// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/browser/crash_handler_host_linux.h" #include <stdint.h> #include <stdlib.h> #include <sys/socket.h> #include <sys/syscall.h> #include <unistd.h> #include "base/eintr_wrapper.h" #include "base/file_path.h" #include "base/format_macros.h" #include "base/linux_util.h" #include "base/logging.h" #include "base/memory/singleton.h" #include "base/message_loop.h" #include "base/path_service.h" #include "base/rand_util.h" #include "base/string_util.h" #include "base/task.h" #include "base/threading/thread.h" #include "breakpad/src/client/linux/handler/exception_handler.h" #include "breakpad/src/client/linux/minidump_writer/linux_dumper.h" #include "breakpad/src/client/linux/minidump_writer/minidump_writer.h" #include "chrome/app/breakpad_linux.h" #include "chrome/common/chrome_paths.h" #include "chrome/common/env_vars.h" #include "content/browser/browser_thread.h" using google_breakpad::ExceptionHandler; namespace { // The length of the control message: const unsigned kControlMsgSize = CMSG_SPACE(2*sizeof(int)) + CMSG_SPACE(sizeof(struct ucred)); // The length of the regular payload: const unsigned kCrashContextSize = sizeof(ExceptionHandler::CrashContext); // Handles the crash dump and frees the allocated BreakpadInfo struct. void CrashDumpTask(CrashHandlerHostLinux* handler, BreakpadInfo* info) { if (handler->IsShuttingDown()) return; HandleCrashDump(*info); delete[] info->filename; delete[] info->process_type; delete[] info->crash_url; delete[] info->guid; delete[] info->distro; delete info; } } // namespace // Since classes derived from CrashHandlerHostLinux are singletons, it's only // destroyed at the end of the processes lifetime, which is greater in span than // the lifetime of the IO message loop. DISABLE_RUNNABLE_METHOD_REFCOUNT(CrashHandlerHostLinux); CrashHandlerHostLinux::CrashHandlerHostLinux() : shutting_down_(false) { int fds[2]; // We use SOCK_SEQPACKET rather than SOCK_DGRAM to prevent the process from // sending datagrams to other sockets on the system. The sandbox may prevent // the process from calling socket() to create new sockets, but it'll still // inherit some sockets. With PF_UNIX+SOCK_DGRAM, it can call sendmsg to send // a datagram to any (abstract) socket on the same system. With // SOCK_SEQPACKET, this is prevented. CHECK_EQ(socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds), 0); static const int on = 1; // Enable passcred on the server end of the socket CHECK_EQ(setsockopt(fds[1], SOL_SOCKET, SO_PASSCRED, &on, sizeof(on)), 0); process_socket_ = fds[0]; browser_socket_ = fds[1]; BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, NewRunnableMethod(this, &CrashHandlerHostLinux::Init)); } CrashHandlerHostLinux::~CrashHandlerHostLinux() { HANDLE_EINTR(close(process_socket_)); HANDLE_EINTR(close(browser_socket_)); } void CrashHandlerHostLinux::Init() { MessageLoopForIO* ml = MessageLoopForIO::current(); CHECK(ml->WatchFileDescriptor( browser_socket_, true /* persistent */, MessageLoopForIO::WATCH_READ, &file_descriptor_watcher_, this)); ml->AddDestructionObserver(this); } void CrashHandlerHostLinux::InitCrashUploaderThread() { SetProcessType(); uploader_thread_.reset( new base::Thread(std::string(process_type_ + "_crash_uploader").c_str())); uploader_thread_->Start(); } void CrashHandlerHostLinux::OnFileCanWriteWithoutBlocking(int fd) { DCHECK(false); } void CrashHandlerHostLinux::OnFileCanReadWithoutBlocking(int fd) { DCHECK_EQ(fd, browser_socket_); // A process has crashed and has signaled us by writing a datagram // to the death signal socket. The datagram contains the crash context needed // for writing the minidump as well as a file descriptor and a credentials // block so that they can't lie about their pid. const size_t kIovSize = 7; struct msghdr msg = {0}; struct iovec iov[kIovSize]; // Freed in WriteDumpFile(); char* crash_context = new char[kCrashContextSize]; // Freed in CrashDumpTask(); char* guid = new char[kGuidSize + 1]; char* crash_url = new char[kMaxActiveURLSize + 1]; char* distro = new char[kDistroSize + 1]; char* tid_buf_addr = NULL; int tid_fd = -1; uint64_t uptime; char control[kControlMsgSize]; const ssize_t expected_msg_size = kCrashContextSize + kGuidSize + 1 + kMaxActiveURLSize + 1 + kDistroSize + 1 + sizeof(tid_buf_addr) + sizeof(tid_fd) + sizeof(uptime); iov[0].iov_base = crash_context; iov[0].iov_len = kCrashContextSize; iov[1].iov_base = guid; iov[1].iov_len = kGuidSize + 1; iov[2].iov_base = crash_url; iov[2].iov_len = kMaxActiveURLSize + 1; iov[3].iov_base = distro; iov[3].iov_len = kDistroSize + 1; iov[4].iov_base = &tid_buf_addr; iov[4].iov_len = sizeof(tid_buf_addr); iov[5].iov_base = &tid_fd; iov[5].iov_len = sizeof(tid_fd); iov[6].iov_base = &uptime; iov[6].iov_len = sizeof(uptime); msg.msg_iov = iov; msg.msg_iovlen = kIovSize; msg.msg_control = control; msg.msg_controllen = kControlMsgSize; const ssize_t msg_size = HANDLE_EINTR(recvmsg(browser_socket_, &msg, 0)); if (msg_size != expected_msg_size) { LOG(ERROR) << "Error reading from death signal socket. Crash dumping" << " is disabled." << " msg_size:" << msg_size << " errno:" << errno; file_descriptor_watcher_.StopWatchingFileDescriptor(); return; } if (msg.msg_controllen != kControlMsgSize || msg.msg_flags & ~MSG_TRUNC) { LOG(ERROR) << "Received death signal message with the wrong size;" << " msg.msg_controllen:" << msg.msg_controllen << " msg.msg_flags:" << msg.msg_flags << " kCrashContextSize:" << kCrashContextSize << " kControlMsgSize:" << kControlMsgSize; return; } // Walk the control payload an extract the file descriptor and validated pid. pid_t crashing_pid = -1; int partner_fd = -1; int signal_fd = -1; for (struct cmsghdr *hdr = CMSG_FIRSTHDR(&msg); hdr; hdr = CMSG_NXTHDR(&msg, hdr)) { if (hdr->cmsg_level != SOL_SOCKET) continue; if (hdr->cmsg_type == SCM_RIGHTS) { const unsigned len = hdr->cmsg_len - (((uint8_t*)CMSG_DATA(hdr)) - (uint8_t*)hdr); DCHECK_EQ(len % sizeof(int), 0u); const unsigned num_fds = len / sizeof(int); if (num_fds != 2) { // A nasty process could try and send us too many descriptors and // force a leak. LOG(ERROR) << "Death signal contained wrong number of descriptors;" << " num_fds:" << num_fds; for (unsigned i = 0; i < num_fds; ++i) HANDLE_EINTR(close(reinterpret_cast<int*>(CMSG_DATA(hdr))[i])); return; } else { partner_fd = reinterpret_cast<int*>(CMSG_DATA(hdr))[0]; signal_fd = reinterpret_cast<int*>(CMSG_DATA(hdr))[1]; } } else if (hdr->cmsg_type == SCM_CREDENTIALS) { const struct ucred *cred = reinterpret_cast<struct ucred*>(CMSG_DATA(hdr)); crashing_pid = cred->pid; } } if (crashing_pid == -1 || partner_fd == -1 || signal_fd == -1) { LOG(ERROR) << "Death signal message didn't contain all expected control" << " messages"; if (partner_fd >= 0) HANDLE_EINTR(close(partner_fd)); if (signal_fd >= 0) HANDLE_EINTR(close(signal_fd)); return; } // Kernel bug workaround (broken in 2.6.30 at least): // The kernel doesn't translate PIDs in SCM_CREDENTIALS across PID // namespaces. Thus |crashing_pid| might be garbage from our point of view. // In the future we can remove this workaround, but we have to wait a couple // of years to be sure that it's worked its way out into the world. // The crashing process closes its copy of the signal_fd immediately after // calling sendmsg(). We can thus not reliably look for with with // FindProcessHoldingSocket(). But by necessity, it has to keep the // partner_fd open until the crashdump is complete. uint64_t inode_number; if (!base::FileDescriptorGetInode(&inode_number, partner_fd)) { LOG(WARNING) << "Failed to get inode number for passed socket"; HANDLE_EINTR(close(partner_fd)); HANDLE_EINTR(close(signal_fd)); return; } HANDLE_EINTR(close(partner_fd)); pid_t actual_crashing_pid = -1; if (!base::FindProcessHoldingSocket(&actual_crashing_pid, inode_number)) { LOG(WARNING) << "Failed to find process holding other end of crash reply " "socket"; HANDLE_EINTR(close(signal_fd)); return; } if (actual_crashing_pid != crashing_pid) { crashing_pid = actual_crashing_pid; // The crashing TID set inside the compromised context via sys_gettid() // in ExceptionHandler::HandleSignal is also wrong and needs to be // translated. // // We expect the crashing thread to be in sys_read(), waiting for use to // write to |signal_fd|. Most newer kernels where we have the different pid // namespaces also have /proc/[pid]/syscall, so we can look through // |actual_crashing_pid|'s thread group and find the thread that's in the // read syscall with the right arguments. std::string expected_syscall_data; // /proc/[pid]/syscall is formatted as follows: // syscall_number arg1 ... arg6 sp pc // but we just check syscall_number through arg3. base::StringAppendF(&expected_syscall_data, "%d 0x%x %p 0x1 ", SYS_read, tid_fd, tid_buf_addr); pid_t crashing_tid = base::FindThreadIDWithSyscall(crashing_pid, expected_syscall_data); if (crashing_tid == -1) { // We didn't find the thread we want. Maybe it didn't reach sys_read() // yet, or the kernel doesn't support /proc/[pid]/syscall or the thread // went away. We'll just take a guess here and assume the crashing // thread is the thread group leader. crashing_tid = crashing_pid; } ExceptionHandler::CrashContext* bad_context = reinterpret_cast<ExceptionHandler::CrashContext*>(crash_context); bad_context->tid = crashing_tid; } // Sanitize the string data a bit more guid[kGuidSize] = crash_url[kMaxActiveURLSize] = distro[kDistroSize] = 0; // Freed in CrashDumpTask(); BreakpadInfo* info = new BreakpadInfo; info->process_type_length = process_type_.length(); char* process_type_str = new char[info->process_type_length + 1]; process_type_.copy(process_type_str, info->process_type_length); process_type_str[info->process_type_length] = '\0'; info->process_type = process_type_str; info->crash_url_length = strlen(crash_url); info->crash_url = crash_url; info->guid_length = strlen(guid); info->guid = guid; info->distro_length = strlen(distro); info->distro = distro; info->upload = (getenv(env_vars::kHeadless) == NULL); info->process_start_time = uptime; BrowserThread::PostTask( BrowserThread::FILE, FROM_HERE, NewRunnableMethod(this, &CrashHandlerHostLinux::WriteDumpFile, info, crashing_pid, crash_context, signal_fd)); } void CrashHandlerHostLinux::WriteDumpFile(BreakpadInfo* info, pid_t crashing_pid, char* crash_context, int signal_fd) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::FILE)); FilePath dumps_path("/tmp"); PathService::Get(base::DIR_TEMP, &dumps_path); if (!info->upload) PathService::Get(chrome::DIR_CRASH_DUMPS, &dumps_path); const uint64 rand = base::RandUint64(); const std::string minidump_filename = StringPrintf("%s/chromium-%s-minidump-%016" PRIx64 ".dmp", dumps_path.value().c_str(), process_type_.c_str(), rand); if (!google_breakpad::WriteMinidump(minidump_filename.c_str(), crashing_pid, crash_context, kCrashContextSize)) { LOG(ERROR) << "Failed to write crash dump for pid " << crashing_pid; } delete[] crash_context; // Freed in CrashDumpTask(); char* minidump_filename_str = new char[minidump_filename.length() + 1]; minidump_filename.copy(minidump_filename_str, minidump_filename.length()); minidump_filename_str[minidump_filename.length()] = '\0'; info->filename = minidump_filename_str; BrowserThread::PostTask( BrowserThread::IO, FROM_HERE, NewRunnableMethod(this, &CrashHandlerHostLinux::QueueCrashDumpTask, info, signal_fd)); } void CrashHandlerHostLinux::QueueCrashDumpTask(BreakpadInfo* info, int signal_fd) { DCHECK(BrowserThread::CurrentlyOn(BrowserThread::IO)); // Send the done signal to the process: it can exit now. struct msghdr msg = {0}; struct iovec done_iov; done_iov.iov_base = const_cast<char*>("\x42"); done_iov.iov_len = 1; msg.msg_iov = &done_iov; msg.msg_iovlen = 1; HANDLE_EINTR(sendmsg(signal_fd, &msg, MSG_DONTWAIT | MSG_NOSIGNAL)); HANDLE_EINTR(close(signal_fd)); uploader_thread_->message_loop()->PostTask( FROM_HERE, NewRunnableFunction(&CrashDumpTask, this, info)); } void CrashHandlerHostLinux::WillDestroyCurrentMessageLoop() { file_descriptor_watcher_.StopWatchingFileDescriptor(); // If we are quitting and there are crash dumps in the queue, turn them into // no-ops. shutting_down_ = true; uploader_thread_->Stop(); } bool CrashHandlerHostLinux::IsShuttingDown() const { return shutting_down_; } GpuCrashHandlerHostLinux::GpuCrashHandlerHostLinux() { InitCrashUploaderThread(); } GpuCrashHandlerHostLinux::~GpuCrashHandlerHostLinux() { } void GpuCrashHandlerHostLinux::SetProcessType() { process_type_ = "gpu-process"; } // static GpuCrashHandlerHostLinux* GpuCrashHandlerHostLinux::GetInstance() { return Singleton<GpuCrashHandlerHostLinux>::get(); } PluginCrashHandlerHostLinux::PluginCrashHandlerHostLinux() { InitCrashUploaderThread(); } PluginCrashHandlerHostLinux::~PluginCrashHandlerHostLinux() { } void PluginCrashHandlerHostLinux::SetProcessType() { process_type_ = "plugin"; } // static PluginCrashHandlerHostLinux* PluginCrashHandlerHostLinux::GetInstance() { return Singleton<PluginCrashHandlerHostLinux>::get(); } RendererCrashHandlerHostLinux::RendererCrashHandlerHostLinux() { InitCrashUploaderThread(); } RendererCrashHandlerHostLinux::~RendererCrashHandlerHostLinux() { } void RendererCrashHandlerHostLinux::SetProcessType() { process_type_ = "renderer"; } // static RendererCrashHandlerHostLinux* RendererCrashHandlerHostLinux::GetInstance() { return Singleton<RendererCrashHandlerHostLinux>::get(); } PpapiCrashHandlerHostLinux::PpapiCrashHandlerHostLinux() { InitCrashUploaderThread(); } PpapiCrashHandlerHostLinux::~PpapiCrashHandlerHostLinux() { } void PpapiCrashHandlerHostLinux::SetProcessType() { process_type_ = "ppapi"; } // static PpapiCrashHandlerHostLinux* PpapiCrashHandlerHostLinux::GetInstance() { return Singleton<PpapiCrashHandlerHostLinux>::get(); }