// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Histogram is an object that aggregates statistics, and can summarize them in // various forms, including ASCII graphical, HTML, and numerically (as a // vector of numbers corresponding to each of the aggregating buckets). // See header file for details and examples. #include "base/metrics/histogram.h" #include <math.h> #include <algorithm> #include <string> #include "base/compiler_specific.h" #include "base/debug/alias.h" #include "base/logging.h" #include "base/metrics/sample_vector.h" #include "base/metrics/statistics_recorder.h" #include "base/pickle.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "base/synchronization/lock.h" #include "base/values.h" using std::string; using std::vector; namespace base { namespace { bool ReadHistogramArguments(PickleIterator* iter, string* histogram_name, int* flags, int* declared_min, int* declared_max, uint64* bucket_count, uint32* range_checksum) { if (!iter->ReadString(histogram_name) || !iter->ReadInt(flags) || !iter->ReadInt(declared_min) || !iter->ReadInt(declared_max) || !iter->ReadUInt64(bucket_count) || !iter->ReadUInt32(range_checksum)) { DLOG(ERROR) << "Pickle error decoding Histogram: " << *histogram_name; return false; } // Since these fields may have come from an untrusted renderer, do additional // checks above and beyond those in Histogram::Initialize() if (*declared_max <= 0 || *declared_min <= 0 || *declared_max < *declared_min || INT_MAX / sizeof(HistogramBase::Count) <= *bucket_count || *bucket_count < 2) { DLOG(ERROR) << "Values error decoding Histogram: " << histogram_name; return false; } // We use the arguments to find or create the local version of the histogram // in this process, so we need to clear the IPC flag. DCHECK(*flags & HistogramBase::kIPCSerializationSourceFlag); *flags &= ~HistogramBase::kIPCSerializationSourceFlag; return true; } bool ValidateRangeChecksum(const HistogramBase& histogram, uint32 range_checksum) { const Histogram& casted_histogram = static_cast<const Histogram&>(histogram); return casted_histogram.bucket_ranges()->checksum() == range_checksum; } } // namespace typedef HistogramBase::Count Count; typedef HistogramBase::Sample Sample; // static const size_t Histogram::kBucketCount_MAX = 16384u; HistogramBase* Histogram::FactoryGet(const string& name, Sample minimum, Sample maximum, size_t bucket_count, int32 flags) { bool valid_arguments = InspectConstructionArguments(name, &minimum, &maximum, &bucket_count); DCHECK(valid_arguments); HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); if (!histogram) { // To avoid racy destruction at shutdown, the following will be leaked. BucketRanges* ranges = new BucketRanges(bucket_count + 1); InitializeBucketRanges(minimum, maximum, ranges); const BucketRanges* registered_ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges(ranges); Histogram* tentative_histogram = new Histogram(name, minimum, maximum, registered_ranges); tentative_histogram->SetFlags(flags); histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram); } DCHECK_EQ(HISTOGRAM, histogram->GetHistogramType()); CHECK(histogram->HasConstructionArguments(minimum, maximum, bucket_count)); return histogram; } HistogramBase* Histogram::FactoryTimeGet(const string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count, int32 flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } TimeTicks Histogram::DebugNow() { #ifndef NDEBUG return TimeTicks::Now(); #else return TimeTicks(); #endif } // Calculate what range of values are held in each bucket. // We have to be careful that we don't pick a ratio between starting points in // consecutive buckets that is sooo small, that the integer bounds are the same // (effectively making one bucket get no values). We need to avoid: // ranges(i) == ranges(i + 1) // To avoid that, we just do a fine-grained bucket width as far as we need to // until we get a ratio that moves us along at least 2 units at a time. From // that bucket onward we do use the exponential growth of buckets. // // static void Histogram::InitializeBucketRanges(Sample minimum, Sample maximum, BucketRanges* ranges) { double log_max = log(static_cast<double>(maximum)); double log_ratio; double log_next; size_t bucket_index = 1; Sample current = minimum; ranges->set_range(bucket_index, current); size_t bucket_count = ranges->bucket_count(); while (bucket_count > ++bucket_index) { double log_current; log_current = log(static_cast<double>(current)); // Calculate the count'th root of the range. log_ratio = (log_max - log_current) / (bucket_count - bucket_index); // See where the next bucket would start. log_next = log_current + log_ratio; Sample next; next = static_cast<int>(floor(exp(log_next) + 0.5)); if (next > current) current = next; else ++current; // Just do a narrow bucket, and keep trying. ranges->set_range(bucket_index, current); } ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX); ranges->ResetChecksum(); } // static const int Histogram::kCommonRaceBasedCountMismatch = 5; int Histogram::FindCorruption(const HistogramSamples& samples) const { int inconsistencies = NO_INCONSISTENCIES; Sample previous_range = -1; // Bottom range is always 0. for (size_t index = 0; index < bucket_count(); ++index) { int new_range = ranges(index); if (previous_range >= new_range) inconsistencies |= BUCKET_ORDER_ERROR; previous_range = new_range; } if (!bucket_ranges()->HasValidChecksum()) inconsistencies |= RANGE_CHECKSUM_ERROR; int64 delta64 = samples.redundant_count() - samples.TotalCount(); if (delta64 != 0) { int delta = static_cast<int>(delta64); if (delta != delta64) delta = INT_MAX; // Flag all giant errors as INT_MAX. if (delta > 0) { UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountHigh", delta); if (delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_HIGH_ERROR; } else { DCHECK_GT(0, delta); UMA_HISTOGRAM_COUNTS("Histogram.InconsistentCountLow", -delta); if (-delta > kCommonRaceBasedCountMismatch) inconsistencies |= COUNT_LOW_ERROR; } } return inconsistencies; } Sample Histogram::ranges(size_t i) const { return bucket_ranges_->range(i); } size_t Histogram::bucket_count() const { return bucket_ranges_->bucket_count(); } // static bool Histogram::InspectConstructionArguments(const string& name, Sample* minimum, Sample* maximum, size_t* bucket_count) { // Defensive code for backward compatibility. if (*minimum < 1) { DVLOG(1) << "Histogram: " << name << " has bad minimum: " << *minimum; *minimum = 1; } if (*maximum >= kSampleType_MAX) { DVLOG(1) << "Histogram: " << name << " has bad maximum: " << *maximum; *maximum = kSampleType_MAX - 1; } if (*bucket_count >= kBucketCount_MAX) { DVLOG(1) << "Histogram: " << name << " has bad bucket_count: " << *bucket_count; *bucket_count = kBucketCount_MAX - 1; } if (*minimum >= *maximum) return false; if (*bucket_count < 3) return false; if (*bucket_count > static_cast<size_t>(*maximum - *minimum + 2)) return false; return true; } HistogramType Histogram::GetHistogramType() const { return HISTOGRAM; } bool Histogram::HasConstructionArguments(Sample expected_minimum, Sample expected_maximum, size_t expected_bucket_count) const { return ((expected_minimum == declared_min_) && (expected_maximum == declared_max_) && (expected_bucket_count == bucket_count())); } void Histogram::Add(int value) { DCHECK_EQ(0, ranges(0)); DCHECK_EQ(kSampleType_MAX, ranges(bucket_count())); if (value > kSampleType_MAX - 1) value = kSampleType_MAX - 1; if (value < 0) value = 0; samples_->Accumulate(value, 1); } scoped_ptr<HistogramSamples> Histogram::SnapshotSamples() const { return SnapshotSampleVector().PassAs<HistogramSamples>(); } void Histogram::AddSamples(const HistogramSamples& samples) { samples_->Add(samples); } bool Histogram::AddSamplesFromPickle(PickleIterator* iter) { return samples_->AddFromPickle(iter); } // The following methods provide a graphical histogram display. void Histogram::WriteHTMLGraph(string* output) const { // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc. output->append("<PRE>"); WriteAsciiImpl(true, "<br>", output); output->append("</PRE>"); } void Histogram::WriteAscii(string* output) const { WriteAsciiImpl(true, "\n", output); } bool Histogram::SerializeInfoImpl(Pickle* pickle) const { DCHECK(bucket_ranges()->HasValidChecksum()); return pickle->WriteString(histogram_name()) && pickle->WriteInt(flags()) && pickle->WriteInt(declared_min()) && pickle->WriteInt(declared_max()) && pickle->WriteUInt64(bucket_count()) && pickle->WriteUInt32(bucket_ranges()->checksum()); } Histogram::Histogram(const string& name, Sample minimum, Sample maximum, const BucketRanges* ranges) : HistogramBase(name), bucket_ranges_(ranges), declared_min_(minimum), declared_max_(maximum) { if (ranges) samples_.reset(new SampleVector(ranges)); } Histogram::~Histogram() { } bool Histogram::PrintEmptyBucket(size_t index) const { return true; } // Use the actual bucket widths (like a linear histogram) until the widths get // over some transition value, and then use that transition width. Exponentials // get so big so fast (and we don't expect to see a lot of entries in the large // buckets), so we need this to make it possible to see what is going on and // not have 0-graphical-height buckets. double Histogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); static const double kTransitionWidth = 5; double denominator = ranges(i + 1) - ranges(i); if (denominator > kTransitionWidth) denominator = kTransitionWidth; // Stop trying to normalize. return current/denominator; } const string Histogram::GetAsciiBucketRange(size_t i) const { return GetSimpleAsciiBucketRange(ranges(i)); } //------------------------------------------------------------------------------ // Private methods // static HistogramBase* Histogram::DeserializeInfoImpl(PickleIterator* iter) { string histogram_name; int flags; int declared_min; int declared_max; uint64 bucket_count; uint32 range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return NULL; } // Find or create the local version of the histogram in this process. HistogramBase* histogram = Histogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return NULL; } return histogram; } scoped_ptr<SampleVector> Histogram::SnapshotSampleVector() const { scoped_ptr<SampleVector> samples(new SampleVector(bucket_ranges())); samples->Add(*samples_); return samples.Pass(); } void Histogram::WriteAsciiImpl(bool graph_it, const string& newline, string* output) const { // Get local (stack) copies of all effectively volatile class data so that we // are consistent across our output activities. scoped_ptr<SampleVector> snapshot = SnapshotSampleVector(); Count sample_count = snapshot->TotalCount(); WriteAsciiHeader(*snapshot, sample_count, output); output->append(newline); // Prepare to normalize graphical rendering of bucket contents. double max_size = 0; if (graph_it) max_size = GetPeakBucketSize(*snapshot); // Calculate space needed to print bucket range numbers. Leave room to print // nearly the largest bucket range without sliding over the histogram. size_t largest_non_empty_bucket = bucket_count() - 1; while (0 == snapshot->GetCountAtIndex(largest_non_empty_bucket)) { if (0 == largest_non_empty_bucket) break; // All buckets are empty. --largest_non_empty_bucket; } // Calculate largest print width needed for any of our bucket range displays. size_t print_width = 1; for (size_t i = 0; i < bucket_count(); ++i) { if (snapshot->GetCountAtIndex(i)) { size_t width = GetAsciiBucketRange(i).size() + 1; if (width > print_width) print_width = width; } } int64 remaining = sample_count; int64 past = 0; // Output the actual histogram graph. for (size_t i = 0; i < bucket_count(); ++i) { Count current = snapshot->GetCountAtIndex(i); if (!current && !PrintEmptyBucket(i)) continue; remaining -= current; string range = GetAsciiBucketRange(i); output->append(range); for (size_t j = 0; range.size() + j < print_width + 1; ++j) output->push_back(' '); if (0 == current && i < bucket_count() - 1 && 0 == snapshot->GetCountAtIndex(i + 1)) { while (i < bucket_count() - 1 && 0 == snapshot->GetCountAtIndex(i + 1)) { ++i; } output->append("... "); output->append(newline); continue; // No reason to plot emptiness. } double current_size = GetBucketSize(current, i); if (graph_it) WriteAsciiBucketGraph(current_size, max_size, output); WriteAsciiBucketContext(past, current, remaining, i, output); output->append(newline); past += current; } DCHECK_EQ(sample_count, past); } double Histogram::GetPeakBucketSize(const SampleVector& samples) const { double max = 0; for (size_t i = 0; i < bucket_count() ; ++i) { double current_size = GetBucketSize(samples.GetCountAtIndex(i), i); if (current_size > max) max = current_size; } return max; } void Histogram::WriteAsciiHeader(const SampleVector& samples, Count sample_count, string* output) const { StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name().c_str(), sample_count); if (0 == sample_count) { DCHECK_EQ(samples.sum(), 0); } else { double average = static_cast<float>(samples.sum()) / sample_count; StringAppendF(output, ", average = %.1f", average); } if (flags() & ~kHexRangePrintingFlag) StringAppendF(output, " (flags = 0x%x)", flags() & ~kHexRangePrintingFlag); } void Histogram::WriteAsciiBucketContext(const int64 past, const Count current, const int64 remaining, const size_t i, string* output) const { double scaled_sum = (past + current + remaining) / 100.0; WriteAsciiBucketValue(current, scaled_sum, output); if (0 < i) { double percentage = past / scaled_sum; StringAppendF(output, " {%3.1f%%}", percentage); } } void Histogram::GetParameters(DictionaryValue* params) const { params->SetString("type", HistogramTypeToString(GetHistogramType())); params->SetInteger("min", declared_min()); params->SetInteger("max", declared_max()); params->SetInteger("bucket_count", static_cast<int>(bucket_count())); } void Histogram::GetCountAndBucketData(Count* count, int64* sum, ListValue* buckets) const { scoped_ptr<SampleVector> snapshot = SnapshotSampleVector(); *count = snapshot->TotalCount(); *sum = snapshot->sum(); size_t index = 0; for (size_t i = 0; i < bucket_count(); ++i) { Sample count = snapshot->GetCountAtIndex(i); if (count > 0) { scoped_ptr<DictionaryValue> bucket_value(new DictionaryValue()); bucket_value->SetInteger("low", ranges(i)); if (i != bucket_count() - 1) bucket_value->SetInteger("high", ranges(i + 1)); bucket_value->SetInteger("count", count); buckets->Set(index, bucket_value.release()); ++index; } } } //------------------------------------------------------------------------------ // LinearHistogram: This histogram uses a traditional set of evenly spaced // buckets. //------------------------------------------------------------------------------ LinearHistogram::~LinearHistogram() {} HistogramBase* LinearHistogram::FactoryGet(const string& name, Sample minimum, Sample maximum, size_t bucket_count, int32 flags) { return FactoryGetWithRangeDescription( name, minimum, maximum, bucket_count, flags, NULL); } HistogramBase* LinearHistogram::FactoryTimeGet(const string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count, int32 flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } HistogramBase* LinearHistogram::FactoryGetWithRangeDescription( const std::string& name, Sample minimum, Sample maximum, size_t bucket_count, int32 flags, const DescriptionPair descriptions[]) { bool valid_arguments = Histogram::InspectConstructionArguments( name, &minimum, &maximum, &bucket_count); DCHECK(valid_arguments); HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); if (!histogram) { // To avoid racy destruction at shutdown, the following will be leaked. BucketRanges* ranges = new BucketRanges(bucket_count + 1); InitializeBucketRanges(minimum, maximum, ranges); const BucketRanges* registered_ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges(ranges); LinearHistogram* tentative_histogram = new LinearHistogram(name, minimum, maximum, registered_ranges); // Set range descriptions. if (descriptions) { for (int i = 0; descriptions[i].description; ++i) { tentative_histogram->bucket_description_[descriptions[i].sample] = descriptions[i].description; } } tentative_histogram->SetFlags(flags); histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram); } DCHECK_EQ(LINEAR_HISTOGRAM, histogram->GetHistogramType()); CHECK(histogram->HasConstructionArguments(minimum, maximum, bucket_count)); return histogram; } HistogramType LinearHistogram::GetHistogramType() const { return LINEAR_HISTOGRAM; } LinearHistogram::LinearHistogram(const string& name, Sample minimum, Sample maximum, const BucketRanges* ranges) : Histogram(name, minimum, maximum, ranges) { } double LinearHistogram::GetBucketSize(Count current, size_t i) const { DCHECK_GT(ranges(i + 1), ranges(i)); // Adjacent buckets with different widths would have "surprisingly" many (few) // samples in a histogram if we didn't normalize this way. double denominator = ranges(i + 1) - ranges(i); return current/denominator; } const string LinearHistogram::GetAsciiBucketRange(size_t i) const { int range = ranges(i); BucketDescriptionMap::const_iterator it = bucket_description_.find(range); if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i); return it->second; } bool LinearHistogram::PrintEmptyBucket(size_t index) const { return bucket_description_.find(ranges(index)) == bucket_description_.end(); } // static void LinearHistogram::InitializeBucketRanges(Sample minimum, Sample maximum, BucketRanges* ranges) { double min = minimum; double max = maximum; size_t bucket_count = ranges->bucket_count(); for (size_t i = 1; i < bucket_count; ++i) { double linear_range = (min * (bucket_count - 1 - i) + max * (i - 1)) / (bucket_count - 2); ranges->set_range(i, static_cast<Sample>(linear_range + 0.5)); } ranges->set_range(ranges->bucket_count(), HistogramBase::kSampleType_MAX); ranges->ResetChecksum(); } // static HistogramBase* LinearHistogram::DeserializeInfoImpl(PickleIterator* iter) { string histogram_name; int flags; int declared_min; int declared_max; uint64 bucket_count; uint32 range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return NULL; } HistogramBase* histogram = LinearHistogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return NULL; } return histogram; } //------------------------------------------------------------------------------ // This section provides implementation for BooleanHistogram. //------------------------------------------------------------------------------ HistogramBase* BooleanHistogram::FactoryGet(const string& name, int32 flags) { HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); if (!histogram) { // To avoid racy destruction at shutdown, the following will be leaked. BucketRanges* ranges = new BucketRanges(4); LinearHistogram::InitializeBucketRanges(1, 2, ranges); const BucketRanges* registered_ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges(ranges); BooleanHistogram* tentative_histogram = new BooleanHistogram(name, registered_ranges); tentative_histogram->SetFlags(flags); histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram); } DCHECK_EQ(BOOLEAN_HISTOGRAM, histogram->GetHistogramType()); return histogram; } HistogramType BooleanHistogram::GetHistogramType() const { return BOOLEAN_HISTOGRAM; } BooleanHistogram::BooleanHistogram(const string& name, const BucketRanges* ranges) : LinearHistogram(name, 1, 2, ranges) {} HistogramBase* BooleanHistogram::DeserializeInfoImpl(PickleIterator* iter) { string histogram_name; int flags; int declared_min; int declared_max; uint64 bucket_count; uint32 range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return NULL; } HistogramBase* histogram = BooleanHistogram::FactoryGet( histogram_name, flags); if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return NULL; } return histogram; } //------------------------------------------------------------------------------ // CustomHistogram: //------------------------------------------------------------------------------ HistogramBase* CustomHistogram::FactoryGet(const string& name, const vector<Sample>& custom_ranges, int32 flags) { CHECK(ValidateCustomRanges(custom_ranges)); HistogramBase* histogram = StatisticsRecorder::FindHistogram(name); if (!histogram) { BucketRanges* ranges = CreateBucketRangesFromCustomRanges(custom_ranges); const BucketRanges* registered_ranges = StatisticsRecorder::RegisterOrDeleteDuplicateRanges(ranges); // To avoid racy destruction at shutdown, the following will be leaked. CustomHistogram* tentative_histogram = new CustomHistogram(name, registered_ranges); tentative_histogram->SetFlags(flags); histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(tentative_histogram); } DCHECK_EQ(histogram->GetHistogramType(), CUSTOM_HISTOGRAM); return histogram; } HistogramType CustomHistogram::GetHistogramType() const { return CUSTOM_HISTOGRAM; } // static vector<Sample> CustomHistogram::ArrayToCustomRanges( const Sample* values, size_t num_values) { vector<Sample> all_values; for (size_t i = 0; i < num_values; ++i) { Sample value = values[i]; all_values.push_back(value); // Ensure that a guard bucket is added. If we end up with duplicate // values, FactoryGet will take care of removing them. all_values.push_back(value + 1); } return all_values; } CustomHistogram::CustomHistogram(const string& name, const BucketRanges* ranges) : Histogram(name, ranges->range(1), ranges->range(ranges->bucket_count() - 1), ranges) {} bool CustomHistogram::SerializeInfoImpl(Pickle* pickle) const { if (!Histogram::SerializeInfoImpl(pickle)) return false; // Serialize ranges. First and last ranges are alwasy 0 and INT_MAX, so don't // write them. for (size_t i = 1; i < bucket_ranges()->bucket_count(); ++i) { if (!pickle->WriteInt(bucket_ranges()->range(i))) return false; } return true; } double CustomHistogram::GetBucketSize(Count current, size_t i) const { return 1; } // static HistogramBase* CustomHistogram::DeserializeInfoImpl(PickleIterator* iter) { string histogram_name; int flags; int declared_min; int declared_max; uint64 bucket_count; uint32 range_checksum; if (!ReadHistogramArguments(iter, &histogram_name, &flags, &declared_min, &declared_max, &bucket_count, &range_checksum)) { return NULL; } // First and last ranges are not serialized. vector<Sample> sample_ranges(bucket_count - 1); for (size_t i = 0; i < sample_ranges.size(); ++i) { if (!iter->ReadInt(&sample_ranges[i])) return NULL; } HistogramBase* histogram = CustomHistogram::FactoryGet( histogram_name, sample_ranges, flags); if (!ValidateRangeChecksum(*histogram, range_checksum)) { // The serialized histogram might be corrupted. return NULL; } return histogram; } // static bool CustomHistogram::ValidateCustomRanges( const vector<Sample>& custom_ranges) { bool has_valid_range = false; for (size_t i = 0; i < custom_ranges.size(); i++) { Sample sample = custom_ranges[i]; if (sample < 0 || sample > HistogramBase::kSampleType_MAX - 1) return false; if (sample != 0) has_valid_range = true; } return has_valid_range; } // static BucketRanges* CustomHistogram::CreateBucketRangesFromCustomRanges( const vector<Sample>& custom_ranges) { // Remove the duplicates in the custom ranges array. vector<int> ranges = custom_ranges; ranges.push_back(0); // Ensure we have a zero value. ranges.push_back(HistogramBase::kSampleType_MAX); std::sort(ranges.begin(), ranges.end()); ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end()); BucketRanges* bucket_ranges = new BucketRanges(ranges.size()); for (size_t i = 0; i < ranges.size(); i++) { bucket_ranges->set_range(i, ranges[i]); } bucket_ranges->ResetChecksum(); return bucket_ranges; } } // namespace base