// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/mp4/mp4_stream_parser.h" #include "base/callback.h" #include "base/callback_helpers.h" #include "base/logging.h" #include "base/time/time.h" #include "media/base/audio_decoder_config.h" #include "media/base/stream_parser_buffer.h" #include "media/base/text_track_config.h" #include "media/base/video_decoder_config.h" #include "media/base/video_util.h" #include "media/mp4/box_definitions.h" #include "media/mp4/box_reader.h" #include "media/mp4/es_descriptor.h" #include "media/mp4/rcheck.h" namespace media { namespace mp4 { // TODO(xhwang): Figure out the init data type appropriately once it's spec'ed. static const char kMp4InitDataType[] = "video/mp4"; MP4StreamParser::MP4StreamParser(const std::set<int>& audio_object_types, bool has_sbr) : state_(kWaitingForInit), moof_head_(0), mdat_tail_(0), has_audio_(false), has_video_(false), audio_track_id_(0), video_track_id_(0), audio_object_types_(audio_object_types), has_sbr_(has_sbr), is_audio_track_encrypted_(false), is_video_track_encrypted_(false) { } MP4StreamParser::~MP4StreamParser() {} void MP4StreamParser::Init(const InitCB& init_cb, const NewConfigCB& config_cb, const NewBuffersCB& new_buffers_cb, const NewTextBuffersCB& /* text_cb */ , const NeedKeyCB& need_key_cb, const NewMediaSegmentCB& new_segment_cb, const base::Closure& end_of_segment_cb, const LogCB& log_cb) { DCHECK_EQ(state_, kWaitingForInit); DCHECK(init_cb_.is_null()); DCHECK(!init_cb.is_null()); DCHECK(!config_cb.is_null()); DCHECK(!new_buffers_cb.is_null()); DCHECK(!need_key_cb.is_null()); DCHECK(!end_of_segment_cb.is_null()); ChangeState(kParsingBoxes); init_cb_ = init_cb; config_cb_ = config_cb; new_buffers_cb_ = new_buffers_cb; need_key_cb_ = need_key_cb; new_segment_cb_ = new_segment_cb; end_of_segment_cb_ = end_of_segment_cb; log_cb_ = log_cb; } void MP4StreamParser::Reset() { queue_.Reset(); runs_.reset(); moof_head_ = 0; mdat_tail_ = 0; } void MP4StreamParser::Flush() { DCHECK_NE(state_, kWaitingForInit); Reset(); ChangeState(kParsingBoxes); } bool MP4StreamParser::Parse(const uint8* buf, int size) { DCHECK_NE(state_, kWaitingForInit); if (state_ == kError) return false; queue_.Push(buf, size); BufferQueue audio_buffers; BufferQueue video_buffers; bool result, err = false; do { if (state_ == kParsingBoxes) { result = ParseBox(&err); } else { DCHECK_EQ(kEmittingSamples, state_); result = EnqueueSample(&audio_buffers, &video_buffers, &err); if (result) { int64 max_clear = runs_->GetMaxClearOffset() + moof_head_; err = !ReadAndDiscardMDATsUntil(max_clear); } } } while (result && !err); if (!err) err = !SendAndFlushSamples(&audio_buffers, &video_buffers); if (err) { DLOG(ERROR) << "Error while parsing MP4"; moov_.reset(); Reset(); ChangeState(kError); return false; } return true; } bool MP4StreamParser::ParseBox(bool* err) { const uint8* buf; int size; queue_.Peek(&buf, &size); if (!size) return false; scoped_ptr<BoxReader> reader( BoxReader::ReadTopLevelBox(buf, size, log_cb_, err)); if (reader.get() == NULL) return false; if (reader->type() == FOURCC_MOOV) { *err = !ParseMoov(reader.get()); } else if (reader->type() == FOURCC_MOOF) { moof_head_ = queue_.head(); *err = !ParseMoof(reader.get()); // Set up first mdat offset for ReadMDATsUntil(). mdat_tail_ = queue_.head() + reader->size(); // Return early to avoid evicting 'moof' data from queue. Auxiliary info may // be located anywhere in the file, including inside the 'moof' itself. // (Since 'default-base-is-moof' is mandated, no data references can come // before the head of the 'moof', so keeping this box around is sufficient.) return !(*err); } else { MEDIA_LOG(log_cb_) << "Skipping unrecognized top-level box: " << FourCCToString(reader->type()); } queue_.Pop(reader->size()); return !(*err); } bool MP4StreamParser::ParseMoov(BoxReader* reader) { moov_.reset(new Movie); RCHECK(moov_->Parse(reader)); runs_.reset(); has_audio_ = false; has_video_ = false; AudioDecoderConfig audio_config; VideoDecoderConfig video_config; for (std::vector<Track>::const_iterator track = moov_->tracks.begin(); track != moov_->tracks.end(); ++track) { // TODO(strobe): Only the first audio and video track present in a file are // used. (Track selection is better accomplished via Source IDs, though, so // adding support for track selection within a stream is low-priority.) const SampleDescription& samp_descr = track->media.information.sample_table.description; // TODO(strobe): When codec reconfigurations are supported, detect and send // a codec reconfiguration for fragments using a sample description index // different from the previous one size_t desc_idx = 0; for (size_t t = 0; t < moov_->extends.tracks.size(); t++) { const TrackExtends& trex = moov_->extends.tracks[t]; if (trex.track_id == track->header.track_id) { desc_idx = trex.default_sample_description_index; break; } } RCHECK(desc_idx > 0); desc_idx -= 1; // BMFF descriptor index is one-based if (track->media.handler.type == kAudio && !audio_config.IsValidConfig()) { RCHECK(!samp_descr.audio_entries.empty()); // It is not uncommon to find otherwise-valid files with incorrect sample // description indices, so we fail gracefully in that case. if (desc_idx >= samp_descr.audio_entries.size()) desc_idx = 0; const AudioSampleEntry& entry = samp_descr.audio_entries[desc_idx]; const AAC& aac = entry.esds.aac; if (!(entry.format == FOURCC_MP4A || entry.format == FOURCC_EAC3 || (entry.format == FOURCC_ENCA && entry.sinf.format.format == FOURCC_MP4A))) { MEDIA_LOG(log_cb_) << "Unsupported audio format 0x" << std::hex << entry.format << " in stsd box."; return false; } uint8 audio_type = entry.esds.object_type; DVLOG(1) << "audio_type " << std::hex << audio_type; if (audio_type == kForbidden && entry.format == FOURCC_EAC3) { audio_type = kEAC3; } if (audio_object_types_.find(audio_type) == audio_object_types_.end()) { MEDIA_LOG(log_cb_) << "audio object type 0x" << std::hex << audio_type << " does not match what is specified in the" << " mimetype."; return false; } AudioCodec codec = kUnknownAudioCodec; ChannelLayout channel_layout = CHANNEL_LAYOUT_NONE; int sample_per_second = 0; std::vector<uint8> extra_data; // Check if it is MPEG4 AAC defined in ISO 14496 Part 3 or // supported MPEG2 AAC varients. if (ESDescriptor::IsAAC(audio_type)) { codec = kCodecAAC; channel_layout = aac.GetChannelLayout(has_sbr_); sample_per_second = aac.GetOutputSamplesPerSecond(has_sbr_); #if defined(OS_ANDROID) extra_data = aac.codec_specific_data(); #endif } else if (audio_type == kEAC3) { codec = kCodecEAC3; channel_layout = GuessChannelLayout(entry.channelcount); sample_per_second = entry.samplerate; } else { MEDIA_LOG(log_cb_) << "Unsupported audio object type 0x" << std::hex << audio_type << " in esds."; return false; } SampleFormat sample_format; if (entry.samplesize == 8) { sample_format = kSampleFormatU8; } else if (entry.samplesize == 16) { sample_format = kSampleFormatS16; } else if (entry.samplesize == 32) { sample_format = kSampleFormatS32; } else { LOG(ERROR) << "Unsupported sample size."; return false; } is_audio_track_encrypted_ = entry.sinf.info.track_encryption.is_encrypted; DVLOG(1) << "is_audio_track_encrypted_: " << is_audio_track_encrypted_; audio_config.Initialize( codec, sample_format, channel_layout, sample_per_second, extra_data.size() ? &extra_data[0] : NULL, extra_data.size(), is_audio_track_encrypted_, false, base::TimeDelta(), base::TimeDelta()); has_audio_ = true; audio_track_id_ = track->header.track_id; } if (track->media.handler.type == kVideo && !video_config.IsValidConfig()) { RCHECK(!samp_descr.video_entries.empty()); if (desc_idx >= samp_descr.video_entries.size()) desc_idx = 0; const VideoSampleEntry& entry = samp_descr.video_entries[desc_idx]; if (!entry.IsFormatValid()) { MEDIA_LOG(log_cb_) << "Unsupported video format 0x" << std::hex << entry.format << " in stsd box."; return false; } // TODO(strobe): Recover correct crop box gfx::Size coded_size(entry.width, entry.height); gfx::Rect visible_rect(coded_size); gfx::Size natural_size = GetNaturalSize(visible_rect.size(), entry.pixel_aspect.h_spacing, entry.pixel_aspect.v_spacing); is_video_track_encrypted_ = entry.sinf.info.track_encryption.is_encrypted; DVLOG(1) << "is_video_track_encrypted_: " << is_video_track_encrypted_; video_config.Initialize(kCodecH264, H264PROFILE_MAIN, VideoFrame::YV12, coded_size, visible_rect, natural_size, // No decoder-specific buffer needed for AVC; // SPS/PPS are embedded in the video stream NULL, 0, is_video_track_encrypted_, true); has_video_ = true; video_track_id_ = track->header.track_id; } } RCHECK(config_cb_.Run(audio_config, video_config, TextTrackConfigMap())); base::TimeDelta duration; if (moov_->extends.header.fragment_duration > 0) { duration = TimeDeltaFromRational(moov_->extends.header.fragment_duration, moov_->header.timescale); } else if (moov_->header.duration > 0 && moov_->header.duration != kuint64max) { duration = TimeDeltaFromRational(moov_->header.duration, moov_->header.timescale); } else { duration = kInfiniteDuration(); } if (!init_cb_.is_null()) base::ResetAndReturn(&init_cb_).Run(true, duration); EmitNeedKeyIfNecessary(moov_->pssh); return true; } bool MP4StreamParser::ParseMoof(BoxReader* reader) { RCHECK(moov_.get()); // Must already have initialization segment MovieFragment moof; RCHECK(moof.Parse(reader)); if (!runs_) runs_.reset(new TrackRunIterator(moov_.get(), log_cb_)); RCHECK(runs_->Init(moof)); EmitNeedKeyIfNecessary(moof.pssh); new_segment_cb_.Run(); ChangeState(kEmittingSamples); return true; } void MP4StreamParser::EmitNeedKeyIfNecessary( const std::vector<ProtectionSystemSpecificHeader>& headers) { // TODO(strobe): ensure that the value of init_data (all PSSH headers // concatenated in arbitrary order) matches the EME spec. // See https://www.w3.org/Bugs/Public/show_bug.cgi?id=17673. if (headers.empty()) return; size_t total_size = 0; for (size_t i = 0; i < headers.size(); i++) total_size += headers[i].raw_box.size(); std::vector<uint8> init_data(total_size); size_t pos = 0; for (size_t i = 0; i < headers.size(); i++) { memcpy(&init_data[pos], &headers[i].raw_box[0], headers[i].raw_box.size()); pos += headers[i].raw_box.size(); } need_key_cb_.Run(kMp4InitDataType, init_data); } bool MP4StreamParser::PrepareAVCBuffer( const AVCDecoderConfigurationRecord& avc_config, std::vector<uint8>* frame_buf, std::vector<SubsampleEntry>* subsamples) const { // Convert the AVC NALU length fields to Annex B headers, as expected by // decoding libraries. Since this may enlarge the size of the buffer, we also // update the clear byte count for each subsample if encryption is used to // account for the difference in size between the length prefix and Annex B // start code. RCHECK(AVC::ConvertFrameToAnnexB(avc_config.length_size, frame_buf)); if (!subsamples->empty()) { const int nalu_size_diff = 4 - avc_config.length_size; size_t expected_size = runs_->sample_size() + subsamples->size() * nalu_size_diff; RCHECK(frame_buf->size() == expected_size); for (size_t i = 0; i < subsamples->size(); i++) (*subsamples)[i].clear_bytes += nalu_size_diff; } if (runs_->is_keyframe()) { // If this is a keyframe, we (re-)inject SPS and PPS headers at the start of // a frame. If subsample info is present, we also update the clear byte // count for that first subsample. std::vector<uint8> param_sets; RCHECK(AVC::ConvertConfigToAnnexB(avc_config, ¶m_sets)); frame_buf->insert(frame_buf->begin(), param_sets.begin(), param_sets.end()); if (!subsamples->empty()) (*subsamples)[0].clear_bytes += param_sets.size(); } return true; } bool MP4StreamParser::PrepareAACBuffer( const AAC& aac_config, std::vector<uint8>* frame_buf, std::vector<SubsampleEntry>* subsamples) const { // Append an ADTS header to every audio sample. RCHECK(aac_config.ConvertEsdsToADTS(frame_buf)); // As above, adjust subsample information to account for the headers. AAC is // not required to use subsample encryption, so we may need to add an entry. if (subsamples->empty()) { SubsampleEntry entry; entry.clear_bytes = AAC::kADTSHeaderSize; entry.cypher_bytes = frame_buf->size() - AAC::kADTSHeaderSize; subsamples->push_back(entry); } else { (*subsamples)[0].clear_bytes += AAC::kADTSHeaderSize; } return true; } bool MP4StreamParser::EnqueueSample(BufferQueue* audio_buffers, BufferQueue* video_buffers, bool* err) { if (!runs_->IsRunValid()) { // Flush any buffers we've gotten in this chunk so that buffers don't // cross NewSegment() calls *err = !SendAndFlushSamples(audio_buffers, video_buffers); if (*err) return false; // Remain in kEnqueueingSamples state, discarding data, until the end of // the current 'mdat' box has been appended to the queue. if (!queue_.Trim(mdat_tail_)) return false; ChangeState(kParsingBoxes); end_of_segment_cb_.Run(); return true; } if (!runs_->IsSampleValid()) { runs_->AdvanceRun(); return true; } DCHECK(!(*err)); const uint8* buf; int buf_size; queue_.Peek(&buf, &buf_size); if (!buf_size) return false; bool audio = has_audio_ && audio_track_id_ == runs_->track_id(); bool video = has_video_ && video_track_id_ == runs_->track_id(); // Skip this entire track if it's not one we're interested in if (!audio && !video) runs_->AdvanceRun(); // Attempt to cache the auxiliary information first. Aux info is usually // placed in a contiguous block before the sample data, rather than being // interleaved. If we didn't cache it, this would require that we retain the // start of the segment buffer while reading samples. Aux info is typically // quite small compared to sample data, so this pattern is useful on // memory-constrained devices where the source buffer consumes a substantial // portion of the total system memory. if (runs_->AuxInfoNeedsToBeCached()) { queue_.PeekAt(runs_->aux_info_offset() + moof_head_, &buf, &buf_size); if (buf_size < runs_->aux_info_size()) return false; *err = !runs_->CacheAuxInfo(buf, buf_size); return !*err; } queue_.PeekAt(runs_->sample_offset() + moof_head_, &buf, &buf_size); if (buf_size < runs_->sample_size()) return false; scoped_ptr<DecryptConfig> decrypt_config; std::vector<SubsampleEntry> subsamples; if (runs_->is_encrypted()) { decrypt_config = runs_->GetDecryptConfig(); if (!decrypt_config) { *err = true; return false; } subsamples = decrypt_config->subsamples(); } std::vector<uint8> frame_buf(buf, buf + runs_->sample_size()); if (video) { if (!PrepareAVCBuffer(runs_->video_description().avcc, &frame_buf, &subsamples)) { MEDIA_LOG(log_cb_) << "Failed to prepare AVC sample for decode"; *err = true; return false; } } if (audio) { if (ESDescriptor::IsAAC(runs_->audio_description().esds.object_type) && !PrepareAACBuffer(runs_->audio_description().esds.aac, &frame_buf, &subsamples)) { MEDIA_LOG(log_cb_) << "Failed to prepare AAC sample for decode"; *err = true; return false; } } if (decrypt_config) { if (!subsamples.empty()) { // Create a new config with the updated subsamples. decrypt_config.reset(new DecryptConfig( decrypt_config->key_id(), decrypt_config->iv(), decrypt_config->data_offset(), subsamples)); } // else, use the existing config. } else if ((audio && is_audio_track_encrypted_) || (video && is_video_track_encrypted_)) { // The media pipeline requires a DecryptConfig with an empty |iv|. // TODO(ddorwin): Refactor so we do not need a fake key ID ("1"); decrypt_config.reset( new DecryptConfig("1", "", 0, std::vector<SubsampleEntry>())); } scoped_refptr<StreamParserBuffer> stream_buf = StreamParserBuffer::CopyFrom(&frame_buf[0], frame_buf.size(), runs_->is_keyframe()); if (decrypt_config) stream_buf->set_decrypt_config(decrypt_config.Pass()); stream_buf->set_duration(runs_->duration()); stream_buf->set_timestamp(runs_->cts()); stream_buf->SetDecodeTimestamp(runs_->dts()); DVLOG(3) << "Pushing frame: aud=" << audio << ", key=" << runs_->is_keyframe() << ", dur=" << runs_->duration().InMilliseconds() << ", dts=" << runs_->dts().InMilliseconds() << ", cts=" << runs_->cts().InMilliseconds() << ", size=" << runs_->sample_size(); if (audio) { audio_buffers->push_back(stream_buf); } else { video_buffers->push_back(stream_buf); } runs_->AdvanceSample(); return true; } bool MP4StreamParser::SendAndFlushSamples(BufferQueue* audio_buffers, BufferQueue* video_buffers) { if (audio_buffers->empty() && video_buffers->empty()) return true; bool success = new_buffers_cb_.Run(*audio_buffers, *video_buffers); audio_buffers->clear(); video_buffers->clear(); return success; } bool MP4StreamParser::ReadAndDiscardMDATsUntil(const int64 offset) { bool err = false; while (mdat_tail_ < offset) { const uint8* buf; int size; queue_.PeekAt(mdat_tail_, &buf, &size); FourCC type; int box_sz; if (!BoxReader::StartTopLevelBox(buf, size, log_cb_, &type, &box_sz, &err)) break; if (type != FOURCC_MDAT) { MEDIA_LOG(log_cb_) << "Unexpected box type while parsing MDATs: " << FourCCToString(type); } mdat_tail_ += box_sz; } queue_.Trim(std::min(mdat_tail_, offset)); return !err; } void MP4StreamParser::ChangeState(State new_state) { DVLOG(2) << "Changing state: " << new_state; state_ = new_state; } } // namespace mp4 } // namespace media