// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file tests the built-in matchers generated by a script. #include "gmock/gmock-generated-matchers.h" #include <list> #include <map> #include <set> #include <sstream> #include <string> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "gtest/gtest-spi.h" namespace { using std::list; using std::map; using std::pair; using std::set; using std::stringstream; using std::vector; using std::tr1::get; using std::tr1::make_tuple; using std::tr1::tuple; using testing::_; using testing::Args; using testing::Contains; using testing::ElementsAre; using testing::ElementsAreArray; using testing::Eq; using testing::Ge; using testing::Gt; using testing::Lt; using testing::MakeMatcher; using testing::Matcher; using testing::MatcherInterface; using testing::MatchResultListener; using testing::Ne; using testing::Not; using testing::Pointee; using testing::PrintToString; using testing::Ref; using testing::StaticAssertTypeEq; using testing::StrEq; using testing::Value; using testing::internal::string; // Returns the description of the given matcher. template <typename T> string Describe(const Matcher<T>& m) { stringstream ss; m.DescribeTo(&ss); return ss.str(); } // Returns the description of the negation of the given matcher. template <typename T> string DescribeNegation(const Matcher<T>& m) { stringstream ss; m.DescribeNegationTo(&ss); return ss.str(); } // Returns the reason why x matches, or doesn't match, m. template <typename MatcherType, typename Value> string Explain(const MatcherType& m, const Value& x) { stringstream ss; m.ExplainMatchResultTo(x, &ss); return ss.str(); } // Tests Args<k0, ..., kn>(m). TEST(ArgsTest, AcceptsZeroTemplateArg) { const tuple<int, bool> t(5, true); EXPECT_THAT(t, Args<>(Eq(tuple<>()))); EXPECT_THAT(t, Not(Args<>(Ne(tuple<>())))); } TEST(ArgsTest, AcceptsOneTemplateArg) { const tuple<int, bool> t(5, true); EXPECT_THAT(t, Args<0>(Eq(make_tuple(5)))); EXPECT_THAT(t, Args<1>(Eq(make_tuple(true)))); EXPECT_THAT(t, Not(Args<1>(Eq(make_tuple(false))))); } TEST(ArgsTest, AcceptsTwoTemplateArgs) { const tuple<short, int, long> t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 1>(Lt()))); EXPECT_THAT(t, (Args<1, 2>(Lt()))); EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); } TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { const tuple<short, int, long> t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 0>(Eq()))); EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); } TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { const tuple<short, int, long> t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<2, 0>(Gt()))); EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); } // The MATCHER*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif MATCHER(SumIsZero, "") { return get<0>(arg) + get<1>(arg) + get<2>(arg) == 0; } TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { EXPECT_THAT(make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); EXPECT_THAT(make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); } TEST(ArgsTest, CanBeNested) { const tuple<short, int, long, int> t(4, 5, 6L, 6); // NOLINT EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); } TEST(ArgsTest, CanMatchTupleByValue) { typedef tuple<char, int, int> Tuple3; const Matcher<Tuple3> m = Args<1, 2>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); } TEST(ArgsTest, CanMatchTupleByReference) { typedef tuple<char, char, int> Tuple3; const Matcher<const Tuple3&> m = Args<0, 1>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); } // Validates that arg is printed as str. MATCHER_P(PrintsAs, str, "") { return testing::PrintToString(arg) == str; } TEST(ArgsTest, AcceptsTenTemplateArgs) { EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); EXPECT_THAT(make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); } TEST(ArgsTest, DescirbesSelfCorrectly) { const Matcher<tuple<int, bool, char> > m = Args<2, 0>(Lt()); EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " "the first < the second", Describe(m)); } TEST(ArgsTest, DescirbesNestedArgsCorrectly) { const Matcher<const tuple<int, bool, char, int>&> m = Args<0, 2, 3>(Args<2, 0>(Lt())); EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " "whose fields (#2, #0) are a pair where the first < the second", Describe(m)); } TEST(ArgsTest, DescribesNegationCorrectly) { const Matcher<tuple<int, char> > m = Args<1, 0>(Gt()); EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " "where the first > the second", DescribeNegation(m)); } TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { const Matcher<tuple<bool, int, int> > m = Args<1, 2>(Eq()); EXPECT_EQ("whose fields (#1, #2) are (42, 42)", Explain(m, make_tuple(false, 42, 42))); EXPECT_EQ("whose fields (#1, #2) are (42, 43)", Explain(m, make_tuple(false, 42, 43))); } // For testing Args<>'s explanation. class LessThanMatcher : public MatcherInterface<tuple<char, int> > { public: virtual void DescribeTo(::std::ostream* os) const {} virtual bool MatchAndExplain(tuple<char, int> value, MatchResultListener* listener) const { const int diff = get<0>(value) - get<1>(value); if (diff > 0) { *listener << "where the first value is " << diff << " more than the second"; } return diff < 0; } }; Matcher<tuple<char, int> > LessThan() { return MakeMatcher(new LessThanMatcher); } TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { const Matcher<tuple<char, int, int> > m = Args<0, 2>(LessThan()); EXPECT_EQ("whose fields (#0, #2) are ('a' (97, 0x61), 42), " "where the first value is 55 more than the second", Explain(m, make_tuple('a', 42, 42))); EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", Explain(m, make_tuple('\0', 42, 43))); } // For testing ExplainMatchResultTo(). class GreaterThanMatcher : public MatcherInterface<int> { public: explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {} virtual void DescribeTo(::std::ostream* os) const { *os << "is greater than " << rhs_; } virtual bool MatchAndExplain(int lhs, MatchResultListener* listener) const { const int diff = lhs - rhs_; if (diff > 0) { *listener << "which is " << diff << " more than " << rhs_; } else if (diff == 0) { *listener << "which is the same as " << rhs_; } else { *listener << "which is " << -diff << " less than " << rhs_; } return lhs > rhs_; } private: int rhs_; }; Matcher<int> GreaterThan(int n) { return MakeMatcher(new GreaterThanMatcher(n)); } // Tests for ElementsAre(). // Evaluates to the number of elements in 'array'. #define GMOCK_ARRAY_SIZE_(array) (sizeof(array)/sizeof(array[0])) TEST(ElementsAreTest, CanDescribeExpectingNoElement) { Matcher<const vector<int>&> m = ElementsAre(); EXPECT_EQ("is empty", Describe(m)); } TEST(ElementsAreTest, CanDescribeExpectingOneElement) { Matcher<vector<int> > m = ElementsAre(Gt(5)); EXPECT_EQ("has 1 element that is > 5", Describe(m)); } TEST(ElementsAreTest, CanDescribeExpectingManyElements) { Matcher<list<string> > m = ElementsAre(StrEq("one"), "two"); EXPECT_EQ("has 2 elements where\n" "element #0 is equal to \"one\",\n" "element #1 is equal to \"two\"", Describe(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) { Matcher<vector<int> > m = ElementsAre(); EXPECT_EQ("isn't empty", DescribeNegation(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElment) { Matcher<const list<int>& > m = ElementsAre(Gt(5)); EXPECT_EQ("doesn't have 1 element, or\n" "element #0 isn't > 5", DescribeNegation(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) { Matcher<const list<string>& > m = ElementsAre("one", "two"); EXPECT_EQ("doesn't have 2 elements, or\n" "element #0 isn't equal to \"one\", or\n" "element #1 isn't equal to \"two\"", DescribeNegation(m)); } TEST(ElementsAreTest, DoesNotExplainTrivialMatch) { Matcher<const list<int>& > m = ElementsAre(1, Ne(2)); list<int> test_list; test_list.push_back(1); test_list.push_back(3); EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything. } TEST(ElementsAreTest, ExplainsNonTrivialMatch) { Matcher<const vector<int>& > m = ElementsAre(GreaterThan(1), 0, GreaterThan(2)); const int a[] = { 10, 0, 100 }; vector<int> test_vector(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_EQ("whose element #0 matches, which is 9 more than 1,\n" "and whose element #2 matches, which is 98 more than 2", Explain(m, test_vector)); } TEST(ElementsAreTest, CanExplainMismatchWrongSize) { Matcher<const list<int>& > m = ElementsAre(1, 3); list<int> test_list; // No need to explain when the container is empty. EXPECT_EQ("", Explain(m, test_list)); test_list.push_back(1); EXPECT_EQ("which has 1 element", Explain(m, test_list)); } TEST(ElementsAreTest, CanExplainMismatchRightSize) { Matcher<const vector<int>& > m = ElementsAre(1, GreaterThan(5)); vector<int> v; v.push_back(2); v.push_back(1); EXPECT_EQ("whose element #0 doesn't match", Explain(m, v)); v[0] = 1; EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5", Explain(m, v)); } TEST(ElementsAreTest, MatchesOneElementVector) { vector<string> test_vector; test_vector.push_back("test string"); EXPECT_THAT(test_vector, ElementsAre(StrEq("test string"))); } TEST(ElementsAreTest, MatchesOneElementList) { list<string> test_list; test_list.push_back("test string"); EXPECT_THAT(test_list, ElementsAre("test string")); } TEST(ElementsAreTest, MatchesThreeElementVector) { vector<string> test_vector; test_vector.push_back("one"); test_vector.push_back("two"); test_vector.push_back("three"); EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _)); } TEST(ElementsAreTest, MatchesOneElementEqMatcher) { vector<int> test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(Eq(4))); } TEST(ElementsAreTest, MatchesOneElementAnyMatcher) { vector<int> test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(_)); } TEST(ElementsAreTest, MatchesOneElementValue) { vector<int> test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(4)); } TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) { vector<int> test_vector; test_vector.push_back(1); test_vector.push_back(2); test_vector.push_back(3); EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _)); } TEST(ElementsAreTest, MatchesTenElementVector) { const int a[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; vector<int> test_vector(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(test_vector, // The element list can contain values and/or matchers // of different types. ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _)); } TEST(ElementsAreTest, DoesNotMatchWrongSize) { vector<string> test_vector; test_vector.push_back("test string"); test_vector.push_back("test string"); Matcher<vector<string> > m = ElementsAre(StrEq("test string")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, DoesNotMatchWrongValue) { vector<string> test_vector; test_vector.push_back("other string"); Matcher<vector<string> > m = ElementsAre(StrEq("test string")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, DoesNotMatchWrongOrder) { vector<string> test_vector; test_vector.push_back("one"); test_vector.push_back("three"); test_vector.push_back("two"); Matcher<vector<string> > m = ElementsAre( StrEq("one"), StrEq("two"), StrEq("three")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, WorksForNestedContainer) { const char* strings[] = { "Hi", "world" }; vector<list<char> > nested; for (size_t i = 0; i < GMOCK_ARRAY_SIZE_(strings); i++) { nested.push_back(list<char>(strings[i], strings[i] + strlen(strings[i]))); } EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')), ElementsAre('w', 'o', _, _, 'd'))); EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'), ElementsAre('w', 'o', _, _, 'd')))); } TEST(ElementsAreTest, WorksWithByRefElementMatchers) { int a[] = { 0, 1, 2 }; vector<int> v(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2]))); EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2])))); } TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) { int a[] = { 0, 1, 2 }; vector<int> v(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _))); EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3)))); } TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) { int array[] = { 0, 1, 2 }; EXPECT_THAT(array, ElementsAre(0, 1, _)); EXPECT_THAT(array, Not(ElementsAre(1, _, _))); EXPECT_THAT(array, Not(ElementsAre(0, _))); } class NativeArrayPassedAsPointerAndSize { public: NativeArrayPassedAsPointerAndSize() {} MOCK_METHOD2(Helper, void(int* array, int size)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize); }; TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) { int array[] = { 0, 1 }; ::std::tr1::tuple<int*, size_t> array_as_tuple(array, 2); EXPECT_THAT(array_as_tuple, ElementsAre(0, 1)); EXPECT_THAT(array_as_tuple, Not(ElementsAre(0))); NativeArrayPassedAsPointerAndSize helper; EXPECT_CALL(helper, Helper(_, _)) .With(ElementsAre(0, 1)); helper.Helper(array, 2); } TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) { const char a2[][3] = { "hi", "lo" }; EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'), ElementsAre('l', 'o', '\0'))); EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo"))); EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')), ElementsAre('l', 'o', '\0'))); } // Tests for ElementsAreArray(). Since ElementsAreArray() shares most // of the implementation with ElementsAre(), we don't test it as // thoroughly here. TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) { const int a[] = { 1, 2, 3 }; vector<int> test_vector(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(test_vector, ElementsAreArray(a)); test_vector[2] = 0; EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); } TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) { const char* a[] = { "one", "two", "three" }; vector<string> test_vector(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(test_vector, ElementsAreArray(a, GMOCK_ARRAY_SIZE_(a))); const char** p = a; test_vector[0] = "1"; EXPECT_THAT(test_vector, Not(ElementsAreArray(p, GMOCK_ARRAY_SIZE_(a)))); } TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) { const char* a[] = { "one", "two", "three" }; vector<string> test_vector(a, a + GMOCK_ARRAY_SIZE_(a)); EXPECT_THAT(test_vector, ElementsAreArray(a)); test_vector[0] = "1"; EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); } TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) { const Matcher<string> kMatcherArray[] = { StrEq("one"), StrEq("two"), StrEq("three") }; vector<string> test_vector; test_vector.push_back("one"); test_vector.push_back("two"); test_vector.push_back("three"); EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray)); test_vector.push_back("three"); EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray))); } // Since ElementsAre() and ElementsAreArray() share much of the // implementation, we only do a sanity test for native arrays here. TEST(ElementsAreArrayTest, WorksWithNativeArray) { ::std::string a[] = { "hi", "ho" }; ::std::string b[] = { "hi", "ho" }; EXPECT_THAT(a, ElementsAreArray(b)); EXPECT_THAT(a, ElementsAreArray(b, 2)); EXPECT_THAT(a, Not(ElementsAreArray(b, 1))); } // Tests for the MATCHER*() macro family. // Tests that a simple MATCHER() definition works. MATCHER(IsEven, "") { return (arg % 2) == 0; } TEST(MatcherMacroTest, Works) { const Matcher<int> m = IsEven(); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(7)); EXPECT_EQ("is even", Describe(m)); EXPECT_EQ("not (is even)", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 6)); EXPECT_EQ("", Explain(m, 7)); } // This also tests that the description string can reference 'negation'. MATCHER(IsEven2, negation ? "is odd" : "is even") { if ((arg % 2) == 0) { // Verifies that we can stream to result_listener, a listener // supplied by the MATCHER macro implicitly. *result_listener << "OK"; return true; } else { *result_listener << "% 2 == " << (arg % 2); return false; } } // This also tests that the description string can reference matcher // parameters. MATCHER_P2(EqSumOf, x, y, string(negation ? "doesn't equal" : "equals") + " the sum of " + PrintToString(x) + " and " + PrintToString(y)) { if (arg == (x + y)) { *result_listener << "OK"; return true; } else { // Verifies that we can stream to the underlying stream of // result_listener. if (result_listener->stream() != NULL) { *result_listener->stream() << "diff == " << (x + y - arg); } return false; } } // Tests that the matcher description can reference 'negation' and the // matcher parameters. TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { const Matcher<int> m1 = IsEven2(); EXPECT_EQ("is even", Describe(m1)); EXPECT_EQ("is odd", DescribeNegation(m1)); const Matcher<int> m2 = EqSumOf(5, 9); EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); } // Tests explaining match result in a MATCHER* macro. TEST(MatcherMacroTest, CanExplainMatchResult) { const Matcher<int> m1 = IsEven2(); EXPECT_EQ("OK", Explain(m1, 4)); EXPECT_EQ("% 2 == 1", Explain(m1, 5)); const Matcher<int> m2 = EqSumOf(1, 2); EXPECT_EQ("OK", Explain(m2, 3)); EXPECT_EQ("diff == -1", Explain(m2, 4)); } // Tests that the body of MATCHER() can reference the type of the // value being matched. MATCHER(IsEmptyString, "") { StaticAssertTypeEq< ::std::string, arg_type>(); return arg == ""; } MATCHER(IsEmptyStringByRef, "") { StaticAssertTypeEq<const ::std::string&, arg_type>(); return arg == ""; } TEST(MatcherMacroTest, CanReferenceArgType) { const Matcher< ::std::string> m1 = IsEmptyString(); EXPECT_TRUE(m1.Matches("")); const Matcher<const ::std::string&> m2 = IsEmptyStringByRef(); EXPECT_TRUE(m2.Matches("")); } // Tests that MATCHER() can be used in a namespace. namespace matcher_test { MATCHER(IsOdd, "") { return (arg % 2) != 0; } } // namespace matcher_test TEST(MatcherMacroTest, WorksInNamespace) { Matcher<int> m = matcher_test::IsOdd(); EXPECT_FALSE(m.Matches(4)); EXPECT_TRUE(m.Matches(5)); } // Tests that Value() can be used to compose matchers. MATCHER(IsPositiveOdd, "") { return Value(arg, matcher_test::IsOdd()) && arg > 0; } TEST(MatcherMacroTest, CanBeComposedUsingValue) { EXPECT_THAT(3, IsPositiveOdd()); EXPECT_THAT(4, Not(IsPositiveOdd())); EXPECT_THAT(-1, Not(IsPositiveOdd())); } // Tests that a simple MATCHER_P() definition works. MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, Works) { const Matcher<int> m = IsGreaterThan32And(5); EXPECT_TRUE(m.Matches(36)); EXPECT_FALSE(m.Matches(5)); EXPECT_EQ("is greater than 32 and 5", Describe(m)); EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that the description is calculated correctly from the matcher name. MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, GeneratesCorrectDescription) { const Matcher<int> m = _is_Greater_Than32and_(5); EXPECT_EQ("is greater than 32 and 5", Describe(m)); EXPECT_EQ("not (is greater than 32 and 5)", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that a MATCHER_P matcher can be explicitly instantiated with // a reference parameter type. class UncopyableFoo { public: explicit UncopyableFoo(char value) : value_(value) {} private: UncopyableFoo(const UncopyableFoo&); void operator=(const UncopyableFoo&); char value_; }; MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { UncopyableFoo foo1('1'), foo2('2'); const Matcher<const UncopyableFoo&> m = ReferencesUncopyable<const UncopyableFoo&>(foo1); EXPECT_TRUE(m.Matches(foo1)); EXPECT_FALSE(m.Matches(foo2)); // We don't want the address of the parameter printed, as most // likely it will just annoy the user. If the address is // interesting, the user should consider passing the parameter by // pointer instead. EXPECT_EQ("references uncopyable 1-byte object <31>", Describe(m)); } // Tests that the body of MATCHER_Pn() can reference the parameter // types. MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { StaticAssertTypeEq<int, foo_type>(); StaticAssertTypeEq<long, bar_type>(); // NOLINT StaticAssertTypeEq<char, baz_type>(); return arg == 0; } TEST(MatcherPnMacroTest, CanReferenceParamTypes) { EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); } // Tests that a MATCHER_Pn matcher can be explicitly instantiated with // reference parameter types. MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { return &arg == &variable1 || &arg == &variable2; } TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'), foo3('3'); const Matcher<const UncopyableFoo&> m = ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); EXPECT_TRUE(m.Matches(foo1)); EXPECT_TRUE(m.Matches(foo2)); EXPECT_FALSE(m.Matches(foo3)); } TEST(MatcherPnMacroTest, GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'); const Matcher<const UncopyableFoo&> m = ReferencesAnyOf<const UncopyableFoo&, const UncopyableFoo&>(foo1, foo2); // We don't want the addresses of the parameters printed, as most // likely they will just annoy the user. If the addresses are // interesting, the user should consider passing the parameters by // pointers instead. EXPECT_EQ("references any of (1-byte object <31>, 1-byte object <32>)", Describe(m)); } // Tests that a simple MATCHER_P2() definition works. MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } TEST(MatcherPnMacroTest, Works) { const Matcher<const long&> m = IsNotInClosedRange(10, 20); // NOLINT EXPECT_TRUE(m.Matches(36L)); EXPECT_FALSE(m.Matches(15L)); EXPECT_EQ("is not in closed range (10, 20)", Describe(m)); EXPECT_EQ("not (is not in closed range (10, 20))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36L)); EXPECT_EQ("", Explain(m, 15L)); } // Tests that MATCHER*() definitions can be overloaded on the number // of parameters; also tests MATCHER_Pn() where n >= 3. MATCHER(EqualsSumOf, "") { return arg == 0; } MATCHER_P(EqualsSumOf, a, "") { return arg == a; } MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { return arg == a + b + c + d + e + f; } MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { return arg == a + b + c + d + e + f + g; } MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { return arg == a + b + c + d + e + f + g + h; } MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { return arg == a + b + c + d + e + f + g + h + i; } MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { return arg == a + b + c + d + e + f + g + h + i + j; } TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { EXPECT_THAT(0, EqualsSumOf()); EXPECT_THAT(1, EqualsSumOf(1)); EXPECT_THAT(12, EqualsSumOf(10, 2)); EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); EXPECT_THAT("abcdef", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); EXPECT_THAT("abcdefg", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); EXPECT_THAT("abcdefgh", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h")); EXPECT_THAT("abcdefghi", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i')); EXPECT_THAT("abcdefghij", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j"))); EXPECT_THAT(1, Not(EqualsSumOf())); EXPECT_THAT(-1, Not(EqualsSumOf(1))); EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); EXPECT_THAT("abcdef ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); EXPECT_THAT("abcdefg ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'))); EXPECT_THAT("abcdefgh ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h"))); EXPECT_THAT("abcdefghi ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i'))); EXPECT_THAT("abcdefghij ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j")))); } // Tests that a MATCHER_Pn() definition can be instantiated with any // compatible parameter types. TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast<char>(3))); EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast<char>(3)))); EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); } // Tests that the matcher body can promote the parameter types. MATCHER_P2(EqConcat, prefix, suffix, "") { // The following lines promote the two parameters to desired types. std::string prefix_str(prefix); char suffix_char = static_cast<char>(suffix); return arg == prefix_str + suffix_char; } TEST(MatcherPnMacroTest, SimpleTypePromotion) { Matcher<std::string> no_promo = EqConcat(std::string("foo"), 't'); Matcher<const std::string&> promo = EqConcat("foo", static_cast<int>('t')); EXPECT_FALSE(no_promo.Matches("fool")); EXPECT_FALSE(promo.Matches("fool")); EXPECT_TRUE(no_promo.Matches("foot")); EXPECT_TRUE(promo.Matches("foot")); } // Verifies the type of a MATCHER*. TEST(MatcherPnMacroTest, TypesAreCorrect) { // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. EqualsSumOfMatcher a0 = EqualsSumOf(); // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. EqualsSumOfMatcherP<int> a1 = EqualsSumOf(1); // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk // variable, and so on. EqualsSumOfMatcherP2<int, char> a2 = EqualsSumOf(1, '2'); EqualsSumOfMatcherP3<int, int, char> a3 = EqualsSumOf(1, 2, '3'); EqualsSumOfMatcherP4<int, int, int, char> a4 = EqualsSumOf(1, 2, 3, '4'); EqualsSumOfMatcherP5<int, int, int, int, char> a5 = EqualsSumOf(1, 2, 3, 4, '5'); EqualsSumOfMatcherP6<int, int, int, int, int, char> a6 = EqualsSumOf(1, 2, 3, 4, 5, '6'); EqualsSumOfMatcherP7<int, int, int, int, int, int, char> a7 = EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); EqualsSumOfMatcherP8<int, int, int, int, int, int, int, char> a8 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); EqualsSumOfMatcherP9<int, int, int, int, int, int, int, int, char> a9 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); EqualsSumOfMatcherP10<int, int, int, int, int, int, int, int, int, char> a10 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); } // Tests that matcher-typed parameters can be used in Value() inside a // MATCHER_Pn definition. // Succeeds if arg matches exactly 2 of the 3 matchers. MATCHER_P3(TwoOf, m1, m2, m3, "") { const int count = static_cast<int>(Value(arg, m1)) + static_cast<int>(Value(arg, m2)) + static_cast<int>(Value(arg, m3)); return count == 2; } TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); } // Tests Contains(). TEST(ContainsTest, ListMatchesWhenElementIsInContainer) { list<int> some_list; some_list.push_back(3); some_list.push_back(1); some_list.push_back(2); EXPECT_THAT(some_list, Contains(1)); EXPECT_THAT(some_list, Contains(Gt(2.5))); EXPECT_THAT(some_list, Contains(Eq(2.0f))); list<string> another_list; another_list.push_back("fee"); another_list.push_back("fie"); another_list.push_back("foe"); another_list.push_back("fum"); EXPECT_THAT(another_list, Contains(string("fee"))); } TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) { list<int> some_list; some_list.push_back(3); some_list.push_back(1); EXPECT_THAT(some_list, Not(Contains(4))); } TEST(ContainsTest, SetMatchesWhenElementIsInContainer) { set<int> some_set; some_set.insert(3); some_set.insert(1); some_set.insert(2); EXPECT_THAT(some_set, Contains(Eq(1.0))); EXPECT_THAT(some_set, Contains(Eq(3.0f))); EXPECT_THAT(some_set, Contains(2)); set<const char*> another_set; another_set.insert("fee"); another_set.insert("fie"); another_set.insert("foe"); another_set.insert("fum"); EXPECT_THAT(another_set, Contains(Eq(string("fum")))); } TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) { set<int> some_set; some_set.insert(3); some_set.insert(1); EXPECT_THAT(some_set, Not(Contains(4))); set<const char*> c_string_set; c_string_set.insert("hello"); EXPECT_THAT(c_string_set, Not(Contains(string("hello").c_str()))); } TEST(ContainsTest, ExplainsMatchResultCorrectly) { const int a[2] = { 1, 2 }; Matcher<const int(&)[2]> m = Contains(2); EXPECT_EQ("whose element #1 matches", Explain(m, a)); m = Contains(3); EXPECT_EQ("", Explain(m, a)); m = Contains(GreaterThan(0)); EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a)); m = Contains(GreaterThan(10)); EXPECT_EQ("", Explain(m, a)); } TEST(ContainsTest, DescribesItselfCorrectly) { Matcher<vector<int> > m = Contains(1); EXPECT_EQ("contains at least one element that is equal to 1", Describe(m)); Matcher<vector<int> > m2 = Not(m); EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2)); } TEST(ContainsTest, MapMatchesWhenElementIsInContainer) { map<const char*, int> my_map; const char* bar = "a string"; my_map[bar] = 2; EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2))); map<string, int> another_map; another_map["fee"] = 1; another_map["fie"] = 2; another_map["foe"] = 3; another_map["fum"] = 4; EXPECT_THAT(another_map, Contains(pair<const string, int>(string("fee"), 1))); EXPECT_THAT(another_map, Contains(pair<const string, int>("fie", 2))); } TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) { map<int, int> some_map; some_map[1] = 11; some_map[2] = 22; EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23)))); } TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) { const char* string_array[] = { "fee", "fie", "foe", "fum" }; EXPECT_THAT(string_array, Contains(Eq(string("fum")))); } TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) { int int_array[] = { 1, 2, 3, 4 }; EXPECT_THAT(int_array, Not(Contains(5))); } TEST(ContainsTest, AcceptsMatcher) { const int a[] = { 1, 2, 3 }; EXPECT_THAT(a, Contains(Gt(2))); EXPECT_THAT(a, Not(Contains(Gt(4)))); } TEST(ContainsTest, WorksForNativeArrayAsTuple) { const int a[] = { 1, 2 }; const int* const pointer = a; EXPECT_THAT(make_tuple(pointer, 2), Contains(1)); EXPECT_THAT(make_tuple(pointer, 2), Not(Contains(Gt(3)))); } TEST(ContainsTest, WorksForTwoDimensionalNativeArray) { int a[][3] = { { 1, 2, 3 }, { 4, 5, 6 } }; EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6))); EXPECT_THAT(a, Contains(Contains(5))); EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5)))); EXPECT_THAT(a, Contains(Not(Contains(5)))); } namespace adl_test { // Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf // don't issue unqualified recursive calls. If they do, the argument dependent // name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found // as a candidate and the compilation will break due to an ambiguous overload. // The matcher must be in the same namespace as AllOf/AnyOf to make argument // dependent lookup find those. MATCHER(M, "") { return true; } template <typename T1, typename T2> bool AllOf(const T1& t1, const T2& t2) { return true; } TEST(AllOfTest, DoesNotCallAllOfUnqualified) { EXPECT_THAT(42, testing::AllOf( M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); } template <typename T1, typename T2> bool AnyOf(const T1& t1, const T2& t2) { return true; } TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) { EXPECT_THAT(42, testing::AnyOf( M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); } } // namespace adl_test #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace