// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // TODO(rtenhove) clean up frame buffer size calculations so that we aren't // constantly adding and subtracting header sizes; this is ugly and error- // prone. #include "net/spdy/spdy_framer.h" #include "base/lazy_instance.h" #include "base/memory/scoped_ptr.h" #include "base/metrics/stats_counters.h" #include "base/third_party/valgrind/memcheck.h" #include "net/spdy/spdy_frame_builder.h" #include "net/spdy/spdy_frame_reader.h" #include "net/spdy/spdy_bitmasks.h" #include "third_party/zlib/zlib.h" using std::vector; namespace net { namespace { // Compute the id of our dictionary so that we know we're using the // right one when asked for it. uLong CalculateDictionaryId(const char* dictionary, const size_t dictionary_size) { uLong initial_value = adler32(0L, Z_NULL, 0); return adler32(initial_value, reinterpret_cast<const Bytef*>(dictionary), dictionary_size); } struct DictionaryIds { DictionaryIds() : v2_dictionary_id(CalculateDictionaryId(kV2Dictionary, kV2DictionarySize)), v3_dictionary_id(CalculateDictionaryId(kV3Dictionary, kV3DictionarySize)) {} const uLong v2_dictionary_id; const uLong v3_dictionary_id; }; // Adler ID for the SPDY header compressor dictionaries. Note that they are // initialized lazily to avoid static initializers. base::LazyInstance<DictionaryIds>::Leaky g_dictionary_ids; // Used to indicate no flags in a SPDY flags field. const uint8 kNoFlags = 0; } // namespace const SpdyStreamId SpdyFramer::kInvalidStream = -1; const size_t SpdyFramer::kHeaderDataChunkMaxSize = 1024; // The size of the control frame buffer. Must be >= the minimum size of the // largest control frame, which is SYN_STREAM. See GetSynStreamMinimumSize() for // calculation details. const size_t SpdyFramer::kControlFrameBufferSize = 18; #ifdef DEBUG_SPDY_STATE_CHANGES #define CHANGE_STATE(newstate) \ do { \ DVLOG(1) << "Changing state from: " \ << StateToString(state_) \ << " to " << StateToString(newstate) << "\n"; \ DCHECK(state_ != SPDY_ERROR); \ DCHECK_EQ(previous_state_, state_); \ previous_state_ = state_; \ state_ = newstate; \ } while (false) #else #define CHANGE_STATE(newstate) \ do { \ DCHECK(state_ != SPDY_ERROR); \ DCHECK_EQ(previous_state_, state_); \ previous_state_ = state_; \ state_ = newstate; \ } while (false) #endif SettingsFlagsAndId SettingsFlagsAndId::FromWireFormat(int version, uint32 wire) { if (version < 3) { ConvertFlagsAndIdForSpdy2(&wire); } return SettingsFlagsAndId(ntohl(wire) >> 24, ntohl(wire) & 0x00ffffff); } SettingsFlagsAndId::SettingsFlagsAndId(uint8 flags, uint32 id) : flags_(flags), id_(id & 0x00ffffff) { DCHECK_GT(1u << 24, id) << "SPDY setting ID too large."; } uint32 SettingsFlagsAndId::GetWireFormat(int version) const { uint32 wire = htonl(id_ & 0x00ffffff) | htonl(flags_ << 24); if (version < 3) { ConvertFlagsAndIdForSpdy2(&wire); } return wire; } // SPDY 2 had a bug in it with respect to byte ordering of id/flags field. // This method is used to preserve buggy behavior and works on both // little-endian and big-endian hosts. // This method is also bidirectional (can be used to translate SPDY 2 to SPDY 3 // as well as vice versa). void SettingsFlagsAndId::ConvertFlagsAndIdForSpdy2(uint32* val) { uint8* wire_array = reinterpret_cast<uint8*>(val); std::swap(wire_array[0], wire_array[3]); std::swap(wire_array[1], wire_array[2]); } SpdyCredential::SpdyCredential() : slot(0) {} SpdyCredential::~SpdyCredential() {} SpdyFramer::SpdyFramer(SpdyMajorVersion version) : current_frame_buffer_(new char[kControlFrameBufferSize]), enable_compression_(true), visitor_(NULL), debug_visitor_(NULL), display_protocol_("SPDY"), spdy_version_(version), syn_frame_processed_(false), probable_http_response_(false) { DCHECK_GE(spdy_version_, SPDY_MIN_VERSION); DCHECK_LE(spdy_version_, SPDY_MAX_VERSION); Reset(); } SpdyFramer::~SpdyFramer() { if (header_compressor_.get()) { deflateEnd(header_compressor_.get()); } if (header_decompressor_.get()) { inflateEnd(header_decompressor_.get()); } } void SpdyFramer::Reset() { state_ = SPDY_RESET; previous_state_ = SPDY_RESET; error_code_ = SPDY_NO_ERROR; remaining_data_length_ = 0; remaining_control_header_ = 0; current_frame_buffer_length_ = 0; current_frame_type_ = DATA; current_frame_flags_ = 0; current_frame_length_ = 0; current_frame_stream_id_ = kInvalidStream; settings_scratch_.Reset(); } size_t SpdyFramer::GetDataFrameMinimumSize() const { // Size, in bytes, of the data frame header. Future versions of SPDY // will likely vary this, so we allow for the flexibility of a function call // for this value as opposed to a constant. return 8; } // Size, in bytes, of the control frame header. size_t SpdyFramer::GetControlFrameHeaderSize() const { switch (protocol_version()) { case SPDY2: case SPDY3: case SPDY4: return 8; } LOG(DFATAL) << "Unhandled SPDY version."; return 0; } size_t SpdyFramer::GetSynStreamMinimumSize() const { // Size, in bytes, of a SYN_STREAM frame not including the variable-length // name-value block. if (spdy_version_ < 4) { // Calculated as: // control frame header + 2 * 4 (stream IDs) + 1 (priority) + 1 (slot) return GetControlFrameHeaderSize() + 10; } else { // Calculated as: // frame prefix + 4 (associated stream ID) + 1 (priority) + 1 (slot) return GetControlFrameHeaderSize() + 6; } } size_t SpdyFramer::GetSynReplyMinimumSize() const { // Size, in bytes, of a SYN_REPLY frame not including the variable-length // name-value block. size_t size = GetControlFrameHeaderSize(); if (spdy_version_ < 4) { // Calculated as: // control frame header + 4 (stream IDs) size += 4; } // In SPDY 2, there were 2 unused bytes before payload. if (protocol_version() < 3) { size += 2; } return size; } size_t SpdyFramer::GetRstStreamSize() const { // Size, in bytes, of a RST_STREAM frame. if (spdy_version_ < 4) { // Calculated as: // control frame header + 4 (stream id) + 4 (status code) return GetControlFrameHeaderSize() + 8; } else { // Calculated as: // frame prefix + 4 (status code) return GetControlFrameHeaderSize() + 4; } } size_t SpdyFramer::GetSettingsMinimumSize() const { // Size, in bytes, of a SETTINGS frame not including the IDs and values // from the variable-length value block. Calculated as: // control frame header + 4 (number of ID/value pairs) return GetControlFrameHeaderSize() + 4; } size_t SpdyFramer::GetPingSize() const { // Size, in bytes, of this PING frame. Calculated as: // control frame header + 4 (id) return GetControlFrameHeaderSize() + 4; } size_t SpdyFramer::GetGoAwaySize() const { // Size, in bytes, of this GOAWAY frame. Calculated as: // control frame header + 4 (last good stream id) size_t size = GetControlFrameHeaderSize() + 4; // SPDY 3+ GOAWAY frames also contain a status. if (protocol_version() >= 3) { size += 4; } return size; } size_t SpdyFramer::GetHeadersMinimumSize() const { // Size, in bytes, of a HEADERS frame not including the variable-length // name-value block. size_t size = GetControlFrameHeaderSize(); if (spdy_version_ < 4) { // Calculated as: // control frame header + 4 (stream IDs) size += 4; } // In SPDY 2, there were 2 unused bytes before payload. if (protocol_version() < 3) { size += 2; } return size; } size_t SpdyFramer::GetWindowUpdateSize() const { // Size, in bytes, of a WINDOW_UPDATE frame. if (spdy_version_ < 4) { // Calculated as: // control frame header + 4 (stream id) + 4 (delta) return GetControlFrameHeaderSize() + 8; } else { // Calculated as: // frame prefix + 4 (delta) return GetControlFrameHeaderSize() + 4; } } size_t SpdyFramer::GetCredentialMinimumSize() const { // Size, in bytes, of a CREDENTIAL frame sans variable-length certificate list // and proof. Calculated as: // control frame header + 2 (slot) return GetControlFrameHeaderSize() + 2; } size_t SpdyFramer::GetBlockedSize() const { DCHECK_LE(4, protocol_version()); // Size, in bytes, of a BLOCKED frame. // The BLOCKED frame has no payload beyond the control frame header. return GetControlFrameHeaderSize(); } size_t SpdyFramer::GetPushPromiseMinimumSize() const { DCHECK_LE(4, protocol_version()); // Size, in bytes, of a PUSH_PROMISE frame, sans the embedded header block. // Calculated as frame prefix + 4 (promised stream id). return GetControlFrameHeaderSize() + 4; } size_t SpdyFramer::GetFrameMinimumSize() const { return std::min(GetDataFrameMinimumSize(), GetControlFrameHeaderSize()); } size_t SpdyFramer::GetFrameMaximumSize() const { return (protocol_version() < 4) ? 0xffffff : 0xffff; } size_t SpdyFramer::GetDataFrameMaximumPayload() const { return GetFrameMaximumSize() - GetDataFrameMinimumSize(); } const char* SpdyFramer::StateToString(int state) { switch (state) { case SPDY_ERROR: return "ERROR"; case SPDY_AUTO_RESET: return "AUTO_RESET"; case SPDY_RESET: return "RESET"; case SPDY_READING_COMMON_HEADER: return "READING_COMMON_HEADER"; case SPDY_CONTROL_FRAME_PAYLOAD: return "CONTROL_FRAME_PAYLOAD"; case SPDY_IGNORE_REMAINING_PAYLOAD: return "IGNORE_REMAINING_PAYLOAD"; case SPDY_FORWARD_STREAM_FRAME: return "FORWARD_STREAM_FRAME"; case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK"; case SPDY_CONTROL_FRAME_HEADER_BLOCK: return "SPDY_CONTROL_FRAME_HEADER_BLOCK"; case SPDY_CREDENTIAL_FRAME_PAYLOAD: return "SPDY_CREDENTIAL_FRAME_PAYLOAD"; case SPDY_SETTINGS_FRAME_PAYLOAD: return "SPDY_SETTINGS_FRAME_PAYLOAD"; } return "UNKNOWN_STATE"; } void SpdyFramer::set_error(SpdyError error) { DCHECK(visitor_); error_code_ = error; CHANGE_STATE(SPDY_ERROR); visitor_->OnError(this); } const char* SpdyFramer::ErrorCodeToString(int error_code) { switch (error_code) { case SPDY_NO_ERROR: return "NO_ERROR"; case SPDY_INVALID_CONTROL_FRAME: return "INVALID_CONTROL_FRAME"; case SPDY_CONTROL_PAYLOAD_TOO_LARGE: return "CONTROL_PAYLOAD_TOO_LARGE"; case SPDY_ZLIB_INIT_FAILURE: return "ZLIB_INIT_FAILURE"; case SPDY_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case SPDY_DECOMPRESS_FAILURE: return "DECOMPRESS_FAILURE"; case SPDY_COMPRESS_FAILURE: return "COMPRESS_FAILURE"; case SPDY_INVALID_DATA_FRAME_FLAGS: return "SPDY_INVALID_DATA_FRAME_FLAGS"; case SPDY_INVALID_CONTROL_FRAME_FLAGS: return "SPDY_INVALID_CONTROL_FRAME_FLAGS"; } return "UNKNOWN_ERROR"; } const char* SpdyFramer::StatusCodeToString(int status_code) { switch (status_code) { case RST_STREAM_INVALID: return "INVALID"; case RST_STREAM_PROTOCOL_ERROR: return "PROTOCOL_ERROR"; case RST_STREAM_INVALID_STREAM: return "INVALID_STREAM"; case RST_STREAM_REFUSED_STREAM: return "REFUSED_STREAM"; case RST_STREAM_UNSUPPORTED_VERSION: return "UNSUPPORTED_VERSION"; case RST_STREAM_CANCEL: return "CANCEL"; case RST_STREAM_INTERNAL_ERROR: return "INTERNAL_ERROR"; case RST_STREAM_FLOW_CONTROL_ERROR: return "FLOW_CONTROL_ERROR"; case RST_STREAM_STREAM_IN_USE: return "STREAM_IN_USE"; case RST_STREAM_STREAM_ALREADY_CLOSED: return "STREAM_ALREADY_CLOSED"; case RST_STREAM_INVALID_CREDENTIALS: return "INVALID_CREDENTIALS"; case RST_STREAM_FRAME_TOO_LARGE: return "FRAME_TOO_LARGE"; } return "UNKNOWN_STATUS"; } const char* SpdyFramer::FrameTypeToString(SpdyFrameType type) { switch (type) { case DATA: return "DATA"; case SYN_STREAM: return "SYN_STREAM"; case SYN_REPLY: return "SYN_REPLY"; case RST_STREAM: return "RST_STREAM"; case SETTINGS: return "SETTINGS"; case NOOP: return "NOOP"; case PING: return "PING"; case GOAWAY: return "GOAWAY"; case HEADERS: return "HEADERS"; case WINDOW_UPDATE: return "WINDOW_UPDATE"; case CREDENTIAL: return "CREDENTIAL"; case BLOCKED: return "BLOCKED"; case PUSH_PROMISE: return "PUSH_PROMISE"; } return "UNKNOWN_CONTROL_TYPE"; } size_t SpdyFramer::ProcessInput(const char* data, size_t len) { DCHECK(visitor_); DCHECK(data); size_t original_len = len; do { previous_state_ = state_; switch (state_) { case SPDY_ERROR: goto bottom; case SPDY_AUTO_RESET: case SPDY_RESET: Reset(); if (len > 0) { CHANGE_STATE(SPDY_READING_COMMON_HEADER); } break; case SPDY_READING_COMMON_HEADER: { size_t bytes_read = ProcessCommonHeader(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK: { // Control frames that contain header blocks // (SYN_STREAM, SYN_REPLY, HEADERS, PUSH_PROMISE) // take a different path through the state machine - they // will go: // 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // 2. SPDY_CONTROL_FRAME_HEADER_BLOCK // // SETTINGS frames take a slightly modified route: // 1. SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK // 2. SPDY_SETTINGS_FRAME_PAYLOAD // // All other control frames will use the alternate route directly to // SPDY_CONTROL_FRAME_PAYLOAD int bytes_read = ProcessControlFrameBeforeHeaderBlock(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_SETTINGS_FRAME_PAYLOAD: { int bytes_read = ProcessSettingsFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_HEADER_BLOCK: { int bytes_read = ProcessControlFrameHeaderBlock(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CREDENTIAL_FRAME_PAYLOAD: { size_t bytes_read = ProcessCredentialFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_CONTROL_FRAME_PAYLOAD: { size_t bytes_read = ProcessControlFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } case SPDY_IGNORE_REMAINING_PAYLOAD: // control frame has too-large payload // intentional fallthrough case SPDY_FORWARD_STREAM_FRAME: { size_t bytes_read = ProcessDataFramePayload(data, len); len -= bytes_read; data += bytes_read; break; } default: LOG(DFATAL) << "Invalid value for " << display_protocol_ << " framer state: " << state_; // This ensures that we don't infinite-loop if state_ gets an // invalid value somehow, such as due to a SpdyFramer getting deleted // from a callback it calls. goto bottom; } } while (state_ != previous_state_); bottom: DCHECK(len == 0 || state_ == SPDY_ERROR); if (current_frame_buffer_length_ == 0 && remaining_data_length_ == 0 && remaining_control_header_ == 0) { DCHECK(state_ == SPDY_RESET || state_ == SPDY_ERROR) << "State: " << StateToString(state_); } return original_len - len; } size_t SpdyFramer::ProcessCommonHeader(const char* data, size_t len) { // This should only be called when we're in the SPDY_READING_COMMON_HEADER // state. DCHECK_EQ(state_, SPDY_READING_COMMON_HEADER); size_t original_len = len; // Update current frame buffer as needed. if (current_frame_buffer_length_ < GetControlFrameHeaderSize()) { size_t bytes_desired = GetControlFrameHeaderSize() - current_frame_buffer_length_; UpdateCurrentFrameBuffer(&data, &len, bytes_desired); } if (current_frame_buffer_length_ < GetControlFrameHeaderSize()) { // Not enough information to do anything meaningful. return original_len - len; } // Using a scoped_ptr here since we may need to create a new SpdyFrameReader // when processing DATA frames below. scoped_ptr<SpdyFrameReader> reader( new SpdyFrameReader(current_frame_buffer_.get(), current_frame_buffer_length_)); uint16 version = 0; bool is_control_frame = false; uint16 control_frame_type_field = DATA; // ProcessControlFrameHeader() will set current_frame_type_ to the // correct value if this is a valid control frame. current_frame_type_ = DATA; if (protocol_version() < 4) { bool successful_read = reader->ReadUInt16(&version); DCHECK(successful_read); is_control_frame = (version & kControlFlagMask) != 0; version &= ~kControlFlagMask; // Only valid for control frames. if (is_control_frame) { // We check control_frame_type_field's validity in // ProcessControlFrameHeader(). successful_read = reader->ReadUInt16(&control_frame_type_field); } else { reader->Rewind(); successful_read = reader->ReadUInt31(¤t_frame_stream_id_); } DCHECK(successful_read); successful_read = reader->ReadUInt8(¤t_frame_flags_); DCHECK(successful_read); uint32 length_field = 0; successful_read = reader->ReadUInt24(&length_field); DCHECK(successful_read); remaining_data_length_ = length_field; current_frame_length_ = remaining_data_length_ + reader->GetBytesConsumed(); } else { version = protocol_version(); uint16 length_field = 0; bool successful_read = reader->ReadUInt16(&length_field); DCHECK(successful_read); current_frame_length_ = length_field; uint8 control_frame_type_field_uint8 = DATA; successful_read = reader->ReadUInt8(&control_frame_type_field_uint8); DCHECK(successful_read); // We check control_frame_type_field's validity in // ProcessControlFrameHeader(). control_frame_type_field = control_frame_type_field_uint8; is_control_frame = (control_frame_type_field != DATA); successful_read = reader->ReadUInt8(¤t_frame_flags_); DCHECK(successful_read); successful_read = reader->ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); remaining_data_length_ = current_frame_length_ - reader->GetBytesConsumed(); } DCHECK_EQ(is_control_frame ? GetControlFrameHeaderSize() : GetDataFrameMinimumSize(), reader->GetBytesConsumed()); DCHECK_EQ(current_frame_length_, remaining_data_length_ + reader->GetBytesConsumed()); // This is just a sanity check for help debugging early frame errors. if (remaining_data_length_ > 1000000u) { // The strncmp for 5 is safe because we only hit this point if we // have kMinCommonHeader (8) bytes if (!syn_frame_processed_ && strncmp(current_frame_buffer_.get(), "HTTP/", 5) == 0) { LOG(WARNING) << "Unexpected HTTP response to " << display_protocol_ << " request"; probable_http_response_ = true; } else { LOG(WARNING) << "Unexpectedly large frame. " << display_protocol_ << " session is likely corrupt."; } } // if we're here, then we have the common header all received. if (!is_control_frame) { if (current_frame_flags_ & ~DATA_FLAG_FIN) { set_error(SPDY_INVALID_DATA_FRAME_FLAGS); } else { visitor_->OnDataFrameHeader(current_frame_stream_id_, remaining_data_length_, current_frame_flags_ & DATA_FLAG_FIN); if (remaining_data_length_ > 0) { CHANGE_STATE(SPDY_FORWARD_STREAM_FRAME); } else { // Empty data frame. if (current_frame_flags_ & DATA_FLAG_FIN) { visitor_->OnStreamFrameData( current_frame_stream_id_, NULL, 0, true); } CHANGE_STATE(SPDY_AUTO_RESET); } } } else if (version != spdy_version_) { // We check version before we check validity: version can never be // 'invalid', it can only be unsupported. DVLOG(1) << "Unsupported SPDY version " << version << " (expected " << spdy_version_ << ")"; set_error(SPDY_UNSUPPORTED_VERSION); } else { ProcessControlFrameHeader(control_frame_type_field); } return original_len - len; } void SpdyFramer::ProcessControlFrameHeader(uint16 control_frame_type_field) { DCHECK_EQ(SPDY_NO_ERROR, error_code_); DCHECK_LE(GetControlFrameHeaderSize(), current_frame_buffer_length_); if (control_frame_type_field < FIRST_CONTROL_TYPE || control_frame_type_field > LAST_CONTROL_TYPE) { set_error(SPDY_INVALID_CONTROL_FRAME); return; } current_frame_type_ = static_cast<SpdyFrameType>(control_frame_type_field); if (current_frame_type_ == NOOP) { DVLOG(1) << "NOOP control frame found. Ignoring."; CHANGE_STATE(SPDY_AUTO_RESET); return; } // Do some sanity checking on the control frame sizes and flags. switch (current_frame_type_) { case SYN_STREAM: if (current_frame_length_ < GetSynStreamMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~(CONTROL_FLAG_FIN | CONTROL_FLAG_UNIDIRECTIONAL)) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case SYN_REPLY: if (current_frame_length_ < GetSynReplyMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~CONTROL_FLAG_FIN) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case RST_STREAM: if (current_frame_length_ != GetRstStreamSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case SETTINGS: // Make sure that we have an integral number of 8-byte key/value pairs, // plus a 4-byte length field. if (current_frame_length_ < GetSettingsMinimumSize() || (current_frame_length_ - GetControlFrameHeaderSize()) % 8 != 4) { DLOG(WARNING) << "Invalid length for SETTINGS frame: " << current_frame_length_; set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case PING: if (current_frame_length_ != GetPingSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case GOAWAY: { if (current_frame_length_ != GetGoAwaySize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; } case HEADERS: if (current_frame_length_ < GetHeadersMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ & ~CONTROL_FLAG_FIN) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case WINDOW_UPDATE: if (current_frame_length_ != GetWindowUpdateSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case CREDENTIAL: if (current_frame_length_ < GetCredentialMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case BLOCKED: if (current_frame_length_ != GetBlockedSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; case PUSH_PROMISE: if (current_frame_length_ < GetPushPromiseMinimumSize()) { set_error(SPDY_INVALID_CONTROL_FRAME); } else if (current_frame_flags_ != 0) { set_error(SPDY_INVALID_CONTROL_FRAME_FLAGS); } break; default: LOG(WARNING) << "Valid " << display_protocol_ << " control frame with unhandled type: " << current_frame_type_; // This branch should be unreachable because of the frame type bounds // check above. However, we DLOG(FATAL) here in an effort to painfully // club the head of the developer who failed to keep this file in sync // with spdy_protocol.h. DLOG(FATAL); set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (state_ == SPDY_ERROR) { return; } if (current_frame_length_ > GetControlFrameBufferMaxSize()) { DLOG(WARNING) << "Received control frame with way too big of a payload: " << current_frame_length_; set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); return; } if (current_frame_type_ == CREDENTIAL) { CHANGE_STATE(SPDY_CREDENTIAL_FRAME_PAYLOAD); return; } // Determine the frame size without variable-length data. int32 frame_size_without_variable_data; switch (current_frame_type_) { case SYN_STREAM: syn_frame_processed_ = true; frame_size_without_variable_data = GetSynStreamMinimumSize(); break; case SYN_REPLY: syn_frame_processed_ = true; frame_size_without_variable_data = GetSynReplyMinimumSize(); break; case SETTINGS: frame_size_without_variable_data = GetSettingsMinimumSize(); break; case HEADERS: frame_size_without_variable_data = GetHeadersMinimumSize(); break; case PUSH_PROMISE: frame_size_without_variable_data = GetPushPromiseMinimumSize(); break; default: frame_size_without_variable_data = -1; break; } if ((frame_size_without_variable_data == -1) && (current_frame_length_ > kControlFrameBufferSize)) { // We should already be in an error state. Double-check. DCHECK_EQ(SPDY_ERROR, state_); if (state_ != SPDY_ERROR) { LOG(DFATAL) << display_protocol_ << " control frame buffer too small for fixed-length frame."; set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } return; } if (frame_size_without_variable_data > 0) { // We have a control frame with a header block. We need to parse the // remainder of the control frame's header before we can parse the header // block. The start of the header block varies with the control type. DCHECK_GE(frame_size_without_variable_data, static_cast<int32>(current_frame_buffer_length_)); remaining_control_header_ = frame_size_without_variable_data - current_frame_buffer_length_; CHANGE_STATE(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK); return; } CHANGE_STATE(SPDY_CONTROL_FRAME_PAYLOAD); } size_t SpdyFramer::UpdateCurrentFrameBuffer(const char** data, size_t* len, size_t max_bytes) { size_t bytes_to_read = std::min(*len, max_bytes); if (bytes_to_read > 0) { DCHECK_GE(kControlFrameBufferSize, current_frame_buffer_length_ + bytes_to_read); memcpy(current_frame_buffer_.get() + current_frame_buffer_length_, *data, bytes_to_read); current_frame_buffer_length_ += bytes_to_read; *data += bytes_to_read; *len -= bytes_to_read; } return bytes_to_read; } size_t SpdyFramer::GetSerializedLength(const int spdy_version, const SpdyHeaderBlock* headers) { const size_t num_name_value_pairs_size = (spdy_version < 3) ? sizeof(uint16) : sizeof(uint32); const size_t length_of_name_size = num_name_value_pairs_size; const size_t length_of_value_size = num_name_value_pairs_size; size_t total_length = num_name_value_pairs_size; for (SpdyHeaderBlock::const_iterator it = headers->begin(); it != headers->end(); ++it) { // We add space for the length of the name and the length of the value as // well as the length of the name and the length of the value. total_length += length_of_name_size + it->first.size() + length_of_value_size + it->second.size(); } return total_length; } void SpdyFramer::WriteHeaderBlock(SpdyFrameBuilder* frame, const int spdy_version, const SpdyHeaderBlock* headers) { if (spdy_version < 3) { frame->WriteUInt16(headers->size()); // Number of headers. } else { frame->WriteUInt32(headers->size()); // Number of headers. } SpdyHeaderBlock::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { if (spdy_version < 3) { frame->WriteString(it->first); frame->WriteString(it->second); } else { frame->WriteStringPiece32(it->first); frame->WriteStringPiece32(it->second); } } } // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if !defined(USE_SYSTEM_ZLIB) // These constants are used by zlib to differentiate between normal data and // cookie data. Cookie data is handled specially by zlib when compressing. enum ZDataClass { // kZStandardData is compressed normally, save that it will never match // against any other class of data in the window. kZStandardData = Z_CLASS_STANDARD, // kZCookieData is compressed in its own Huffman blocks and only matches in // its entirety and only against other kZCookieData blocks. Any matches must // be preceeded by a kZStandardData byte, or a semicolon to prevent matching // a suffix. It's assumed that kZCookieData ends in a semicolon to prevent // prefix matches. kZCookieData = Z_CLASS_COOKIE, // kZHuffmanOnlyData is only Huffman compressed - no matches are performed // against the window. kZHuffmanOnlyData = Z_CLASS_HUFFMAN_ONLY, }; // WriteZ writes |data| to the deflate context |out|. WriteZ will flush as // needed when switching between classes of data. static void WriteZ(const base::StringPiece& data, ZDataClass clas, z_stream* out) { int rv; // If we are switching from standard to non-standard data then we need to end // the current Huffman context to avoid it leaking between them. if (out->clas == kZStandardData && clas != kZStandardData) { out->avail_in = 0; rv = deflate(out, Z_PARTIAL_FLUSH); DCHECK_EQ(Z_OK, rv); DCHECK_EQ(0u, out->avail_in); DCHECK_LT(0u, out->avail_out); } out->next_in = reinterpret_cast<Bytef*>(const_cast<char*>(data.data())); out->avail_in = data.size(); out->clas = clas; if (clas == kZStandardData) { rv = deflate(out, Z_NO_FLUSH); } else { rv = deflate(out, Z_PARTIAL_FLUSH); } if (!data.empty()) { // If we didn't provide any data then zlib will return Z_BUF_ERROR. DCHECK_EQ(Z_OK, rv); } DCHECK_EQ(0u, out->avail_in); DCHECK_LT(0u, out->avail_out); } // WriteLengthZ writes |n| as a |length|-byte, big-endian number to |out|. static void WriteLengthZ(size_t n, unsigned length, ZDataClass clas, z_stream* out) { char buf[4]; DCHECK_LE(length, sizeof(buf)); for (unsigned i = 1; i <= length; i++) { buf[length - i] = n; n >>= 8; } WriteZ(base::StringPiece(buf, length), clas, out); } // WriteHeaderBlockToZ serialises |headers| to the deflate context |z| in a // manner that resists the length of the compressed data from compromising // cookie data. void SpdyFramer::WriteHeaderBlockToZ(const SpdyHeaderBlock* headers, z_stream* z) const { unsigned length_length = 4; if (spdy_version_ < 3) length_length = 2; WriteLengthZ(headers->size(), length_length, kZStandardData, z); std::map<std::string, std::string>::const_iterator it; for (it = headers->begin(); it != headers->end(); ++it) { WriteLengthZ(it->first.size(), length_length, kZStandardData, z); WriteZ(it->first, kZStandardData, z); if (it->first == "cookie") { // We require the cookie values (save for the last) to end with a // semicolon and (save for the first) to start with a space. This is // typically the format that we are given them in but we reserialize them // to be sure. std::vector<base::StringPiece> cookie_values; size_t cookie_length = 0; base::StringPiece cookie_data(it->second); for (;;) { while (!cookie_data.empty() && (cookie_data[0] == ' ' || cookie_data[0] == '\t')) { cookie_data.remove_prefix(1); } if (cookie_data.empty()) break; size_t i; for (i = 0; i < cookie_data.size(); i++) { if (cookie_data[i] == ';') break; } if (i < cookie_data.size()) { cookie_values.push_back(cookie_data.substr(0, i)); cookie_length += i + 2 /* semicolon and space */; cookie_data.remove_prefix(i + 1); } else { cookie_values.push_back(cookie_data); cookie_length += cookie_data.size(); cookie_data.remove_prefix(i); } } WriteLengthZ(cookie_length, length_length, kZStandardData, z); for (size_t i = 0; i < cookie_values.size(); i++) { std::string cookie; // Since zlib will only back-reference complete cookies, a cookie that // is currently last (and so doesn't have a trailing semicolon) won't // match if it's later in a non-final position. The same is true of // the first cookie. if (i == 0 && cookie_values.size() == 1) { cookie = cookie_values[i].as_string(); } else if (i == 0) { cookie = cookie_values[i].as_string() + ";"; } else if (i < cookie_values.size() - 1) { cookie = " " + cookie_values[i].as_string() + ";"; } else { cookie = " " + cookie_values[i].as_string(); } WriteZ(cookie, kZCookieData, z); } } else if (it->first == "accept" || it->first == "accept-charset" || it->first == "accept-encoding" || it->first == "accept-language" || it->first == "host" || it->first == "version" || it->first == "method" || it->first == "scheme" || it->first == ":host" || it->first == ":version" || it->first == ":method" || it->first == ":scheme" || it->first == "user-agent") { WriteLengthZ(it->second.size(), length_length, kZStandardData, z); WriteZ(it->second, kZStandardData, z); } else { // Non-whitelisted headers are Huffman compressed in their own block, but // don't match against the window. WriteLengthZ(it->second.size(), length_length, kZStandardData, z); WriteZ(it->second, kZHuffmanOnlyData, z); } } z->avail_in = 0; int rv = deflate(z, Z_SYNC_FLUSH); DCHECK_EQ(Z_OK, rv); z->clas = kZStandardData; } #endif // !defined(USE_SYSTEM_ZLIB) size_t SpdyFramer::ProcessControlFrameBeforeHeaderBlock(const char* data, size_t len) { DCHECK_EQ(SPDY_CONTROL_FRAME_BEFORE_HEADER_BLOCK, state_); size_t original_len = len; if (remaining_control_header_ > 0) { size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_control_header_); remaining_control_header_ -= bytes_read; remaining_data_length_ -= bytes_read; } if (remaining_control_header_ == 0) { SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Seek past frame header. switch (current_frame_type_) { case SYN_STREAM: { bool successful_read = true; if (spdy_version_ < 4) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } SpdyStreamId associated_to_stream_id = kInvalidStream; successful_read = reader.ReadUInt31(&associated_to_stream_id); DCHECK(successful_read); SpdyPriority priority = 0; successful_read = reader.ReadUInt8(&priority); DCHECK(successful_read); if (protocol_version() < 3) { priority = priority >> 6; } else { priority = priority >> 5; } uint8 slot = 0; if (protocol_version() < 3) { // SPDY 2 had an unused byte here. Seek past it. reader.Seek(1); } else { successful_read = reader.ReadUInt8(&slot); DCHECK(successful_read); } DCHECK(reader.IsDoneReading()); if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } visitor_->OnSynStream( current_frame_stream_id_, associated_to_stream_id, priority, slot, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0, (current_frame_flags_ & CONTROL_FLAG_UNIDIRECTIONAL) != 0); } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; case SETTINGS: visitor_->OnSettings(current_frame_flags_ & SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS); CHANGE_STATE(SPDY_SETTINGS_FRAME_PAYLOAD); break; case SYN_REPLY: case HEADERS: // SYN_REPLY and HEADERS are the same, save for the visitor call. { bool successful_read = true; if (spdy_version_ < 4) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (protocol_version() < 3) { // SPDY 2 had two unused bytes here. Seek past them. reader.Seek(2); } DCHECK(reader.IsDoneReading()); if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } if (current_frame_type_ == SYN_REPLY) { visitor_->OnSynReply( current_frame_stream_id_, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0); } else { visitor_->OnHeaders( current_frame_stream_id_, (current_frame_flags_ & CONTROL_FLAG_FIN) != 0); } } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; case PUSH_PROMISE: { DCHECK_LE(4, protocol_version()); if (current_frame_stream_id_ == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } SpdyStreamId promised_stream_id = kInvalidStream; bool successful_read = reader.ReadUInt31(&promised_stream_id); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); if (promised_stream_id == 0) { set_error(SPDY_INVALID_CONTROL_FRAME); break; } if (debug_visitor_) { debug_visitor_->OnReceiveCompressedFrame( current_frame_stream_id_, current_frame_type_, current_frame_length_); } visitor_->OnPushPromise(current_frame_stream_id_, promised_stream_id); } CHANGE_STATE(SPDY_CONTROL_FRAME_HEADER_BLOCK); break; default: DCHECK(false); } } return original_len - len; } // Does not buffer the control payload. Instead, either passes directly to the // visitor or decompresses and then passes directly to the visitor, via // IncrementallyDeliverControlFrameHeaderData() or // IncrementallyDecompressControlFrameHeaderData() respectively. size_t SpdyFramer::ProcessControlFrameHeaderBlock(const char* data, size_t data_len) { DCHECK_EQ(SPDY_CONTROL_FRAME_HEADER_BLOCK, state_); bool processed_successfully = true; if (current_frame_type_ != SYN_STREAM && current_frame_type_ != SYN_REPLY && current_frame_type_ != HEADERS && current_frame_type_ != PUSH_PROMISE) { LOG(DFATAL) << "Unhandled frame type in ProcessControlFrameHeaderBlock."; } size_t process_bytes = std::min(data_len, remaining_data_length_); if (process_bytes > 0) { if (enable_compression_) { processed_successfully = IncrementallyDecompressControlFrameHeaderData( current_frame_stream_id_, data, process_bytes); } else { processed_successfully = IncrementallyDeliverControlFrameHeaderData( current_frame_stream_id_, data, process_bytes); } remaining_data_length_ -= process_bytes; } // Handle the case that there is no futher data in this frame. if (remaining_data_length_ == 0 && processed_successfully) { // The complete header block has been delivered. We send a zero-length // OnControlFrameHeaderData() to indicate this. visitor_->OnControlFrameHeaderData(current_frame_stream_id_, NULL, 0); // If this is a FIN, tell the caller. if (current_frame_flags_ & CONTROL_FLAG_FIN) { visitor_->OnStreamFrameData(current_frame_stream_id_, NULL, 0, true); } CHANGE_STATE(SPDY_AUTO_RESET); } // Handle error. if (!processed_successfully) { return data_len; } // Return amount processed. return process_bytes; } size_t SpdyFramer::ProcessSettingsFramePayload(const char* data, size_t data_len) { DCHECK_EQ(SPDY_SETTINGS_FRAME_PAYLOAD, state_); DCHECK_EQ(SETTINGS, current_frame_type_); size_t unprocessed_bytes = std::min(data_len, remaining_data_length_); size_t processed_bytes = 0; // Loop over our incoming data. while (unprocessed_bytes > 0) { // Process up to one setting at a time. size_t processing = std::min( unprocessed_bytes, static_cast<size_t>(8 - settings_scratch_.setting_buf_len)); // Check if we have a complete setting in our input. if (processing == 8) { // Parse the setting directly out of the input without buffering. if (!ProcessSetting(data + processed_bytes)) { set_error(SPDY_INVALID_CONTROL_FRAME); return processed_bytes; } } else { // Continue updating settings_scratch_.setting_buf. memcpy(settings_scratch_.setting_buf + settings_scratch_.setting_buf_len, data + processed_bytes, processing); settings_scratch_.setting_buf_len += processing; // Check if we have a complete setting buffered. if (settings_scratch_.setting_buf_len == 8) { if (!ProcessSetting(settings_scratch_.setting_buf)) { set_error(SPDY_INVALID_CONTROL_FRAME); return processed_bytes; } // Reset settings_scratch_.setting_buf for our next setting. settings_scratch_.setting_buf_len = 0; } } // Iterate. unprocessed_bytes -= processing; processed_bytes += processing; } // Check if we're done handling this SETTINGS frame. remaining_data_length_ -= processed_bytes; if (remaining_data_length_ == 0) { CHANGE_STATE(SPDY_AUTO_RESET); } return processed_bytes; } bool SpdyFramer::ProcessSetting(const char* data) { // Extract fields. // Maintain behavior of old SPDY 2 bug with byte ordering of flags/id. const uint32 id_and_flags_wire = *(reinterpret_cast<const uint32*>(data)); SettingsFlagsAndId id_and_flags = SettingsFlagsAndId::FromWireFormat(spdy_version_, id_and_flags_wire); uint8 flags = id_and_flags.flags(); uint32 value = ntohl(*(reinterpret_cast<const uint32*>(data + 4))); // Validate id. switch (id_and_flags.id()) { case SETTINGS_UPLOAD_BANDWIDTH: case SETTINGS_DOWNLOAD_BANDWIDTH: case SETTINGS_ROUND_TRIP_TIME: case SETTINGS_MAX_CONCURRENT_STREAMS: case SETTINGS_CURRENT_CWND: case SETTINGS_DOWNLOAD_RETRANS_RATE: case SETTINGS_INITIAL_WINDOW_SIZE: // Valid values. break; default: DLOG(WARNING) << "Unknown SETTINGS ID: " << id_and_flags.id(); return false; } SpdySettingsIds id = static_cast<SpdySettingsIds>(id_and_flags.id()); // Detect duplciates. if (static_cast<uint32>(id) <= settings_scratch_.last_setting_id) { DLOG(WARNING) << "Duplicate entry or invalid ordering for id " << id << " in " << display_protocol_ << " SETTINGS frame " << "(last settikng id was " << settings_scratch_.last_setting_id << ")."; return false; } settings_scratch_.last_setting_id = id; // Validate flags. uint8 kFlagsMask = SETTINGS_FLAG_PLEASE_PERSIST | SETTINGS_FLAG_PERSISTED; if ((flags & ~(kFlagsMask)) != 0) { DLOG(WARNING) << "Unknown SETTINGS flags provided for id " << id << ": " << flags; return false; } // Validation succeeded. Pass on to visitor. visitor_->OnSetting(id, flags, value); return true; } size_t SpdyFramer::ProcessControlFramePayload(const char* data, size_t len) { size_t original_len = len; size_t bytes_read = UpdateCurrentFrameBuffer(&data, &len, remaining_data_length_); remaining_data_length_ -= bytes_read; if (remaining_data_length_ == 0) { SpdyFrameReader reader(current_frame_buffer_.get(), current_frame_buffer_length_); reader.Seek(GetControlFrameHeaderSize()); // Skip frame header. // Use frame-specific handlers. switch (current_frame_type_) { case RST_STREAM: { bool successful_read = true; if (spdy_version_ < 4) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } SpdyRstStreamStatus status = RST_STREAM_INVALID; uint32 status_raw = status; successful_read = reader.ReadUInt32(&status_raw); DCHECK(successful_read); if (status_raw > RST_STREAM_INVALID && status_raw < RST_STREAM_NUM_STATUS_CODES) { status = static_cast<SpdyRstStreamStatus>(status_raw); } else { // TODO(hkhalil): Probably best to OnError here, depending on // our interpretation of the spec. Keeping with existing liberal // behavior for now. } DCHECK(reader.IsDoneReading()); visitor_->OnRstStream(current_frame_stream_id_, status); } break; case PING: { SpdyPingId id = 0; bool successful_read = reader.ReadUInt32(&id); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); visitor_->OnPing(id); } break; case GOAWAY: { bool successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); SpdyGoAwayStatus status = GOAWAY_OK; if (spdy_version_ >= 3) { uint32 status_raw = GOAWAY_OK; successful_read = reader.ReadUInt32(&status_raw); DCHECK(successful_read); if (status_raw >= GOAWAY_OK && status_raw < static_cast<uint32>(GOAWAY_NUM_STATUS_CODES)) { status = static_cast<SpdyGoAwayStatus>(status_raw); } else { // TODO(hkhalil): Probably best to OnError here, depending on // our interpretation of the spec. Keeping with existing liberal // behavior for now. } } DCHECK(reader.IsDoneReading()); visitor_->OnGoAway(current_frame_stream_id_, status); } break; case WINDOW_UPDATE: { uint32 delta_window_size = 0; bool successful_read = true; if (spdy_version_ < 4) { successful_read = reader.ReadUInt31(¤t_frame_stream_id_); DCHECK(successful_read); } successful_read = reader.ReadUInt32(&delta_window_size); DCHECK(successful_read); DCHECK(reader.IsDoneReading()); visitor_->OnWindowUpdate(current_frame_stream_id_, delta_window_size); } break; case BLOCKED: { DCHECK_LE(4, protocol_version()); DCHECK(reader.IsDoneReading()); visitor_->OnBlocked(current_frame_stream_id_); } break; default: // Unreachable. LOG(FATAL) << "Unhandled control frame " << current_frame_type_; } CHANGE_STATE(SPDY_IGNORE_REMAINING_PAYLOAD); } return original_len - len; } size_t SpdyFramer::ProcessCredentialFramePayload(const char* data, size_t len) { if (len > 0) { // Clamp to the actual remaining payload. if (len > remaining_data_length_) { len = remaining_data_length_; } bool processed_succesfully = visitor_->OnCredentialFrameData(data, len); remaining_data_length_ -= len; if (!processed_succesfully) { set_error(SPDY_CREDENTIAL_FRAME_CORRUPT); } else if (remaining_data_length_ == 0) { visitor_->OnCredentialFrameData(NULL, 0); CHANGE_STATE(SPDY_AUTO_RESET); } } return len; } size_t SpdyFramer::ProcessDataFramePayload(const char* data, size_t len) { size_t original_len = len; if (remaining_data_length_ > 0) { size_t amount_to_forward = std::min(remaining_data_length_, len); if (amount_to_forward && state_ != SPDY_IGNORE_REMAINING_PAYLOAD) { // Only inform the visitor if there is data. if (amount_to_forward) { visitor_->OnStreamFrameData( current_frame_stream_id_, data, amount_to_forward, false); } } data += amount_to_forward; len -= amount_to_forward; remaining_data_length_ -= amount_to_forward; // If the FIN flag is set, and there is no more data in this data // frame, inform the visitor of EOF via a 0-length data frame. if (!remaining_data_length_ && current_frame_flags_ & DATA_FLAG_FIN) { visitor_->OnStreamFrameData(current_frame_stream_id_, NULL, 0, true); } } if (remaining_data_length_ == 0) { CHANGE_STATE(SPDY_AUTO_RESET); } return original_len - len; } size_t SpdyFramer::ParseHeaderBlockInBuffer(const char* header_data, size_t header_length, SpdyHeaderBlock* block) const { SpdyFrameReader reader(header_data, header_length); // Read number of headers. uint32 num_headers; if (spdy_version_ < 3) { uint16 temp; if (!reader.ReadUInt16(&temp)) { DVLOG(1) << "Unable to read number of headers."; return 0; } num_headers = temp; } else { if (!reader.ReadUInt32(&num_headers)) { DVLOG(1) << "Unable to read number of headers."; return 0; } } // Read each header. for (uint32 index = 0; index < num_headers; ++index) { base::StringPiece temp; // Read header name. if ((spdy_version_ < 3) ? !reader.ReadStringPiece16(&temp) : !reader.ReadStringPiece32(&temp)) { DVLOG(1) << "Unable to read header name (" << index + 1 << " of " << num_headers << ")."; return 0; } std::string name = temp.as_string(); // Read header value. if ((spdy_version_ < 3) ? !reader.ReadStringPiece16(&temp) : !reader.ReadStringPiece32(&temp)) { DVLOG(1) << "Unable to read header value (" << index + 1 << " of " << num_headers << ")."; return 0; } std::string value = temp.as_string(); // Ensure no duplicates. if (block->find(name) != block->end()) { DVLOG(1) << "Duplicate header '" << name << "' (" << index + 1 << " of " << num_headers << ")."; return 0; } // Store header. (*block)[name] = value; } return reader.GetBytesConsumed(); } /* static */ bool SpdyFramer::ParseCredentialData(const char* data, size_t len, SpdyCredential* credential) { DCHECK(credential); SpdyFrameReader parser(data, len); base::StringPiece temp; if (!parser.ReadUInt16(&credential->slot)) { return false; } if (!parser.ReadStringPiece32(&temp)) { return false; } credential->proof = temp.as_string(); while (!parser.IsDoneReading()) { if (!parser.ReadStringPiece32(&temp)) { return false; } credential->certs.push_back(temp.as_string()); } return true; } SpdyFrame* SpdyFramer::CreateDataFrame(SpdyStreamId stream_id, const char* data, uint32 len, SpdyDataFlags flags) const { DCHECK_EQ(0, flags & (!DATA_FLAG_FIN)); SpdyDataIR data_ir(stream_id, base::StringPiece(data, len)); data_ir.set_fin(flags & DATA_FLAG_FIN); return SerializeData(data_ir); } SpdySerializedFrame* SpdyFramer::SerializeData(const SpdyDataIR& data) const { const size_t kSize = GetDataFrameMinimumSize() + data.data().length(); SpdyDataFlags flags = DATA_FLAG_NONE; if (data.fin()) { flags = DATA_FLAG_FIN; } SpdyFrameBuilder builder(kSize); builder.WriteDataFrameHeader(*this, data.stream_id(), flags); builder.WriteBytes(data.data().data(), data.data().length()); DCHECK_EQ(kSize, builder.length()); return builder.take(); } SpdySerializedFrame* SpdyFramer::SerializeDataFrameHeader( const SpdyDataIR& data) const { const size_t kSize = GetDataFrameMinimumSize(); SpdyDataFlags flags = DATA_FLAG_NONE; if (data.fin()) { flags = DATA_FLAG_FIN; } SpdyFrameBuilder builder(kSize); builder.WriteDataFrameHeader(*this, data.stream_id(), flags); if (protocol_version() < 4) { builder.OverwriteLength(*this, data.data().length()); } else { builder.OverwriteLength(*this, data.data().length() + kSize); } DCHECK_EQ(kSize, builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::CreateSynStream( SpdyStreamId stream_id, SpdyStreamId associated_stream_id, SpdyPriority priority, uint8 credential_slot, SpdyControlFlags flags, const SpdyHeaderBlock* headers) { DCHECK_EQ(0, flags & ~CONTROL_FLAG_FIN & ~CONTROL_FLAG_UNIDIRECTIONAL); SpdySynStreamIR syn_stream(stream_id); syn_stream.set_associated_to_stream_id(associated_stream_id); syn_stream.set_priority(priority); syn_stream.set_slot(credential_slot); syn_stream.set_fin((flags & CONTROL_FLAG_FIN) != 0); syn_stream.set_unidirectional((flags & CONTROL_FLAG_UNIDIRECTIONAL) != 0); // TODO(hkhalil): Avoid copy here. *(syn_stream.GetMutableNameValueBlock()) = *headers; return SerializeSynStream(syn_stream); } SpdySerializedFrame* SpdyFramer::SerializeSynStream( const SpdySynStreamIR& syn_stream) { uint8 flags = 0; if (syn_stream.fin()) { flags |= CONTROL_FLAG_FIN; } if (syn_stream.unidirectional()) { flags |= CONTROL_FLAG_UNIDIRECTIONAL; } // The size of this frame, including variable-length name-value block. const size_t size = GetSynStreamMinimumSize() + GetSerializedLength(syn_stream.name_value_block()); SpdyFrameBuilder builder(size); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, SYN_STREAM, flags); builder.WriteUInt32(syn_stream.stream_id()); } else { builder.WriteFramePrefix(*this, SYN_STREAM, flags, syn_stream.stream_id()); } builder.WriteUInt32(syn_stream.associated_to_stream_id()); uint8 priority = syn_stream.priority(); if (priority > GetLowestPriority()) { DLOG(DFATAL) << "Priority out-of-bounds."; priority = GetLowestPriority(); } builder.WriteUInt8(priority << ((spdy_version_ < 3) ? 6 : 5)); builder.WriteUInt8(syn_stream.slot()); DCHECK_EQ(GetSynStreamMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, syn_stream); if (debug_visitor_) { const size_t payload_len = GetSerializedLength( protocol_version(), &(syn_stream.name_value_block())); debug_visitor_->OnSendCompressedFrame(syn_stream.stream_id(), SYN_STREAM, payload_len, builder.length()); } return builder.take(); } SpdyFrame* SpdyFramer::CreateSynReply( SpdyStreamId stream_id, SpdyControlFlags flags, const SpdyHeaderBlock* headers) { DCHECK_EQ(0, flags & ~CONTROL_FLAG_FIN); SpdySynReplyIR syn_reply(stream_id); syn_reply.set_fin(flags & CONTROL_FLAG_FIN); // TODO(hkhalil): Avoid copy here. *(syn_reply.GetMutableNameValueBlock()) = *headers; return SerializeSynReply(syn_reply); } SpdySerializedFrame* SpdyFramer::SerializeSynReply( const SpdySynReplyIR& syn_reply) { uint8 flags = 0; if (syn_reply.fin()) { flags |= CONTROL_FLAG_FIN; } // The size of this frame, including variable-length name-value block. size_t size = GetSynReplyMinimumSize() + GetSerializedLength(syn_reply.name_value_block()); SpdyFrameBuilder builder(size); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, SYN_REPLY, flags); builder.WriteUInt32(syn_reply.stream_id()); } else { builder.WriteFramePrefix(*this, SYN_REPLY, flags, syn_reply.stream_id()); } if (protocol_version() < 3) { builder.WriteUInt16(0); // Unused. } DCHECK_EQ(GetSynReplyMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, syn_reply); if (debug_visitor_) { const size_t payload_len = GetSerializedLength( protocol_version(), &(syn_reply.name_value_block())); debug_visitor_->OnSendCompressedFrame(syn_reply.stream_id(), SYN_REPLY, payload_len, builder.length()); } return builder.take(); } SpdyFrame* SpdyFramer::CreateRstStream( SpdyStreamId stream_id, SpdyRstStreamStatus status) const { SpdyRstStreamIR rst_stream(stream_id, status); return SerializeRstStream(rst_stream); } SpdySerializedFrame* SpdyFramer::SerializeRstStream( const SpdyRstStreamIR& rst_stream) const { SpdyFrameBuilder builder(GetRstStreamSize()); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, RST_STREAM, 0); builder.WriteUInt32(rst_stream.stream_id()); } else { builder.WriteFramePrefix(*this, RST_STREAM, 0, rst_stream.stream_id()); } builder.WriteUInt32(rst_stream.status()); DCHECK_EQ(GetRstStreamSize(), builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::CreateSettings( const SettingsMap& values) const { SpdySettingsIR settings; for (SettingsMap::const_iterator it = values.begin(); it != values.end(); ++it) { settings.AddSetting(it->first, (it->second.first & SETTINGS_FLAG_PLEASE_PERSIST) != 0, (it->second.first & SETTINGS_FLAG_PERSISTED) != 0, it->second.second); } return SerializeSettings(settings); } SpdySerializedFrame* SpdyFramer::SerializeSettings( const SpdySettingsIR& settings) const { uint8 flags = 0; if (settings.clear_settings()) { flags |= SETTINGS_FLAG_CLEAR_PREVIOUSLY_PERSISTED_SETTINGS; } const SpdySettingsIR::ValueMap* values = &(settings.values()); // Size, in bytes, of this SETTINGS frame. const size_t size = GetSettingsMinimumSize() + (values->size() * 8); SpdyFrameBuilder builder(size); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, SETTINGS, flags); } else { builder.WriteFramePrefix(*this, SETTINGS, flags, 0); } builder.WriteUInt32(values->size()); DCHECK_EQ(GetSettingsMinimumSize(), builder.length()); for (SpdySettingsIR::ValueMap::const_iterator it = values->begin(); it != values->end(); ++it) { uint8 setting_flags = 0; if (it->second.persist_value) { setting_flags |= SETTINGS_FLAG_PLEASE_PERSIST; } if (it->second.persisted) { setting_flags |= SETTINGS_FLAG_PERSISTED; } SettingsFlagsAndId flags_and_id(setting_flags, it->first); uint32 id_and_flags_wire = flags_and_id.GetWireFormat(protocol_version()); builder.WriteBytes(&id_and_flags_wire, 4); builder.WriteUInt32(it->second.value); } DCHECK_EQ(size, builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::SerializeBlocked(const SpdyBlockedIR& blocked) const { DCHECK_LE(4, protocol_version()); SpdyFrameBuilder builder(GetBlockedSize()); builder.WriteFramePrefix(*this, BLOCKED, kNoFlags, blocked.stream_id()); return builder.take(); } SpdyFrame* SpdyFramer::CreatePingFrame(uint32 unique_id) const { SpdyPingIR ping(unique_id); return SerializePing(ping); } SpdySerializedFrame* SpdyFramer::SerializePing(const SpdyPingIR& ping) const { SpdyFrameBuilder builder(GetPingSize()); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, PING, kNoFlags); } else { builder.WriteFramePrefix(*this, PING, 0, 0); } builder.WriteUInt32(ping.id()); DCHECK_EQ(GetPingSize(), builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::CreateGoAway( SpdyStreamId last_accepted_stream_id, SpdyGoAwayStatus status) const { SpdyGoAwayIR goaway(last_accepted_stream_id, status); return SerializeGoAway(goaway); } SpdySerializedFrame* SpdyFramer::SerializeGoAway( const SpdyGoAwayIR& goaway) const { SpdyFrameBuilder builder(GetGoAwaySize()); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, GOAWAY, kNoFlags); } else { builder.WriteFramePrefix(*this, GOAWAY, 0, 0); } builder.WriteUInt32(goaway.last_good_stream_id()); if (protocol_version() >= 3) { builder.WriteUInt32(goaway.status()); } DCHECK_EQ(GetGoAwaySize(), builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::CreateHeaders( SpdyStreamId stream_id, SpdyControlFlags flags, const SpdyHeaderBlock* header_block) { // Basically the same as CreateSynReply(). DCHECK_EQ(0, flags & (!CONTROL_FLAG_FIN)); SpdyHeadersIR headers(stream_id); headers.set_fin(flags & CONTROL_FLAG_FIN); // TODO(hkhalil): Avoid copy here. *(headers.GetMutableNameValueBlock()) = *header_block; return SerializeHeaders(headers); } SpdySerializedFrame* SpdyFramer::SerializeHeaders( const SpdyHeadersIR& headers) { uint8 flags = 0; if (headers.fin()) { flags |= CONTROL_FLAG_FIN; } // The size of this frame, including variable-length name-value block. size_t size = GetHeadersMinimumSize() + GetSerializedLength(headers.name_value_block()); SpdyFrameBuilder builder(size); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, HEADERS, flags); builder.WriteUInt32(headers.stream_id()); } else { builder.WriteFramePrefix(*this, HEADERS, flags, headers.stream_id()); } if (protocol_version() < 3) { builder.WriteUInt16(0); // Unused. } DCHECK_EQ(GetHeadersMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, headers); if (debug_visitor_) { const size_t payload_len = GetSerializedLength( protocol_version(), &(headers.name_value_block())); debug_visitor_->OnSendCompressedFrame(headers.stream_id(), HEADERS, payload_len, builder.length()); } return builder.take(); } SpdyFrame* SpdyFramer::CreateWindowUpdate( SpdyStreamId stream_id, uint32 delta_window_size) const { SpdyWindowUpdateIR window_update(stream_id, delta_window_size); return SerializeWindowUpdate(window_update); } SpdySerializedFrame* SpdyFramer::SerializeWindowUpdate( const SpdyWindowUpdateIR& window_update) const { SpdyFrameBuilder builder(GetWindowUpdateSize()); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, WINDOW_UPDATE, kNoFlags); builder.WriteUInt32(window_update.stream_id()); } else { builder.WriteFramePrefix(*this, WINDOW_UPDATE, kNoFlags, window_update.stream_id()); } builder.WriteUInt32(window_update.delta()); DCHECK_EQ(GetWindowUpdateSize(), builder.length()); return builder.take(); } // TODO(hkhalil): Gut with SpdyCredential removal. SpdyFrame* SpdyFramer::CreateCredentialFrame( const SpdyCredential& credential) const { SpdyCredentialIR credential_ir(credential.slot); credential_ir.set_proof(credential.proof); for (std::vector<std::string>::const_iterator cert = credential.certs.begin(); cert != credential.certs.end(); ++cert) { credential_ir.AddCertificate(*cert); } return SerializeCredential(credential_ir); } SpdySerializedFrame* SpdyFramer::SerializeCredential( const SpdyCredentialIR& credential) const { size_t size = GetCredentialMinimumSize(); size += 4 + credential.proof().length(); // Room for proof. for (SpdyCredentialIR::CertificateList::const_iterator it = credential.certificates()->begin(); it != credential.certificates()->end(); ++it) { size += 4 + it->length(); // Room for certificate. } SpdyFrameBuilder builder(size); if (spdy_version_ < 4) { builder.WriteControlFrameHeader(*this, CREDENTIAL, kNoFlags); } else { builder.WriteFramePrefix(*this, CREDENTIAL, kNoFlags, 0); } builder.WriteUInt16(credential.slot()); DCHECK_EQ(GetCredentialMinimumSize(), builder.length()); builder.WriteStringPiece32(credential.proof()); for (SpdyCredentialIR::CertificateList::const_iterator it = credential.certificates()->begin(); it != credential.certificates()->end(); ++it) { builder.WriteStringPiece32(*it); } DCHECK_EQ(size, builder.length()); return builder.take(); } SpdyFrame* SpdyFramer::CreatePushPromise( SpdyStreamId stream_id, SpdyStreamId promised_stream_id, const SpdyHeaderBlock* header_block) { SpdyPushPromiseIR push_promise(stream_id, promised_stream_id); // TODO(hkhalil): Avoid copy here. *(push_promise.GetMutableNameValueBlock()) = *header_block; return SerializePushPromise(push_promise); } SpdyFrame* SpdyFramer::SerializePushPromise( const SpdyPushPromiseIR& push_promise) { DCHECK_LE(4, protocol_version()); // The size of this frame, including variable-length name-value block. size_t size = GetPushPromiseMinimumSize() + GetSerializedLength(push_promise.name_value_block()); SpdyFrameBuilder builder(size); builder.WriteFramePrefix(*this, PUSH_PROMISE, kNoFlags, push_promise.stream_id()); builder.WriteUInt32(push_promise.promised_stream_id()); DCHECK_EQ(GetPushPromiseMinimumSize(), builder.length()); SerializeNameValueBlock(&builder, push_promise); if (debug_visitor_) { const size_t payload_len = GetSerializedLength( protocol_version(), &(push_promise.name_value_block())); debug_visitor_->OnSendCompressedFrame(push_promise.stream_id(), PUSH_PROMISE, payload_len, builder.length()); } return builder.take(); } namespace { class FrameSerializationVisitor : public SpdyFrameVisitor { public: explicit FrameSerializationVisitor(SpdyFramer* framer) : framer_(framer) {} virtual ~FrameSerializationVisitor() {} SpdySerializedFrame* ReleaseSerializedFrame() { return frame_.release(); } virtual void VisitData(const SpdyDataIR& data) OVERRIDE { frame_.reset(framer_->SerializeData(data)); } virtual void VisitSynStream(const SpdySynStreamIR& syn_stream) OVERRIDE { frame_.reset(framer_->SerializeSynStream(syn_stream)); } virtual void VisitSynReply(const SpdySynReplyIR& syn_reply) OVERRIDE { frame_.reset(framer_->SerializeSynReply(syn_reply)); } virtual void VisitRstStream(const SpdyRstStreamIR& rst_stream) OVERRIDE { frame_.reset(framer_->SerializeRstStream(rst_stream)); } virtual void VisitSettings(const SpdySettingsIR& settings) OVERRIDE { frame_.reset(framer_->SerializeSettings(settings)); } virtual void VisitPing(const SpdyPingIR& ping) OVERRIDE { frame_.reset(framer_->SerializePing(ping)); } virtual void VisitGoAway(const SpdyGoAwayIR& goaway) OVERRIDE { frame_.reset(framer_->SerializeGoAway(goaway)); } virtual void VisitHeaders(const SpdyHeadersIR& headers) OVERRIDE { frame_.reset(framer_->SerializeHeaders(headers)); } virtual void VisitWindowUpdate( const SpdyWindowUpdateIR& window_update) OVERRIDE { frame_.reset(framer_->SerializeWindowUpdate(window_update)); } virtual void VisitCredential(const SpdyCredentialIR& credential) OVERRIDE { frame_.reset(framer_->SerializeCredential(credential)); } virtual void VisitBlocked(const SpdyBlockedIR& blocked) OVERRIDE { frame_.reset(framer_->SerializeBlocked(blocked)); } virtual void VisitPushPromise( const SpdyPushPromiseIR& push_promise) OVERRIDE { frame_.reset(framer_->SerializePushPromise(push_promise)); } private: SpdyFramer* framer_; scoped_ptr<SpdySerializedFrame> frame_; }; } // namespace SpdySerializedFrame* SpdyFramer::SerializeFrame(const SpdyFrameIR& frame) { FrameSerializationVisitor visitor(this); frame.Visit(&visitor); return visitor.ReleaseSerializedFrame(); } size_t SpdyFramer::GetSerializedLength(const SpdyHeaderBlock& headers) { const size_t uncompressed_length = GetSerializedLength(protocol_version(), &headers); if (!enable_compression_) { return uncompressed_length; } z_stream* compressor = GetHeaderCompressor(); // Since we'll be performing lots of flushes when compressing the data, // zlib's lower bounds may be insufficient. return 2 * deflateBound(compressor, uncompressed_length); } // The following compression setting are based on Brian Olson's analysis. See // https://groups.google.com/group/spdy-dev/browse_thread/thread/dfaf498542fac792 // for more details. #if defined(USE_SYSTEM_ZLIB) // System zlib is not expected to have workaround for http://crbug.com/139744, // so disable compression in that case. // TODO(phajdan.jr): Remove the special case when it's no longer necessary. static const int kCompressorLevel = 0; #else // !defined(USE_SYSTEM_ZLIB) static const int kCompressorLevel = 9; #endif // !defined(USE_SYSTEM_ZLIB) static const int kCompressorWindowSizeInBits = 11; static const int kCompressorMemLevel = 1; z_stream* SpdyFramer::GetHeaderCompressor() { if (header_compressor_.get()) return header_compressor_.get(); // Already initialized. header_compressor_.reset(new z_stream); memset(header_compressor_.get(), 0, sizeof(z_stream)); int success = deflateInit2(header_compressor_.get(), kCompressorLevel, Z_DEFLATED, kCompressorWindowSizeInBits, kCompressorMemLevel, Z_DEFAULT_STRATEGY); if (success == Z_OK) { const char* dictionary = (spdy_version_ < 3) ? kV2Dictionary : kV3Dictionary; const int dictionary_size = (spdy_version_ < 3) ? kV2DictionarySize : kV3DictionarySize; success = deflateSetDictionary(header_compressor_.get(), reinterpret_cast<const Bytef*>(dictionary), dictionary_size); } if (success != Z_OK) { LOG(WARNING) << "deflateSetDictionary failure: " << success; header_compressor_.reset(NULL); return NULL; } return header_compressor_.get(); } z_stream* SpdyFramer::GetHeaderDecompressor() { if (header_decompressor_.get()) return header_decompressor_.get(); // Already initialized. header_decompressor_.reset(new z_stream); memset(header_decompressor_.get(), 0, sizeof(z_stream)); int success = inflateInit(header_decompressor_.get()); if (success != Z_OK) { LOG(WARNING) << "inflateInit failure: " << success; header_decompressor_.reset(NULL); return NULL; } return header_decompressor_.get(); } // Incrementally decompress the control frame's header block, feeding the // result to the visitor in chunks. Continue this until the visitor // indicates that it cannot process any more data, or (more commonly) we // run out of data to deliver. bool SpdyFramer::IncrementallyDecompressControlFrameHeaderData( SpdyStreamId stream_id, const char* data, size_t len) { // Get a decompressor or set error. z_stream* decomp = GetHeaderDecompressor(); if (decomp == NULL) { LOG(DFATAL) << "Couldn't get decompressor for handling compressed headers."; set_error(SPDY_DECOMPRESS_FAILURE); return false; } bool processed_successfully = true; char buffer[kHeaderDataChunkMaxSize]; decomp->next_in = reinterpret_cast<Bytef*>(const_cast<char*>(data)); decomp->avail_in = len; // If we get a SYN_STREAM/SYN_REPLY/HEADERS frame with stream ID zero, we // signal an error back in ProcessControlFrameBeforeHeaderBlock. So if we've // reached this method successfully, stream_id should be nonzero. DCHECK_LT(0u, stream_id); while (decomp->avail_in > 0 && processed_successfully) { decomp->next_out = reinterpret_cast<Bytef*>(buffer); decomp->avail_out = arraysize(buffer); int rv = inflate(decomp, Z_SYNC_FLUSH); if (rv == Z_NEED_DICT) { const char* dictionary = (spdy_version_ < 3) ? kV2Dictionary : kV3Dictionary; const int dictionary_size = (spdy_version_ < 3) ? kV2DictionarySize : kV3DictionarySize; const DictionaryIds& ids = g_dictionary_ids.Get(); const uLong dictionary_id = (spdy_version_ < 3) ? ids.v2_dictionary_id : ids.v3_dictionary_id; // Need to try again with the right dictionary. if (decomp->adler == dictionary_id) { rv = inflateSetDictionary(decomp, reinterpret_cast<const Bytef*>(dictionary), dictionary_size); if (rv == Z_OK) rv = inflate(decomp, Z_SYNC_FLUSH); } } // Inflate will generate a Z_BUF_ERROR if it runs out of input // without producing any output. The input is consumed and // buffered internally by zlib so we can detect this condition by // checking if avail_in is 0 after the call to inflate. bool input_exhausted = ((rv == Z_BUF_ERROR) && (decomp->avail_in == 0)); if ((rv == Z_OK) || input_exhausted) { size_t decompressed_len = arraysize(buffer) - decomp->avail_out; if (decompressed_len > 0) { processed_successfully = visitor_->OnControlFrameHeaderData( stream_id, buffer, decompressed_len); } if (!processed_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } else { DLOG(WARNING) << "inflate failure: " << rv << " " << len; set_error(SPDY_DECOMPRESS_FAILURE); processed_successfully = false; } } return processed_successfully; } bool SpdyFramer::IncrementallyDeliverControlFrameHeaderData( SpdyStreamId stream_id, const char* data, size_t len) { bool read_successfully = true; while (read_successfully && len > 0) { size_t bytes_to_deliver = std::min(len, kHeaderDataChunkMaxSize); read_successfully = visitor_->OnControlFrameHeaderData(stream_id, data, bytes_to_deliver); data += bytes_to_deliver; len -= bytes_to_deliver; if (!read_successfully) { // Assume that the problem was the header block was too large for the // visitor. set_error(SPDY_CONTROL_PAYLOAD_TOO_LARGE); } } return read_successfully; } void SpdyFramer::SerializeNameValueBlockWithoutCompression( SpdyFrameBuilder* builder, const SpdyNameValueBlock& name_value_block) const { // Serialize number of headers. if (protocol_version() < 3) { builder->WriteUInt16(name_value_block.size()); } else { builder->WriteUInt32(name_value_block.size()); } // Serialize each header. for (SpdyHeaderBlock::const_iterator it = name_value_block.begin(); it != name_value_block.end(); ++it) { if (protocol_version() < 3) { builder->WriteString(it->first); builder->WriteString(it->second); } else { builder->WriteStringPiece32(it->first); builder->WriteStringPiece32(it->second); } } } void SpdyFramer::SerializeNameValueBlock( SpdyFrameBuilder* builder, const SpdyFrameWithNameValueBlockIR& frame) { if (!enable_compression_) { return SerializeNameValueBlockWithoutCompression(builder, frame.name_value_block()); } // First build an uncompressed version to be fed into the compressor. const size_t uncompressed_len = GetSerializedLength( protocol_version(), &(frame.name_value_block())); SpdyFrameBuilder uncompressed_builder(uncompressed_len); SerializeNameValueBlockWithoutCompression(&uncompressed_builder, frame.name_value_block()); scoped_ptr<SpdyFrame> uncompressed_payload(uncompressed_builder.take()); z_stream* compressor = GetHeaderCompressor(); if (!compressor) { LOG(DFATAL) << "Could not obtain compressor."; return; } base::StatsCounter compressed_frames("spdy.CompressedFrames"); base::StatsCounter pre_compress_bytes("spdy.PreCompressSize"); base::StatsCounter post_compress_bytes("spdy.PostCompressSize"); // Create an output frame. // Since we'll be performing lots of flushes when compressing the data, // zlib's lower bounds may be insufficient. // // TODO(akalin): Avoid the duplicate calculation with // GetSerializedLength(const SpdyHeaderBlock&). const int compressed_max_size = 2 * deflateBound(compressor, uncompressed_len); // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if defined(USE_SYSTEM_ZLIB) compressor->next_in = reinterpret_cast<Bytef*>(uncompressed_payload->data()); compressor->avail_in = uncompressed_len; #endif // defined(USE_SYSTEM_ZLIB) compressor->next_out = reinterpret_cast<Bytef*>( builder->GetWritableBuffer(compressed_max_size)); compressor->avail_out = compressed_max_size; // TODO(phajdan.jr): Clean up after we no longer need // to workaround http://crbug.com/139744. #if defined(USE_SYSTEM_ZLIB) int rv = deflate(compressor, Z_SYNC_FLUSH); if (rv != Z_OK) { // How can we know that it compressed everything? // This shouldn't happen, right? LOG(WARNING) << "deflate failure: " << rv; // TODO(akalin): Upstream this return. return; } #else WriteHeaderBlockToZ(&frame.name_value_block(), compressor); #endif // defined(USE_SYSTEM_ZLIB) int compressed_size = compressed_max_size - compressor->avail_out; builder->Seek(compressed_size); builder->RewriteLength(*this); pre_compress_bytes.Add(uncompressed_len); post_compress_bytes.Add(compressed_size); compressed_frames.Increment(); } } // namespace net