer->backtrack_len (), count, true); skippy_iter.set_match_func (match_func, match_data, backtrack); if (skippy_iter.has_no_chance ()) return TRACE_RETURN (false); for (unsigned int i = 0; i < count; i++) if (!skippy_iter.prev ()) return TRACE_RETURN (false); return TRACE_RETURN (true); } static inline bool match_lookahead (hb_apply_context_t *c, unsigned int count, const USHORT lookahead[], match_func_t match_func, const void *match_data, unsigned int offset) { TRACE_APPLY (NULL); hb_apply_context_t::skipping_forward_iterator_t skippy_iter (c, c->buffer->idx + offset - 1, count, true); skippy_iter.set_match_func (match_func, match_data, lookahead); if (skippy_iter.has_no_chance ()) return TRACE_RETURN (false); for (unsigned int i = 0; i < count; i++) if (!skippy_iter.next ()) return TRACE_RETURN (false); return TRACE_RETURN (true); } struct LookupRecord { inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (c->check_struct (this)); } USHORT sequenceIndex; /* Index into current glyph * sequence--first glyph = 0 */ USHORT lookupListIndex; /* Lookup to apply to that * position--zero--based */ public: DEFINE_SIZE_STATIC (4); }; template <typename context_t> static inline void recurse_lookups (context_t *c, unsigned int lookupCount, const LookupRecord lookupRecord[] /* Array of LookupRecords--in design order */) { for (unsigned int i = 0; i < lookupCount; i++) c->recurse (lookupRecord[i].lookupListIndex); } static inline bool apply_lookup (hb_apply_context_t *c, unsigned int count, /* Including the first glyph */ unsigned int match_positions[MAX_CONTEXT_LENGTH], /* Including the first glyph */ unsigned int lookupCount, const LookupRecord lookupRecord[], /* Array of LookupRecords--in design order */ unsigned int match_length) { TRACE_APPLY (NULL); hb_buffer_t *buffer = c->buffer; unsigned int end; /* All positions are distance from beginning of *output* buffer. * Adjust. */ { unsigned int bl = buffer->backtrack_len (); end = bl + match_length; int delta = bl - buffer->idx; /* Convert positions to new indexing. */ for (unsigned int j = 0; j < count; j++) match_positions[j] += delta; } for (unsigned int i = 0; i < lookupCount; i++) { unsigned int idx = lookupRecord[i].sequenceIndex; if (idx >= count) continue; buffer->move_to (match_positions[idx]); unsigned int orig_len = buffer->backtrack_len () + buffer->lookahead_len (); if (!c->recurse (lookupRecord[i].lookupListIndex)) continue; unsigned int new_len = buffer->backtrack_len () + buffer->lookahead_len (); int delta = new_len - orig_len; if (!delta) continue; /* Recursed lookup changed buffer len. Adjust. */ /* end can't go back past the current match position. */ end = MAX ((int) match_positions[idx] + 1, int (end) + delta); unsigned int next = idx + 1; /* next now is the position after the recursed lookup. */ if (delta > 0) { if (unlikely (delta + count > MAX_CONTEXT_LENGTH)) break; } else { /* NOTE: delta is negative. */ delta = MAX (delta, (int) next - (int) count); next -= delta; } /* Shift! */ memmove (match_positions + next + delta, match_positions + next, (count - next) * sizeof (match_positions[0])); next += delta; count += delta; /* Fill in new entries. */ for (unsigned int j = idx + 1; j < next; j++) match_positions[j] = match_positions[j - 1] + 1; /* And fixup the rest. */ for (; next < count; next++) match_positions[next] += delta; } buffer->move_to (end); return TRACE_RETURN (true); } /* Contextual lookups */ struct ContextClosureLookupContext { ContextClosureFuncs funcs; const void *intersects_data; }; struct ContextCollectGlyphsLookupContext { ContextCollectGlyphsFuncs funcs; const void *collect_data; }; struct ContextApplyLookupContext { ContextApplyFuncs funcs; const void *match_data; }; static inline void context_closure_lookup (hb_closure_context_t *c, unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookupCount, const LookupRecord lookupRecord[], ContextClosureLookupContext &lookup_context) { if (intersects_array (c, inputCount ? inputCount - 1 : 0, input, lookup_context.funcs.intersects, lookup_context.intersects_data)) recurse_lookups (c, lookupCount, lookupRecord); } static inline void context_collect_glyphs_lookup (hb_collect_glyphs_context_t *c, unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookupCount, const LookupRecord lookupRecord[], ContextCollectGlyphsLookupContext &lookup_context) { collect_array (c, c->input, inputCount ? inputCount - 1 : 0, input, lookup_context.funcs.collect, lookup_context.collect_data); recurse_lookups (c, lookupCount, lookupRecord); } static inline bool context_would_apply_lookup (hb_would_apply_context_t *c, unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookupCount HB_UNUSED, const LookupRecord lookupRecord[] HB_UNUSED, ContextApplyLookupContext &lookup_context) { return would_match_input (c, inputCount, input, lookup_context.funcs.match, lookup_context.match_data); } static inline bool context_apply_lookup (hb_apply_context_t *c, unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookupCount, const LookupRecord lookupRecord[], ContextApplyLookupContext &lookup_context) { unsigned int match_length = 0; unsigned int match_positions[MAX_CONTEXT_LENGTH]; return match_input (c, inputCount, input, lookup_context.funcs.match, lookup_context.match_data, &match_length, match_positions) && apply_lookup (c, inputCount, match_positions, lookupCount, lookupRecord, match_length); } struct Rule { inline void closure (hb_closure_context_t *c, ContextClosureLookupContext &lookup_context) const { TRACE_CLOSURE (this); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (input, input[0].static_size * (inputCount ? inputCount - 1 : 0)); context_closure_lookup (c, inputCount, input, lookupCount, lookupRecord, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c, ContextCollectGlyphsLookupContext &lookup_context) const { TRACE_COLLECT_GLYPHS (this); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (input, input[0].static_size * (inputCount ? inputCount - 1 : 0)); context_collect_glyphs_lookup (c, inputCount, input, lookupCount, lookupRecord, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c, ContextApplyLookupContext &lookup_context) const { TRACE_WOULD_APPLY (this); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (input, input[0].static_size * (inputCount ? inputCount - 1 : 0)); return TRACE_RETURN (context_would_apply_lookup (c, inputCount, input, lookupCount, lookupRecord, lookup_context)); } inline bool apply (hb_apply_context_t *c, ContextApplyLookupContext &lookup_context) const { TRACE_APPLY (this); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (input, input[0].static_size * (inputCount ? inputCount - 1 : 0)); return TRACE_RETURN (context_apply_lookup (c, inputCount, input, lookupCount, lookupRecord, lookup_context)); } public: inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return inputCount.sanitize (c) && lookupCount.sanitize (c) && c->check_range (input, input[0].static_size * inputCount + lookupRecordX[0].static_size * lookupCount); } protected: USHORT inputCount; /* Total number of glyphs in input * glyph sequence--includes the first * glyph */ USHORT lookupCount; /* Number of LookupRecords */ USHORT input[VAR]; /* Array of match inputs--start with * second glyph */ LookupRecord lookupRecordX[VAR]; /* Array of LookupRecords--in * design order */ public: DEFINE_SIZE_ARRAY2 (4, input, lookupRecordX); }; struct RuleSet { inline void closure (hb_closure_context_t *c, ContextClosureLookupContext &lookup_context) const { TRACE_CLOSURE (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) (this+rule[i]).closure (c, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c, ContextCollectGlyphsLookupContext &lookup_context) const { TRACE_COLLECT_GLYPHS (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) (this+rule[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c, ContextApplyLookupContext &lookup_context) const { TRACE_WOULD_APPLY (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) { if ((this+rule[i]).would_apply (c, lookup_context)) return TRACE_RETURN (true); } return TRACE_RETURN (false); } inline bool apply (hb_apply_context_t *c, ContextApplyLookupContext &lookup_context) const { TRACE_APPLY (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) { if ((this+rule[i]).apply (c, lookup_context)) return TRACE_RETURN (true); } return TRACE_RETURN (false); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (rule.sanitize (c, this)); } protected: OffsetArrayOf<Rule> rule; /* Array of Rule tables * ordered by preference */ public: DEFINE_SIZE_ARRAY (2, rule); }; struct ContextFormat1 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); const Coverage &cov = (this+coverage); struct ContextClosureLookupContext lookup_context = { {intersects_glyph}, NULL }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) if (cov.intersects_coverage (c->glyphs, i)) { const RuleSet &rule_set = this+ruleSet[i]; rule_set.closure (c, lookup_context); } } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); (this+coverage).add_coverage (c->input); struct ContextCollectGlyphsLookupContext lookup_context = { {collect_glyph}, NULL }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) (this+ruleSet[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const RuleSet &rule_set = this+ruleSet[(this+coverage).get_coverage (c->glyphs[0])]; struct ContextApplyLookupContext lookup_context = { {match_glyph}, NULL }; return TRACE_RETURN (rule_set.would_apply (c, lookup_context)); } inline const Coverage &get_coverage (void) const { return this+coverage; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); unsigned int index = (this+coverage).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const RuleSet &rule_set = this+ruleSet[index]; struct ContextApplyLookupContext lookup_context = { {match_glyph}, NULL }; return TRACE_RETURN (rule_set.apply (c, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (coverage.sanitize (c, this) && ruleSet.sanitize (c, this)); } protected: USHORT format; /* Format identifier--format = 1 */ OffsetTo<Coverage> coverage; /* Offset to Coverage table--from * beginning of table */ OffsetArrayOf<RuleSet> ruleSet; /* Array of RuleSet tables * ordered by Coverage Index */ public: DEFINE_SIZE_ARRAY (6, ruleSet); }; struct ContextFormat2 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); if (!(this+coverage).intersects (c->glyphs)) return; const ClassDef &class_def = this+classDef; struct ContextClosureLookupContext lookup_context = { {intersects_class}, &class_def }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) if (class_def.intersects_class (c->glyphs, i)) { const RuleSet &rule_set = this+ruleSet[i]; rule_set.closure (c, lookup_context); } } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); (this+coverage).add_coverage (c->input); const ClassDef &class_def = this+classDef; struct ContextCollectGlyphsLookupContext lookup_context = { {collect_class}, &class_def }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) (this+ruleSet[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const ClassDef &class_def = this+classDef; unsigned int index = class_def.get_class (c->glyphs[0]); const RuleSet &rule_set = this+ruleSet[index]; struct ContextApplyLookupContext lookup_context = { {match_class}, &class_def }; return TRACE_RETURN (rule_set.would_apply (c, lookup_context)); } inline const Coverage &get_coverage (void) const { return this+coverage; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); unsigned int index = (this+coverage).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const ClassDef &class_def = this+classDef; index = class_def.get_class (c->buffer->cur().codepoint); const RuleSet &rule_set = this+ruleSet[index]; struct ContextApplyLookupContext lookup_context = { {match_class}, &class_def }; return TRACE_RETURN (rule_set.apply (c, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (coverage.sanitize (c, this) && classDef.sanitize (c, this) && ruleSet.sanitize (c, this)); } protected: USHORT format; /* Format identifier--format = 2 */ OffsetTo<Coverage> coverage; /* Offset to Coverage table--from * beginning of table */ OffsetTo<ClassDef> classDef; /* Offset to glyph ClassDef table--from * beginning of table */ OffsetArrayOf<RuleSet> ruleSet; /* Array of RuleSet tables * ordered by class */ public: DEFINE_SIZE_ARRAY (8, ruleSet); }; struct ContextFormat3 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); if (!(this+coverage[0]).intersects (c->glyphs)) return; const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (coverage, coverage[0].static_size * glyphCount); struct ContextClosureLookupContext lookup_context = { {intersects_coverage}, this }; context_closure_lookup (c, glyphCount, (const USHORT *) (coverage + 1), lookupCount, lookupRecord, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); (this+coverage[0]).add_coverage (c->input); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (coverage, coverage[0].static_size * glyphCount); struct ContextCollectGlyphsLookupContext lookup_context = { {collect_coverage}, this }; context_collect_glyphs_lookup (c, glyphCount, (const USHORT *) (coverage + 1), lookupCount, lookupRecord, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (coverage, coverage[0].static_size * glyphCount); struct ContextApplyLookupContext lookup_context = { {match_coverage}, this }; return TRACE_RETURN (context_would_apply_lookup (c, glyphCount, (const USHORT *) (coverage + 1), lookupCount, lookupRecord, lookup_context)); } inline const Coverage &get_coverage (void) const { return this+coverage[0]; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); unsigned int index = (this+coverage[0]).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (coverage, coverage[0].static_size * glyphCount); struct ContextApplyLookupContext lookup_context = { {match_coverage}, this }; return TRACE_RETURN (context_apply_lookup (c, glyphCount, (const USHORT *) (coverage + 1), lookupCount, lookupRecord, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!c->check_struct (this)) return TRACE_RETURN (false); unsigned int count = glyphCount; if (!c->check_array (coverage, coverage[0].static_size, count)) return TRACE_RETURN (false); for (unsigned int i = 0; i < count; i++) if (!coverage[i].sanitize (c, this)) return TRACE_RETURN (false); LookupRecord *lookupRecord = &StructAtOffset<LookupRecord> (coverage, coverage[0].static_size * count); return TRACE_RETURN (c->check_array (lookupRecord, lookupRecord[0].static_size, lookupCount)); } protected: USHORT format; /* Format identifier--format = 3 */ USHORT glyphCount; /* Number of glyphs in the input glyph * sequence */ USHORT lookupCount; /* Number of LookupRecords */ OffsetTo<Coverage> coverage[VAR]; /* Array of offsets to Coverage * table in glyph sequence order */ LookupRecord lookupRecordX[VAR]; /* Array of LookupRecords--in * design order */ public: DEFINE_SIZE_ARRAY2 (6, coverage, lookupRecordX); }; struct Context { template <typename context_t> inline typename context_t::return_t dispatch (context_t *c) const { TRACE_DISPATCH (this); switch (u.format) { case 1: return TRACE_RETURN (c->dispatch (u.format1)); case 2: return TRACE_RETURN (c->dispatch (u.format2)); case 3: return TRACE_RETURN (c->dispatch (u.format3)); default:return TRACE_RETURN (c->default_return_value ()); } } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return TRACE_RETURN (false); switch (u.format) { case 1: return TRACE_RETURN (u.format1.sanitize (c)); case 2: return TRACE_RETURN (u.format2.sanitize (c)); case 3: return TRACE_RETURN (u.format3.sanitize (c)); default:return TRACE_RETURN (true); } } protected: union { USHORT format; /* Format identifier */ ContextFormat1 format1; ContextFormat2 format2; ContextFormat3 format3; } u; }; /* Chaining Contextual lookups */ struct ChainContextClosureLookupContext { ContextClosureFuncs funcs; const void *intersects_data[3]; }; struct ChainContextCollectGlyphsLookupContext { ContextCollectGlyphsFuncs funcs; const void *collect_data[3]; }; struct ChainContextApplyLookupContext { ContextApplyFuncs funcs; const void *match_data[3]; }; static inline void chain_context_closure_lookup (hb_closure_context_t *c, unsigned int backtrackCount, const USHORT backtrack[], unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookaheadCount, const USHORT lookahead[], unsigned int lookupCount, const LookupRecord lookupRecord[], ChainContextClosureLookupContext &lookup_context) { if (intersects_array (c, backtrackCount, backtrack, lookup_context.funcs.intersects, lookup_context.intersects_data[0]) && intersects_array (c, inputCount ? inputCount - 1 : 0, input, lookup_context.funcs.intersects, lookup_context.intersects_data[1]) && intersects_array (c, lookaheadCount, lookahead, lookup_context.funcs.intersects, lookup_context.intersects_data[2])) recurse_lookups (c, lookupCount, lookupRecord); } static inline void chain_context_collect_glyphs_lookup (hb_collect_glyphs_context_t *c, unsigned int backtrackCount, const USHORT backtrack[], unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookaheadCount, const USHORT lookahead[], unsigned int lookupCount, const LookupRecord lookupRecord[], ChainContextCollectGlyphsLookupContext &lookup_context) { collect_array (c, c->before, backtrackCount, backtrack, lookup_context.funcs.collect, lookup_context.collect_data[0]); collect_array (c, c->input, inputCount ? inputCount - 1 : 0, input, lookup_context.funcs.collect, lookup_context.collect_data[1]); collect_array (c, c->after, lookaheadCount, lookahead, lookup_context.funcs.collect, lookup_context.collect_data[2]); recurse_lookups (c, lookupCount, lookupRecord); } static inline bool chain_context_would_apply_lookup (hb_would_apply_context_t *c, unsigned int backtrackCount, const USHORT backtrack[] HB_UNUSED, unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookaheadCount, const USHORT lookahead[] HB_UNUSED, unsigned int lookupCount HB_UNUSED, const LookupRecord lookupRecord[] HB_UNUSED, ChainContextApplyLookupContext &lookup_context) { return (c->zero_context ? !backtrackCount && !lookaheadCount : true) && would_match_input (c, inputCount, input, lookup_context.funcs.match, lookup_context.match_data[1]); } static inline bool chain_context_apply_lookup (hb_apply_context_t *c, unsigned int backtrackCount, const USHORT backtrack[], unsigned int inputCount, /* Including the first glyph (not matched) */ const USHORT input[], /* Array of input values--start with second glyph */ unsigned int lookaheadCount, const USHORT lookahead[], unsigned int lookupCount, const LookupRecord lookupRecord[], ChainContextApplyLookupContext &lookup_context) { unsigned int match_length = 0; unsigned int match_positions[MAX_CONTEXT_LENGTH]; return match_input (c, inputCount, input, lookup_context.funcs.match, lookup_context.match_data[1], &match_length, match_positions) && match_backtrack (c, backtrackCount, backtrack, lookup_context.funcs.match, lookup_context.match_data[0]) && match_lookahead (c, lookaheadCount, lookahead, lookup_context.funcs.match, lookup_context.match_data[2], match_length) && apply_lookup (c, inputCount, match_positions, lookupCount, lookupRecord, match_length); } struct ChainRule { inline void closure (hb_closure_context_t *c, ChainContextClosureLookupContext &lookup_context) const { TRACE_CLOSURE (this); const HeadlessArrayOf<USHORT> &input = StructAfter<HeadlessArrayOf<USHORT> > (backtrack); const ArrayOf<USHORT> &lookahead = StructAfter<ArrayOf<USHORT> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); chain_context_closure_lookup (c, backtrack.len, backtrack.array, input.len, input.array, lookahead.len, lookahead.array, lookup.len, lookup.array, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c, ChainContextCollectGlyphsLookupContext &lookup_context) const { TRACE_COLLECT_GLYPHS (this); const HeadlessArrayOf<USHORT> &input = StructAfter<HeadlessArrayOf<USHORT> > (backtrack); const ArrayOf<USHORT> &lookahead = StructAfter<ArrayOf<USHORT> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); chain_context_collect_glyphs_lookup (c, backtrack.len, backtrack.array, input.len, input.array, lookahead.len, lookahead.array, lookup.len, lookup.array, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c, ChainContextApplyLookupContext &lookup_context) const { TRACE_WOULD_APPLY (this); const HeadlessArrayOf<USHORT> &input = StructAfter<HeadlessArrayOf<USHORT> > (backtrack); const ArrayOf<USHORT> &lookahead = StructAfter<ArrayOf<USHORT> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); return TRACE_RETURN (chain_context_would_apply_lookup (c, backtrack.len, backtrack.array, input.len, input.array, lookahead.len, lookahead.array, lookup.len, lookup.array, lookup_context)); } inline bool apply (hb_apply_context_t *c, ChainContextApplyLookupContext &lookup_context) const { TRACE_APPLY (this); const HeadlessArrayOf<USHORT> &input = StructAfter<HeadlessArrayOf<USHORT> > (backtrack); const ArrayOf<USHORT> &lookahead = StructAfter<ArrayOf<USHORT> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); return TRACE_RETURN (chain_context_apply_lookup (c, backtrack.len, backtrack.array, input.len, input.array, lookahead.len, lookahead.array, lookup.len, lookup.array, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!backtrack.sanitize (c)) return TRACE_RETURN (false); HeadlessArrayOf<USHORT> &input = StructAfter<HeadlessArrayOf<USHORT> > (backtrack); if (!input.sanitize (c)) return TRACE_RETURN (false); ArrayOf<USHORT> &lookahead = StructAfter<ArrayOf<USHORT> > (input); if (!lookahead.sanitize (c)) return TRACE_RETURN (false); ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); return TRACE_RETURN (lookup.sanitize (c)); } protected: ArrayOf<USHORT> backtrack; /* Array of backtracking values * (to be matched before the input * sequence) */ HeadlessArrayOf<USHORT> inputX; /* Array of input values (start with * second glyph) */ ArrayOf<USHORT> lookaheadX; /* Array of lookahead values's (to be * matched after the input sequence) */ ArrayOf<LookupRecord> lookupX; /* Array of LookupRecords--in * design order) */ public: DEFINE_SIZE_MIN (8); }; struct ChainRuleSet { inline void closure (hb_closure_context_t *c, ChainContextClosureLookupContext &lookup_context) const { TRACE_CLOSURE (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) (this+rule[i]).closure (c, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c, ChainContextCollectGlyphsLookupContext &lookup_context) const { TRACE_COLLECT_GLYPHS (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) (this+rule[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c, ChainContextApplyLookupContext &lookup_context) const { TRACE_WOULD_APPLY (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) if ((this+rule[i]).would_apply (c, lookup_context)) return TRACE_RETURN (true); return TRACE_RETURN (false); } inline bool apply (hb_apply_context_t *c, ChainContextApplyLookupContext &lookup_context) const { TRACE_APPLY (this); unsigned int num_rules = rule.len; for (unsigned int i = 0; i < num_rules; i++) if ((this+rule[i]).apply (c, lookup_context)) return TRACE_RETURN (true); return TRACE_RETURN (false); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (rule.sanitize (c, this)); } protected: OffsetArrayOf<ChainRule> rule; /* Array of ChainRule tables * ordered by preference */ public: DEFINE_SIZE_ARRAY (2, rule); }; struct ChainContextFormat1 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); const Coverage &cov = (this+coverage); struct ChainContextClosureLookupContext lookup_context = { {intersects_glyph}, {NULL, NULL, NULL} }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) if (cov.intersects_coverage (c->glyphs, i)) { const ChainRuleSet &rule_set = this+ruleSet[i]; rule_set.closure (c, lookup_context); } } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); (this+coverage).add_coverage (c->input); struct ChainContextCollectGlyphsLookupContext lookup_context = { {collect_glyph}, {NULL, NULL, NULL} }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) (this+ruleSet[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const ChainRuleSet &rule_set = this+ruleSet[(this+coverage).get_coverage (c->glyphs[0])]; struct ChainContextApplyLookupContext lookup_context = { {match_glyph}, {NULL, NULL, NULL} }; return TRACE_RETURN (rule_set.would_apply (c, lookup_context)); } inline const Coverage &get_coverage (void) const { return this+coverage; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); unsigned int index = (this+coverage).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const ChainRuleSet &rule_set = this+ruleSet[index]; struct ChainContextApplyLookupContext lookup_context = { {match_glyph}, {NULL, NULL, NULL} }; return TRACE_RETURN (rule_set.apply (c, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (coverage.sanitize (c, this) && ruleSet.sanitize (c, this)); } protected: USHORT format; /* Format identifier--format = 1 */ OffsetTo<Coverage> coverage; /* Offset to Coverage table--from * beginning of table */ OffsetArrayOf<ChainRuleSet> ruleSet; /* Array of ChainRuleSet tables * ordered by Coverage Index */ public: DEFINE_SIZE_ARRAY (6, ruleSet); }; struct ChainContextFormat2 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); if (!(this+coverage).intersects (c->glyphs)) return; const ClassDef &backtrack_class_def = this+backtrackClassDef; const ClassDef &input_class_def = this+inputClassDef; const ClassDef &lookahead_class_def = this+lookaheadClassDef; struct ChainContextClosureLookupContext lookup_context = { {intersects_class}, {&backtrack_class_def, &input_class_def, &lookahead_class_def} }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) if (input_class_def.intersects_class (c->glyphs, i)) { const ChainRuleSet &rule_set = this+ruleSet[i]; rule_set.closure (c, lookup_context); } } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); (this+coverage).add_coverage (c->input); const ClassDef &backtrack_class_def = this+backtrackClassDef; const ClassDef &input_class_def = this+inputClassDef; const ClassDef &lookahead_class_def = this+lookaheadClassDef; struct ChainContextCollectGlyphsLookupContext lookup_context = { {collect_class}, {&backtrack_class_def, &input_class_def, &lookahead_class_def} }; unsigned int count = ruleSet.len; for (unsigned int i = 0; i < count; i++) (this+ruleSet[i]).collect_glyphs (c, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const ClassDef &backtrack_class_def = this+backtrackClassDef; const ClassDef &input_class_def = this+inputClassDef; const ClassDef &lookahead_class_def = this+lookaheadClassDef; unsigned int index = input_class_def.get_class (c->glyphs[0]); const ChainRuleSet &rule_set = this+ruleSet[index]; struct ChainContextApplyLookupContext lookup_context = { {match_class}, {&backtrack_class_def, &input_class_def, &lookahead_class_def} }; return TRACE_RETURN (rule_set.would_apply (c, lookup_context)); } inline const Coverage &get_coverage (void) const { return this+coverage; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); unsigned int index = (this+coverage).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const ClassDef &backtrack_class_def = this+backtrackClassDef; const ClassDef &input_class_def = this+inputClassDef; const ClassDef &lookahead_class_def = this+lookaheadClassDef; index = input_class_def.get_class (c->buffer->cur().codepoint); const ChainRuleSet &rule_set = this+ruleSet[index]; struct ChainContextApplyLookupContext lookup_context = { {match_class}, {&backtrack_class_def, &input_class_def, &lookahead_class_def} }; return TRACE_RETURN (rule_set.apply (c, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (coverage.sanitize (c, this) && backtrackClassDef.sanitize (c, this) && inputClassDef.sanitize (c, this) && lookaheadClassDef.sanitize (c, this) && ruleSet.sanitize (c, this)); } protected: USHORT format; /* Format identifier--format = 2 */ OffsetTo<Coverage> coverage; /* Offset to Coverage table--from * beginning of table */ OffsetTo<ClassDef> backtrackClassDef; /* Offset to glyph ClassDef table * containing backtrack sequence * data--from beginning of table */ OffsetTo<ClassDef> inputClassDef; /* Offset to glyph ClassDef * table containing input sequence * data--from beginning of table */ OffsetTo<ClassDef> lookaheadClassDef; /* Offset to glyph ClassDef table * containing lookahead sequence * data--from beginning of table */ OffsetArrayOf<ChainRuleSet> ruleSet; /* Array of ChainRuleSet tables * ordered by class */ public: DEFINE_SIZE_ARRAY (12, ruleSet); }; struct ChainContextFormat3 { inline void closure (hb_closure_context_t *c) const { TRACE_CLOSURE (this); const OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); if (!(this+input[0]).intersects (c->glyphs)) return; const OffsetArrayOf<Coverage> &lookahead = StructAfter<OffsetArrayOf<Coverage> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); struct ChainContextClosureLookupContext lookup_context = { {intersects_coverage}, {this, this, this} }; chain_context_closure_lookup (c, backtrack.len, (const USHORT *) backtrack.array, input.len, (const USHORT *) input.array + 1, lookahead.len, (const USHORT *) lookahead.array, lookup.len, lookup.array, lookup_context); } inline void collect_glyphs (hb_collect_glyphs_context_t *c) const { TRACE_COLLECT_GLYPHS (this); const OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); (this+input[0]).add_coverage (c->input); const OffsetArrayOf<Coverage> &lookahead = StructAfter<OffsetArrayOf<Coverage> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); struct ChainContextCollectGlyphsLookupContext lookup_context = { {collect_coverage}, {this, this, this} }; chain_context_collect_glyphs_lookup (c, backtrack.len, (const USHORT *) backtrack.array, input.len, (const USHORT *) input.array + 1, lookahead.len, (const USHORT *) lookahead.array, lookup.len, lookup.array, lookup_context); } inline bool would_apply (hb_would_apply_context_t *c) const { TRACE_WOULD_APPLY (this); const OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); const OffsetArrayOf<Coverage> &lookahead = StructAfter<OffsetArrayOf<Coverage> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); struct ChainContextApplyLookupContext lookup_context = { {match_coverage}, {this, this, this} }; return TRACE_RETURN (chain_context_would_apply_lookup (c, backtrack.len, (const USHORT *) backtrack.array, input.len, (const USHORT *) input.array + 1, lookahead.len, (const USHORT *) lookahead.array, lookup.len, lookup.array, lookup_context)); } inline const Coverage &get_coverage (void) const { const OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); return this+input[0]; } inline bool apply (hb_apply_context_t *c) const { TRACE_APPLY (this); const OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); unsigned int index = (this+input[0]).get_coverage (c->buffer->cur().codepoint); if (likely (index == NOT_COVERED)) return TRACE_RETURN (false); const OffsetArrayOf<Coverage> &lookahead = StructAfter<OffsetArrayOf<Coverage> > (input); const ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); struct ChainContextApplyLookupContext lookup_context = { {match_coverage}, {this, this, this} }; return TRACE_RETURN (chain_context_apply_lookup (c, backtrack.len, (const USHORT *) backtrack.array, input.len, (const USHORT *) input.array + 1, lookahead.len, (const USHORT *) lookahead.array, lookup.len, lookup.array, lookup_context)); } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!backtrack.sanitize (c, this)) return TRACE_RETURN (false); OffsetArrayOf<Coverage> &input = StructAfter<OffsetArrayOf<Coverage> > (backtrack); if (!input.sanitize (c, this)) return TRACE_RETURN (false); OffsetArrayOf<Coverage> &lookahead = StructAfter<OffsetArrayOf<Coverage> > (input); if (!lookahead.sanitize (c, this)) return TRACE_RETURN (false); ArrayOf<LookupRecord> &lookup = StructAfter<ArrayOf<LookupRecord> > (lookahead); return TRACE_RETURN (lookup.sanitize (c)); } protected: USHORT format; /* Format identifier--format = 3 */ OffsetArrayOf<Coverage> backtrack; /* Array of coverage tables * in backtracking sequence, in glyph * sequence order */ OffsetArrayOf<Coverage> inputX ; /* Array of coverage * tables in input sequence, in glyph * sequence order */ OffsetArrayOf<Coverage> lookaheadX; /* Array of coverage tables * in lookahead sequence, in glyph * sequence order */ ArrayOf<LookupRecord> lookupX; /* Array of LookupRecords--in * design order) */ public: DEFINE_SIZE_MIN (10); }; struct ChainContext { template <typename context_t> inline typename context_t::return_t dispatch (context_t *c) const { TRACE_DISPATCH (this); switch (u.format) { case 1: return TRACE_RETURN (c->dispatch (u.format1)); case 2: return TRACE_RETURN (c->dispatch (u.format2)); case 3: return TRACE_RETURN (c->dispatch (u.format3)); default:return TRACE_RETURN (c->default_return_value ()); } } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return TRACE_RETURN (false); switch (u.format) { case 1: return TRACE_RETURN (u.format1.sanitize (c)); case 2: return TRACE_RETURN (u.format2.sanitize (c)); case 3: return TRACE_RETURN (u.format3.sanitize (c)); default:return TRACE_RETURN (true); } } protected: union { USHORT format; /* Format identifier */ ChainContextFormat1 format1; ChainContextFormat2 format2; ChainContextFormat3 format3; } u; }; struct ExtensionFormat1 { inline unsigned int get_type (void) const { return extensionLookupType; } inline unsigned int get_offset (void) const { return extensionOffset; } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (c->check_struct (this)); } protected: USHORT format; /* Format identifier. Set to 1. */ USHORT extensionLookupType; /* Lookup type of subtable referenced * by ExtensionOffset (i.e. the * extension subtable). */ ULONG extensionOffset; /* Offset to the extension subtable, * of lookup type subtable. */ public: DEFINE_SIZE_STATIC (8); }; template <typename T> struct Extension { inline unsigned int get_type (void) const { switch (u.format) { case 1: return u.format1.get_type (); default:return 0; } } inline unsigned int get_offset (void) const { switch (u.format) { case 1: return u.format1.get_offset (); default:return 0; } } template <typename X> inline const X& get_subtable (void) const { unsigned int offset = get_offset (); if (unlikely (!offset)) return Null(typename T::LookupSubTable); return StructAtOffset<typename T::LookupSubTable> (this, offset); } template <typename context_t> inline typename context_t::return_t dispatch (context_t *c) const { return get_subtable<typename T::LookupSubTable> ().dispatch (c, get_type ()); } inline bool sanitize_self (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!u.format.sanitize (c)) return TRACE_RETURN (false); switch (u.format) { case 1: return TRACE_RETURN (u.format1.sanitize (c)); default:return TRACE_RETURN (true); } } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); if (!sanitize_self (c)) return TRACE_RETURN (false); unsigned int offset = get_offset (); if (unlikely (!offset)) return TRACE_RETURN (true); return TRACE_RETURN (StructAtOffset<typename T::LookupSubTable> (this, offset).sanitize (c, get_type ())); } protected: union { USHORT format; /* Format identifier */ ExtensionFormat1 format1; } u; }; /* * GSUB/GPOS Common */ struct GSUBGPOS { static const hb_tag_t GSUBTag = HB_OT_TAG_GSUB; static const hb_tag_t GPOSTag = HB_OT_TAG_GPOS; inline unsigned int get_script_count (void) const { return (this+scriptList).len; } inline const Tag& get_script_tag (unsigned int i) const { return (this+scriptList).get_tag (i); } inline unsigned int get_script_tags (unsigned int start_offset, unsigned int *script_count /* IN/OUT */, hb_tag_t *script_tags /* OUT */) const { return (this+scriptList).get_tags (start_offset, script_count, script_tags); } inline const Script& get_script (unsigned int i) const { return (this+scriptList)[i]; } inline bool find_script_index (hb_tag_t tag, unsigned int *index) const { return (this+scriptList).find_index (tag, index); } inline unsigned int get_feature_count (void) const { return (this+featureList).len; } inline const Tag& get_feature_tag (unsigned int i) const { return (this+featureList).get_tag (i); } inline unsigned int get_feature_tags (unsigned int start_offset, unsigned int *feature_count /* IN/OUT */, hb_tag_t *feature_tags /* OUT */) const { return (this+featureList).get_tags (start_offset, feature_count, feature_tags); } inline const Feature& get_feature (unsigned int i) const { return (this+featureList)[i]; } inline bool find_feature_index (hb_tag_t tag, unsigned int *index) const { return (this+featureList).find_index (tag, index); } inline unsigned int get_lookup_count (void) const { return (this+lookupList).len; } inline const Lookup& get_lookup (unsigned int i) const { return (this+lookupList)[i]; } inline bool sanitize (hb_sanitize_context_t *c) { TRACE_SANITIZE (this); return TRACE_RETURN (version.sanitize (c) && likely (version.major == 1) && scriptList.sanitize (c, this) && featureList.sanitize (c, this) && lookupList.sanitize (c, this)); } protected: FixedVersion version; /* Version of the GSUB/GPOS table--initially set * to 0x00010000 */ OffsetTo<ScriptList> scriptList; /* ScriptList table */ OffsetTo<FeatureList> featureList; /* FeatureList table */ OffsetTo<LookupList> lookupList; /* LookupList table */ public: DEFINE_SIZE_STATIC (10); }; } /* namespace OT */ #endif /* HB_OT_LAYOUT_GSUBGPOS_PRIVATE_HH */