// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "crypto/ec_private_key.h" #include <openssl/ec.h> #include <openssl/evp.h> #include <openssl/pkcs12.h> #include <openssl/x509.h> #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "crypto/openssl_util.h" namespace crypto { namespace { // Function pointer definition, for injecting the required key export function // into ExportKeyWithBio, below. |bio| is a temporary memory BIO object, and // |key| is a handle to the input key object. Return 1 on success, 0 otherwise. // NOTE: Used with OpenSSL functions, which do not comply with the Chromium // style guide, hence the unusual parameter placement / types. typedef int (*ExportBioFunction)(BIO* bio, const void* key); // Helper to export |key| into |output| via the specified ExportBioFunction. bool ExportKeyWithBio(const void* key, ExportBioFunction export_fn, std::vector<uint8>* output) { if (!key) return false; ScopedOpenSSL<BIO, BIO_free_all> bio(BIO_new(BIO_s_mem())); if (!bio.get()) return false; if (!export_fn(bio.get(), key)) return false; char* data = NULL; long len = BIO_get_mem_data(bio.get(), &data); if (!data || len < 0) return false; output->assign(data, data + len); return true; } // Function pointer definition, for injecting the required key export function // into ExportKey below. |key| is a pointer to the input key object, // and |data| is either NULL, or the address of an 'unsigned char*' pointer // that points to the start of the output buffer. The function must return // the number of bytes required to export the data, or -1 in case of error. typedef int (*ExportDataFunction)(const void* key, unsigned char** data); // Helper to export |key| into |output| via the specified export function. bool ExportKey(const void* key, ExportDataFunction export_fn, std::vector<uint8>* output) { if (!key) return false; int data_len = export_fn(key, NULL); if (data_len < 0) return false; output->resize(static_cast<size_t>(data_len)); unsigned char* data = &(*output)[0]; if (export_fn(key, &data) < 0) return false; return true; } } // namespace ECPrivateKey::~ECPrivateKey() { if (key_) EVP_PKEY_free(key_); } // static bool ECPrivateKey::IsSupported() { return true; } // static ECPrivateKey* ECPrivateKey::Create() { OpenSSLErrStackTracer err_tracer(FROM_HERE); ScopedOpenSSL<EC_KEY, EC_KEY_free> ec_key( EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); if (!ec_key.get() || !EC_KEY_generate_key(ec_key.get())) return NULL; scoped_ptr<ECPrivateKey> result(new ECPrivateKey()); result->key_ = EVP_PKEY_new(); if (!result->key_ || !EVP_PKEY_set1_EC_KEY(result->key_, ec_key.get())) return NULL; return result.release(); } // static ECPrivateKey* ECPrivateKey::CreateFromEncryptedPrivateKeyInfo( const std::string& password, const std::vector<uint8>& encrypted_private_key_info, const std::vector<uint8>& subject_public_key_info) { // NOTE: The |subject_public_key_info| can be ignored here, it is only // useful for the NSS implementation (which uses the public key's SHA1 // as a lookup key when storing the private one in its store). if (encrypted_private_key_info.empty()) return NULL; OpenSSLErrStackTracer err_tracer(FROM_HERE); // Write the encrypted private key into a memory BIO. char* private_key_data = reinterpret_cast<char*>( const_cast<uint8*>(&encrypted_private_key_info[0])); int private_key_data_len = static_cast<int>(encrypted_private_key_info.size()); ScopedOpenSSL<BIO, BIO_free_all> bio( BIO_new_mem_buf(private_key_data, private_key_data_len)); if (!bio.get()) return NULL; // Convert it, then decrypt it into a PKCS#8 object. ScopedOpenSSL<X509_SIG, X509_SIG_free> p8_encrypted( d2i_PKCS8_bio(bio.get(), NULL)); if (!p8_encrypted.get()) return NULL; ScopedOpenSSL<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free> p8_decrypted( PKCS8_decrypt(p8_encrypted.get(), password.c_str(), static_cast<int>(password.size()))); if (!p8_decrypted.get()) return NULL; // Create a new EVP_PKEY for it. scoped_ptr<ECPrivateKey> result(new ECPrivateKey); result->key_ = EVP_PKCS82PKEY(p8_decrypted.get()); if (!result->key_) return NULL; return result.release(); } bool ECPrivateKey::ExportEncryptedPrivateKey( const std::string& password, int iterations, std::vector<uint8>* output) { OpenSSLErrStackTracer err_tracer(FROM_HERE); // Convert into a PKCS#8 object. ScopedOpenSSL<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free> pkcs8( EVP_PKEY2PKCS8(key_)); if (!pkcs8.get()) return false; // Encrypt the object. // NOTE: NSS uses SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC // so use NID_pbe_WithSHA1And3_Key_TripleDES_CBC which should be the OpenSSL // equivalent. ScopedOpenSSL<X509_SIG, X509_SIG_free> encrypted( PKCS8_encrypt(NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NULL, password.c_str(), static_cast<int>(password.size()), NULL, 0, iterations, pkcs8.get())); if (!encrypted.get()) return false; // Write it into |*output| return ExportKeyWithBio(encrypted.get(), reinterpret_cast<ExportBioFunction>(i2d_PKCS8_bio), output); } bool ECPrivateKey::ExportPublicKey(std::vector<uint8>* output) { OpenSSLErrStackTracer err_tracer(FROM_HERE); return ExportKeyWithBio( key_, reinterpret_cast<ExportBioFunction>(i2d_PUBKEY_bio), output); } bool ECPrivateKey::ExportValue(std::vector<uint8>* output) { OpenSSLErrStackTracer err_tracer(FROM_HERE); ScopedOpenSSL<EC_KEY, EC_KEY_free> ec_key(EVP_PKEY_get1_EC_KEY(key_)); return ExportKey(ec_key.get(), reinterpret_cast<ExportDataFunction>(i2d_ECPrivateKey), output); } bool ECPrivateKey::ExportECParams(std::vector<uint8>* output) { OpenSSLErrStackTracer err_tracer(FROM_HERE); ScopedOpenSSL<EC_KEY, EC_KEY_free> ec_key(EVP_PKEY_get1_EC_KEY(key_)); return ExportKey(ec_key.get(), reinterpret_cast<ExportDataFunction>(i2d_ECParameters), output); } ECPrivateKey::ECPrivateKey() : key_(NULL) {} } // namespace crypto