// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/debug/stack_trace.h" #include <errno.h> #include <execinfo.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <sys/param.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include <ostream> #if defined(__GLIBCXX__) #include <cxxabi.h> #endif #if defined(OS_MACOSX) #include <AvailabilityMacros.h> #endif #include "base/basictypes.h" #include "base/debug/debugger.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/posix/eintr_wrapper.h" #include "base/strings/string_number_conversions.h" #if defined(USE_SYMBOLIZE) #include "base/third_party/symbolize/symbolize.h" #endif namespace base { namespace debug { namespace { volatile sig_atomic_t in_signal_handler = 0; #if !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) // The prefix used for mangled symbols, per the Itanium C++ ABI: // http://www.codesourcery.com/cxx-abi/abi.html#mangling const char kMangledSymbolPrefix[] = "_Z"; // Characters that can be used for symbols, generated by Ruby: // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join const char kSymbolCharacters[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; #endif // !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) #if !defined(USE_SYMBOLIZE) // Demangles C++ symbols in the given text. Example: // // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" // => // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" void DemangleSymbols(std::string* text) { // Note: code in this function is NOT async-signal safe (std::string uses // malloc internally). #if defined(__GLIBCXX__) std::string::size_type search_from = 0; while (search_from < text->size()) { // Look for the start of a mangled symbol, from search_from. std::string::size_type mangled_start = text->find(kMangledSymbolPrefix, search_from); if (mangled_start == std::string::npos) { break; // Mangled symbol not found. } // Look for the end of the mangled symbol. std::string::size_type mangled_end = text->find_first_not_of(kSymbolCharacters, mangled_start); if (mangled_end == std::string::npos) { mangled_end = text->size(); } std::string mangled_symbol = text->substr(mangled_start, mangled_end - mangled_start); // Try to demangle the mangled symbol candidate. int status = 0; scoped_ptr_malloc<char> demangled_symbol( abi::__cxa_demangle(mangled_symbol.c_str(), NULL, 0, &status)); if (status == 0) { // Demangling is successful. // Remove the mangled symbol. text->erase(mangled_start, mangled_end - mangled_start); // Insert the demangled symbol. text->insert(mangled_start, demangled_symbol.get()); // Next time, we'll start right after the demangled symbol we inserted. search_from = mangled_start + strlen(demangled_symbol.get()); } else { // Failed to demangle. Retry after the "_Z" we just found. search_from = mangled_start + 2; } } #endif // defined(__GLIBCXX__) } #endif // !defined(USE_SYMBOLIZE) class BacktraceOutputHandler { public: virtual void HandleOutput(const char* output) = 0; protected: virtual ~BacktraceOutputHandler() {} }; void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { char buf[1024] = { '\0' }; handler->HandleOutput(" [0x"); internal::itoa_r(reinterpret_cast<intptr_t>(pointer), buf, sizeof(buf), 16, 12); handler->HandleOutput(buf); handler->HandleOutput("]"); } void ProcessBacktrace(void *const *trace, int size, BacktraceOutputHandler* handler) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. #if defined(USE_SYMBOLIZE) for (int i = 0; i < size; ++i) { OutputPointer(trace[i], handler); handler->HandleOutput(" "); char buf[1024] = { '\0' }; // Subtract by one as return address of function may be in the next // function when a function is annotated as noreturn. void* address = static_cast<char*>(trace[i]) - 1; if (google::Symbolize(address, buf, sizeof(buf))) handler->HandleOutput(buf); else handler->HandleOutput("<unknown>"); handler->HandleOutput("\n"); } #else bool printed = false; // Below part is async-signal unsafe (uses malloc), so execute it only // when we are not executing the signal handler. if (in_signal_handler == 0) { scoped_ptr_malloc<char*> trace_symbols(backtrace_symbols(trace, size)); if (trace_symbols.get()) { for (int i = 0; i < size; ++i) { std::string trace_symbol = trace_symbols.get()[i]; DemangleSymbols(&trace_symbol); handler->HandleOutput(trace_symbol.c_str()); handler->HandleOutput("\n"); } printed = true; } } if (!printed) { for (int i = 0; i < size; ++i) { OutputPointer(trace[i], handler); handler->HandleOutput("\n"); } } #endif // defined(USE_SYMBOLIZE) } void PrintToStderr(const char* output) { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. ignore_result(HANDLE_EINTR(write(STDERR_FILENO, output, strlen(output)))); } #if !defined(OS_IOS) void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { // NOTE: This code MUST be async-signal safe. // NO malloc or stdio is allowed here. // Record the fact that we are in the signal handler now, so that the rest // of StackTrace can behave in an async-signal-safe manner. in_signal_handler = 1; if (BeingDebugged()) BreakDebugger(); PrintToStderr("Received signal "); char buf[1024] = { 0 }; internal::itoa_r(signal, buf, sizeof(buf), 10, 0); PrintToStderr(buf); if (signal == SIGBUS) { if (info->si_code == BUS_ADRALN) PrintToStderr(" BUS_ADRALN "); else if (info->si_code == BUS_ADRERR) PrintToStderr(" BUS_ADRERR "); else if (info->si_code == BUS_OBJERR) PrintToStderr(" BUS_OBJERR "); else PrintToStderr(" <unknown> "); } else if (signal == SIGFPE) { if (info->si_code == FPE_FLTDIV) PrintToStderr(" FPE_FLTDIV "); else if (info->si_code == FPE_FLTINV) PrintToStderr(" FPE_FLTINV "); else if (info->si_code == FPE_FLTOVF) PrintToStderr(" FPE_FLTOVF "); else if (info->si_code == FPE_FLTRES) PrintToStderr(" FPE_FLTRES "); else if (info->si_code == FPE_FLTSUB) PrintToStderr(" FPE_FLTSUB "); else if (info->si_code == FPE_FLTUND) PrintToStderr(" FPE_FLTUND "); else if (info->si_code == FPE_INTDIV) PrintToStderr(" FPE_INTDIV "); else if (info->si_code == FPE_INTOVF) PrintToStderr(" FPE_INTOVF "); else PrintToStderr(" <unknown> "); } else if (signal == SIGILL) { if (info->si_code == ILL_BADSTK) PrintToStderr(" ILL_BADSTK "); else if (info->si_code == ILL_COPROC) PrintToStderr(" ILL_COPROC "); else if (info->si_code == ILL_ILLOPN) PrintToStderr(" ILL_ILLOPN "); else if (info->si_code == ILL_ILLADR) PrintToStderr(" ILL_ILLADR "); else if (info->si_code == ILL_ILLTRP) PrintToStderr(" ILL_ILLTRP "); else if (info->si_code == ILL_PRVOPC) PrintToStderr(" ILL_PRVOPC "); else if (info->si_code == ILL_PRVREG) PrintToStderr(" ILL_PRVREG "); else PrintToStderr(" <unknown> "); } else if (signal == SIGSEGV) { if (info->si_code == SEGV_MAPERR) PrintToStderr(" SEGV_MAPERR "); else if (info->si_code == SEGV_ACCERR) PrintToStderr(" SEGV_ACCERR "); else PrintToStderr(" <unknown> "); } if (signal == SIGBUS || signal == SIGFPE || signal == SIGILL || signal == SIGSEGV) { internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr), buf, sizeof(buf), 16, 12); PrintToStderr(buf); } PrintToStderr("\n"); debug::StackTrace().Print(); #if defined(OS_LINUX) #if ARCH_CPU_X86_FAMILY ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); const struct { const char* label; greg_t value; } registers[] = { #if ARCH_CPU_32_BITS { " gs: ", context->uc_mcontext.gregs[REG_GS] }, { " fs: ", context->uc_mcontext.gregs[REG_FS] }, { " es: ", context->uc_mcontext.gregs[REG_ES] }, { " ds: ", context->uc_mcontext.gregs[REG_DS] }, { " edi: ", context->uc_mcontext.gregs[REG_EDI] }, { " esi: ", context->uc_mcontext.gregs[REG_ESI] }, { " ebp: ", context->uc_mcontext.gregs[REG_EBP] }, { " esp: ", context->uc_mcontext.gregs[REG_ESP] }, { " ebx: ", context->uc_mcontext.gregs[REG_EBX] }, { " edx: ", context->uc_mcontext.gregs[REG_EDX] }, { " ecx: ", context->uc_mcontext.gregs[REG_ECX] }, { " eax: ", context->uc_mcontext.gregs[REG_EAX] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " err: ", context->uc_mcontext.gregs[REG_ERR] }, { " ip: ", context->uc_mcontext.gregs[REG_EIP] }, { " cs: ", context->uc_mcontext.gregs[REG_CS] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " usp: ", context->uc_mcontext.gregs[REG_UESP] }, { " ss: ", context->uc_mcontext.gregs[REG_SS] }, #elif ARCH_CPU_64_BITS { " r8: ", context->uc_mcontext.gregs[REG_R8] }, { " r9: ", context->uc_mcontext.gregs[REG_R9] }, { " r10: ", context->uc_mcontext.gregs[REG_R10] }, { " r11: ", context->uc_mcontext.gregs[REG_R11] }, { " r12: ", context->uc_mcontext.gregs[REG_R12] }, { " r13: ", context->uc_mcontext.gregs[REG_R13] }, { " r14: ", context->uc_mcontext.gregs[REG_R14] }, { " r15: ", context->uc_mcontext.gregs[REG_R15] }, { " di: ", context->uc_mcontext.gregs[REG_RDI] }, { " si: ", context->uc_mcontext.gregs[REG_RSI] }, { " bp: ", context->uc_mcontext.gregs[REG_RBP] }, { " bx: ", context->uc_mcontext.gregs[REG_RBX] }, { " dx: ", context->uc_mcontext.gregs[REG_RDX] }, { " ax: ", context->uc_mcontext.gregs[REG_RAX] }, { " cx: ", context->uc_mcontext.gregs[REG_RCX] }, { " sp: ", context->uc_mcontext.gregs[REG_RSP] }, { " ip: ", context->uc_mcontext.gregs[REG_RIP] }, { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, { " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] }, { " erf: ", context->uc_mcontext.gregs[REG_ERR] }, { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, { " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] }, { " cr2: ", context->uc_mcontext.gregs[REG_CR2] }, #endif }; #if ARCH_CPU_32_BITS const int kRegisterPadding = 8; #elif ARCH_CPU_64_BITS const int kRegisterPadding = 16; #endif for (size_t i = 0; i < ARRAYSIZE_UNSAFE(registers); i++) { PrintToStderr(registers[i].label); internal::itoa_r(registers[i].value, buf, sizeof(buf), 16, kRegisterPadding); PrintToStderr(buf); if ((i + 1) % 4 == 0) PrintToStderr("\n"); } PrintToStderr("\n"); #endif #elif defined(OS_MACOSX) // TODO(shess): Port to 64-bit. #if ARCH_CPU_X86_FAMILY && ARCH_CPU_32_BITS ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); size_t len; // NOTE: Even |snprintf()| is not on the approved list for signal // handlers, but buffered I/O is definitely not on the list due to // potential for |malloc()|. len = static_cast<size_t>( snprintf(buf, sizeof(buf), "ax: %x, bx: %x, cx: %x, dx: %x\n", context->uc_mcontext->__ss.__eax, context->uc_mcontext->__ss.__ebx, context->uc_mcontext->__ss.__ecx, context->uc_mcontext->__ss.__edx)); write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); len = static_cast<size_t>( snprintf(buf, sizeof(buf), "di: %x, si: %x, bp: %x, sp: %x, ss: %x, flags: %x\n", context->uc_mcontext->__ss.__edi, context->uc_mcontext->__ss.__esi, context->uc_mcontext->__ss.__ebp, context->uc_mcontext->__ss.__esp, context->uc_mcontext->__ss.__ss, context->uc_mcontext->__ss.__eflags)); write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); len = static_cast<size_t>( snprintf(buf, sizeof(buf), "ip: %x, cs: %x, ds: %x, es: %x, fs: %x, gs: %x\n", context->uc_mcontext->__ss.__eip, context->uc_mcontext->__ss.__cs, context->uc_mcontext->__ss.__ds, context->uc_mcontext->__ss.__es, context->uc_mcontext->__ss.__fs, context->uc_mcontext->__ss.__gs)); write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); #endif // ARCH_CPU_32_BITS #endif // defined(OS_MACOSX) _exit(1); } #endif // !defined(OS_IOS) class PrintBacktraceOutputHandler : public BacktraceOutputHandler { public: PrintBacktraceOutputHandler() {} virtual void HandleOutput(const char* output) OVERRIDE { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. PrintToStderr(output); } private: DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); }; class StreamBacktraceOutputHandler : public BacktraceOutputHandler { public: explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) { } virtual void HandleOutput(const char* output) OVERRIDE { (*os_) << output; } private: std::ostream* os_; DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); }; #if !defined(OS_IOS) void WarmUpBacktrace() { // Warm up stack trace infrastructure. It turns out that on the first // call glibc initializes some internal data structures using pthread_once, // and even backtrace() can call malloc(), leading to hangs. // // Example stack trace snippet (with tcmalloc): // // #8 0x0000000000a173b5 in tc_malloc // at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 // #9 0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") // at dl-open.c:639 // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 // #16 __GI___libc_dlopen_mode at dl-libc.c:165 // #17 0x00007ffff61ef8f5 in init // at ../sysdeps/x86_64/../ia64/backtrace.c:53 // #18 0x00007ffff6aad400 in pthread_once // at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 // #19 0x00007ffff61efa14 in __GI___backtrace // at ../sysdeps/x86_64/../ia64/backtrace.c:104 // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace // at base/debug/stack_trace_posix.cc:175 // #21 0x00000000007a4ae5 in // base::(anonymous namespace)::StackDumpSignalHandler // at base/process_util_posix.cc:172 // #22 <signal handler called> StackTrace stack_trace; } #endif // !defined(OS_IOS) } // namespace #if !defined(OS_IOS) bool EnableInProcessStackDumping() { // When running in an application, our code typically expects SIGPIPE // to be ignored. Therefore, when testing that same code, it should run // with SIGPIPE ignored as well. struct sigaction sigpipe_action; memset(&sigpipe_action, 0, sizeof(sigpipe_action)); sigpipe_action.sa_handler = SIG_IGN; sigemptyset(&sigpipe_action.sa_mask); bool success = (sigaction(SIGPIPE, &sigpipe_action, NULL) == 0); // Avoid hangs during backtrace initialization, see above. WarmUpBacktrace(); struct sigaction action; memset(&action, 0, sizeof(action)); action.sa_flags = SA_RESETHAND | SA_SIGINFO; action.sa_sigaction = &StackDumpSignalHandler; sigemptyset(&action.sa_mask); success &= (sigaction(SIGILL, &action, NULL) == 0); success &= (sigaction(SIGABRT, &action, NULL) == 0); success &= (sigaction(SIGFPE, &action, NULL) == 0); success &= (sigaction(SIGBUS, &action, NULL) == 0); success &= (sigaction(SIGSEGV, &action, NULL) == 0); success &= (sigaction(SIGSYS, &action, NULL) == 0); return success; } #endif // !defined(OS_IOS) StackTrace::StackTrace() { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. // Though the backtrace API man page does not list any possible negative // return values, we take no chance. count_ = std::max(backtrace(trace_, arraysize(trace_)), 0); } void StackTrace::Print() const { // NOTE: This code MUST be async-signal safe (it's used by in-process // stack dumping signal handler). NO malloc or stdio is allowed here. PrintBacktraceOutputHandler handler; ProcessBacktrace(trace_, count_, &handler); } void StackTrace::OutputToStream(std::ostream* os) const { StreamBacktraceOutputHandler handler(os); ProcessBacktrace(trace_, count_, &handler); } namespace internal { // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. char *itoa_r(intptr_t i, char *buf, size_t sz, int base, size_t padding) { // Make sure we can write at least one NUL byte. size_t n = 1; if (n > sz) return NULL; if (base < 2 || base > 16) { buf[0] = '\000'; return NULL; } char *start = buf; uintptr_t j = i; // Handle negative numbers (only for base 10). if (i < 0 && base == 10) { j = -i; // Make sure we can write the '-' character. if (++n > sz) { buf[0] = '\000'; return NULL; } *start++ = '-'; } // Loop until we have converted the entire number. Output at least one // character (i.e. '0'). char *ptr = start; do { // Make sure there is still enough space left in our output buffer. if (++n > sz) { buf[0] = '\000'; return NULL; } // Output the next digit. *ptr++ = "0123456789abcdef"[j % base]; j /= base; if (padding > 0) padding--; } while (j > 0 || padding > 0); // Terminate the output with a NUL character. *ptr = '\000'; // Conversion to ASCII actually resulted in the digits being in reverse // order. We can't easily generate them in forward order, as we can't tell // the number of characters needed until we are done converting. // So, now, we reverse the string (except for the possible "-" sign). while (--ptr > start) { char ch = *ptr; *ptr = *start; *start++ = ch; } return buf; } } // namespace internal } // namespace debug } // namespace base