// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // MSVC++ requires this to be set before any other includes to get M_SQRT1_2. #define _USE_MATH_DEFINES #include "media/base/channel_mixer.h" #include <algorithm> #include <cmath> #include "base/logging.h" #include "media/audio/audio_parameters.h" #include "media/base/audio_bus.h" #include "media/base/vector_math.h" namespace media { // Default scale factor for mixing two channels together. We use a different // value for stereo -> mono and mono -> stereo mixes. static const float kEqualPowerScale = static_cast<float>(M_SQRT1_2); static void ValidateLayout(ChannelLayout layout) { CHECK_NE(layout, CHANNEL_LAYOUT_NONE); CHECK_NE(layout, CHANNEL_LAYOUT_MAX); CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED); CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE); // Verify there's at least one channel. Should always be true here by virtue // of not being one of the invalid layouts, but lets double check to be sure. int channel_count = ChannelLayoutToChannelCount(layout); DCHECK_GT(channel_count, 0); // If we have more than one channel, verify a symmetric layout for sanity. // The unit test will verify all possible layouts, so this can be a DCHECK. // Symmetry allows simplifying the matrix building code by allowing us to // assume that if one channel of a pair exists, the other will too. if (channel_count > 1) { DCHECK((ChannelOrder(layout, LEFT) >= 0 && ChannelOrder(layout, RIGHT) >= 0) || (ChannelOrder(layout, SIDE_LEFT) >= 0 && ChannelOrder(layout, SIDE_RIGHT) >= 0) || (ChannelOrder(layout, BACK_LEFT) >= 0 && ChannelOrder(layout, BACK_RIGHT) >= 0) || (ChannelOrder(layout, LEFT_OF_CENTER) >= 0 && ChannelOrder(layout, RIGHT_OF_CENTER) >= 0)) << "Non-symmetric channel layout encountered."; } else { DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO); } return; } class MatrixBuilder { public: MatrixBuilder(ChannelLayout input_layout, int input_channels, ChannelLayout output_layout, int output_channels) : input_layout_(input_layout), input_channels_(input_channels), output_layout_(output_layout), output_channels_(output_channels) { // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1, // which should map the back LR to side LR. if (input_layout_ == CHANNEL_LAYOUT_5_0_BACK && output_layout_ == CHANNEL_LAYOUT_7_0) { input_layout_ = CHANNEL_LAYOUT_5_0; } else if (input_layout_ == CHANNEL_LAYOUT_5_1_BACK && output_layout_ == CHANNEL_LAYOUT_7_1) { input_layout_ = CHANNEL_LAYOUT_5_1; } } ~MatrixBuilder() { } // Create the transformation matrix of input channels to output channels. // Updates the empty matrix with the transformation, and returns true // if the transformation is just a remapping of channels (no mixing). bool CreateTransformationMatrix(std::vector< std::vector<float> >* matrix); private: // Result transformation of input channels to output channels std::vector< std::vector<float> >* matrix_; // Input and output channel layout provided during construction. ChannelLayout input_layout_; int input_channels_; ChannelLayout output_layout_; int output_channels_; // Helper variable for tracking which inputs are currently unaccounted, // should be empty after construction completes. std::vector<Channels> unaccounted_inputs_; // Helper methods for managing unaccounted input channels. void AccountFor(Channels ch); bool IsUnaccounted(Channels ch); // Helper methods for checking if |ch| exists in either |input_layout_| or // |output_layout_| respectively. bool HasInputChannel(Channels ch); bool HasOutputChannel(Channels ch); // Helper methods for updating |matrix_| with the proper value for // mixing |input_ch| into |output_ch|. MixWithoutAccounting() does not // remove the channel from |unaccounted_inputs_|. void Mix(Channels input_ch, Channels output_ch, float scale); void MixWithoutAccounting(Channels input_ch, Channels output_ch, float scale); DISALLOW_COPY_AND_ASSIGN(MatrixBuilder); }; ChannelMixer::ChannelMixer(ChannelLayout input_layout, ChannelLayout output_layout) { Initialize(input_layout, ChannelLayoutToChannelCount(input_layout), output_layout, ChannelLayoutToChannelCount(output_layout)); } ChannelMixer::ChannelMixer( const AudioParameters& input, const AudioParameters& output) { Initialize(input.channel_layout(), input.channels(), output.channel_layout(), output.channels()); } void ChannelMixer::Initialize( ChannelLayout input_layout, int input_channels, ChannelLayout output_layout, int output_channels) { // Stereo down mix should never be the output layout. CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX); // Verify that the layouts are supported if (input_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(input_layout); if (output_layout != CHANNEL_LAYOUT_DISCRETE) ValidateLayout(output_layout); // Create the transformation matrix MatrixBuilder matrix_builder(input_layout, input_channels, output_layout, output_channels); remapping_ = matrix_builder.CreateTransformationMatrix(&matrix_); } bool MatrixBuilder::CreateTransformationMatrix( std::vector< std::vector<float> >* matrix) { matrix_ = matrix; // Size out the initial matrix. matrix_->reserve(output_channels_); for (int output_ch = 0; output_ch < output_channels_; ++output_ch) matrix_->push_back(std::vector<float>(input_channels_, 0)); // First check for discrete case. if (input_layout_ == CHANNEL_LAYOUT_DISCRETE || output_layout_ == CHANNEL_LAYOUT_DISCRETE) { // If the number of input channels is more than output channels, then // copy as many as we can then drop the remaining input channels. // If the number of input channels is less than output channels, then // copy them all, then zero out the remaining output channels. int passthrough_channels = std::min(input_channels_, output_channels_); for (int i = 0; i < passthrough_channels; ++i) (*matrix_)[i][i] = 1; return true; } // Route matching channels and figure out which ones aren't accounted for. for (Channels ch = LEFT; ch < CHANNELS_MAX; ch = static_cast<Channels>(ch + 1)) { int input_ch_index = ChannelOrder(input_layout_, ch); if (input_ch_index < 0) continue; int output_ch_index = ChannelOrder(output_layout_, ch); if (output_ch_index < 0) { unaccounted_inputs_.push_back(ch); continue; } DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size()); DCHECK_LT(static_cast<size_t>(input_ch_index), (*matrix_)[output_ch_index].size()); (*matrix_)[output_ch_index][input_ch_index] = 1; } // If all input channels are accounted for, there's nothing left to do. if (unaccounted_inputs_.empty()) { // Since all output channels map directly to inputs we can optimize. return true; } // Mix front LR into center. if (IsUnaccounted(LEFT)) { // When down mixing to mono from stereo, we need to be careful of full scale // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping // so we use 1 / 2 instead. float scale = (output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2) ? 0.5 : kEqualPowerScale; Mix(LEFT, CENTER, scale); Mix(RIGHT, CENTER, scale); } // Mix center into front LR. if (IsUnaccounted(CENTER)) { // When up mixing from mono, just do a copy to front LR. float scale = (input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : kEqualPowerScale; MixWithoutAccounting(CENTER, LEFT, scale); Mix(CENTER, RIGHT, scale); } // Mix back LR into: side LR || back center || front LR || front center. if (IsUnaccounted(BACK_LEFT)) { if (HasOutputChannel(SIDE_LEFT)) { // If we have side LR, mix back LR into side LR, but instead if the input // doesn't have side LR (but output does) copy back LR to side LR. float scale = HasInputChannel(SIDE_LEFT) ? kEqualPowerScale : 1; Mix(BACK_LEFT, SIDE_LEFT, scale); Mix(BACK_RIGHT, SIDE_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix back LR into back center. Mix(BACK_LEFT, BACK_CENTER, kEqualPowerScale); Mix(BACK_RIGHT, BACK_CENTER, kEqualPowerScale); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix back LR into front LR. Mix(BACK_LEFT, LEFT, kEqualPowerScale); Mix(BACK_RIGHT, RIGHT, kEqualPowerScale); } else { // Mix back LR into front center. Mix(BACK_LEFT, CENTER, kEqualPowerScale); Mix(BACK_RIGHT, CENTER, kEqualPowerScale); } } // Mix side LR into: back LR || back center || front LR || front center. if (IsUnaccounted(SIDE_LEFT)) { if (HasOutputChannel(BACK_LEFT)) { // If we have back LR, mix side LR into back LR, but instead if the input // doesn't have back LR (but output does) copy side LR to back LR. float scale = HasInputChannel(BACK_LEFT) ? kEqualPowerScale : 1; Mix(SIDE_LEFT, BACK_LEFT, scale); Mix(SIDE_RIGHT, BACK_RIGHT, scale); } else if (HasOutputChannel(BACK_CENTER)) { // Mix side LR into back center. Mix(SIDE_LEFT, BACK_CENTER, kEqualPowerScale); Mix(SIDE_RIGHT, BACK_CENTER, kEqualPowerScale); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix side LR into front LR. Mix(SIDE_LEFT, LEFT, kEqualPowerScale); Mix(SIDE_RIGHT, RIGHT, kEqualPowerScale); } else { // Mix side LR into front center. Mix(SIDE_LEFT, CENTER, kEqualPowerScale); Mix(SIDE_RIGHT, CENTER, kEqualPowerScale); } } // Mix back center into: back LR || side LR || front LR || front center. if (IsUnaccounted(BACK_CENTER)) { if (HasOutputChannel(BACK_LEFT)) { // Mix back center into back LR. MixWithoutAccounting(BACK_CENTER, BACK_LEFT, kEqualPowerScale); Mix(BACK_CENTER, BACK_RIGHT, kEqualPowerScale); } else if (HasOutputChannel(SIDE_LEFT)) { // Mix back center into side LR. MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, kEqualPowerScale); Mix(BACK_CENTER, SIDE_RIGHT, kEqualPowerScale); } else if (output_layout_ > CHANNEL_LAYOUT_MONO) { // Mix back center into front LR. // TODO(dalecurtis): Not sure about these values? MixWithoutAccounting(BACK_CENTER, LEFT, kEqualPowerScale); Mix(BACK_CENTER, RIGHT, kEqualPowerScale); } else { // Mix back center into front center. // TODO(dalecurtis): Not sure about these values? Mix(BACK_CENTER, CENTER, kEqualPowerScale); } } // Mix LR of center into: front center || front LR. if (IsUnaccounted(LEFT_OF_CENTER)) { if (HasOutputChannel(LEFT)) { // Mix LR of center into front LR. Mix(LEFT_OF_CENTER, LEFT, kEqualPowerScale); Mix(RIGHT_OF_CENTER, RIGHT, kEqualPowerScale); } else { // Mix LR of center into front center. Mix(LEFT_OF_CENTER, CENTER, kEqualPowerScale); Mix(RIGHT_OF_CENTER, CENTER, kEqualPowerScale); } } // Mix LFE into: front LR || front center. if (IsUnaccounted(LFE)) { if (!HasOutputChannel(CENTER)) { // Mix LFE into front LR. MixWithoutAccounting(LFE, LEFT, kEqualPowerScale); Mix(LFE, RIGHT, kEqualPowerScale); } else { // Mix LFE into front center. Mix(LFE, CENTER, kEqualPowerScale); } } // All channels should now be accounted for. DCHECK(unaccounted_inputs_.empty()); // See if the output |matrix_| is simply a remapping matrix. If each input // channel maps to a single output channel we can simply remap. Doing this // programmatically is less fragile than logic checks on channel mappings. for (int output_ch = 0; output_ch < output_channels_; ++output_ch) { int input_mappings = 0; for (int input_ch = 0; input_ch < input_channels_; ++input_ch) { // We can only remap if each row contains a single scale of 1. I.e., each // output channel is mapped from a single unscaled input channel. if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1) return false; } } // If we've gotten here, |matrix_| is simply a remapping. return true; } ChannelMixer::~ChannelMixer() {} void ChannelMixer::Transform(const AudioBus* input, AudioBus* output) { CHECK_EQ(matrix_.size(), static_cast<size_t>(output->channels())); CHECK_EQ(matrix_[0].size(), static_cast<size_t>(input->channels())); CHECK_EQ(input->frames(), output->frames()); // Zero initialize |output| so we're accumulating from zero. output->Zero(); // If we're just remapping we can simply copy the correct input to output. if (remapping_) { for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { float scale = matrix_[output_ch][input_ch]; if (scale > 0) { DCHECK_EQ(scale, 1.0f); memcpy(output->channel(output_ch), input->channel(input_ch), sizeof(*output->channel(output_ch)) * output->frames()); break; } } } return; } for (int output_ch = 0; output_ch < output->channels(); ++output_ch) { for (int input_ch = 0; input_ch < input->channels(); ++input_ch) { float scale = matrix_[output_ch][input_ch]; // Scale should always be positive. Don't bother scaling by zero. DCHECK_GE(scale, 0); if (scale > 0) { vector_math::FMAC(input->channel(input_ch), scale, output->frames(), output->channel(output_ch)); } } } } void MatrixBuilder::AccountFor(Channels ch) { unaccounted_inputs_.erase(std::find( unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch)); } bool MatrixBuilder::IsUnaccounted(Channels ch) { return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch) != unaccounted_inputs_.end(); } bool MatrixBuilder::HasInputChannel(Channels ch) { return ChannelOrder(input_layout_, ch) >= 0; } bool MatrixBuilder::HasOutputChannel(Channels ch) { return ChannelOrder(output_layout_, ch) >= 0; } void MatrixBuilder::Mix(Channels input_ch, Channels output_ch, float scale) { MixWithoutAccounting(input_ch, output_ch, scale); AccountFor(input_ch); } void MatrixBuilder::MixWithoutAccounting(Channels input_ch, Channels output_ch, float scale) { int input_ch_index = ChannelOrder(input_layout_, input_ch); int output_ch_index = ChannelOrder(output_layout_, output_ch); DCHECK(IsUnaccounted(input_ch)); DCHECK_GE(input_ch_index, 0); DCHECK_GE(output_ch_index, 0); DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0); (*matrix_)[output_ch_index][input_ch_index] = scale; } } // namespace media