// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file specifies a recursive data storage class called Value intended for // storing setting and other persistable data. It includes the ability to // specify (recursive) lists and dictionaries, so it's fairly expressive. // However, the API is optimized for the common case, namely storing a // hierarchical tree of simple values. Given a DictionaryValue root, you can // easily do things like: // // root->SetString("global.pages.homepage", "http://goateleporter.com"); // std::string homepage = "http://google.com"; // default/fallback value // root->GetString("global.pages.homepage", &homepage); // // where "global" and "pages" are also DictionaryValues, and "homepage" is a // string setting. If some elements of the path didn't exist yet, the // SetString() method would create the missing elements and attach them to root // before attaching the homepage value. #ifndef BASE_VALUES_H_ #define BASE_VALUES_H_ #pragma once #include <iterator> #include <map> #include <string> #include <vector> #include "base/base_api.h" #include "base/basictypes.h" #include "base/string16.h" #include "build/build_config.h" class BinaryValue; class DictionaryValue; class FundamentalValue; class ListValue; class StringValue; class Value; typedef std::vector<Value*> ValueVector; typedef std::map<std::string, Value*> ValueMap; // The Value class is the base class for Values. A Value can be // instantiated via the Create*Value() factory methods, or by directly // creating instances of the subclasses. class BASE_API Value { public: enum ValueType { TYPE_NULL = 0, TYPE_BOOLEAN, TYPE_INTEGER, TYPE_DOUBLE, TYPE_STRING, TYPE_BINARY, TYPE_DICTIONARY, TYPE_LIST }; virtual ~Value(); // Convenience methods for creating Value objects for various // kinds of values without thinking about which class implements them. // These can always be expected to return a valid Value*. static Value* CreateNullValue(); static FundamentalValue* CreateBooleanValue(bool in_value); static FundamentalValue* CreateIntegerValue(int in_value); static FundamentalValue* CreateDoubleValue(double in_value); static StringValue* CreateStringValue(const std::string& in_value); static StringValue* CreateStringValue(const string16& in_value); // This one can return NULL if the input isn't valid. If the return value // is non-null, the new object has taken ownership of the buffer pointer. static BinaryValue* CreateBinaryValue(char* buffer, size_t size); // Returns the type of the value stored by the current Value object. // Each type will be implemented by only one subclass of Value, so it's // safe to use the ValueType to determine whether you can cast from // Value* to (Implementing Class)*. Also, a Value object never changes // its type after construction. ValueType GetType() const { return type_; } // Returns true if the current object represents a given type. bool IsType(ValueType type) const { return type == type_; } // These methods allow the convenient retrieval of settings. // If the current setting object can be converted into the given type, // the value is returned through the |out_value| parameter and true is // returned; otherwise, false is returned and |out_value| is unchanged. virtual bool GetAsBoolean(bool* out_value) const; virtual bool GetAsInteger(int* out_value) const; virtual bool GetAsDouble(double* out_value) const; virtual bool GetAsString(std::string* out_value) const; virtual bool GetAsString(string16* out_value) const; virtual bool GetAsList(ListValue** out_value); // This creates a deep copy of the entire Value tree, and returns a pointer // to the copy. The caller gets ownership of the copy, of course. // // Subclasses return their own type directly in their overrides; // this works because C++ supports covariant return types. virtual Value* DeepCopy() const; // Compares if two Value objects have equal contents. virtual bool Equals(const Value* other) const; // Compares if two Value objects have equal contents. Can handle NULLs. // NULLs are considered equal but different from Value::CreateNullValue(). static bool Equals(const Value* a, const Value* b); protected: // This isn't safe for end-users (they should use the Create*Value() // static methods above), but it's useful for subclasses. explicit Value(ValueType type); private: Value(); ValueType type_; DISALLOW_COPY_AND_ASSIGN(Value); }; // FundamentalValue represents the simple fundamental types of values. class BASE_API FundamentalValue : public Value { public: explicit FundamentalValue(bool in_value); explicit FundamentalValue(int in_value); explicit FundamentalValue(double in_value); virtual ~FundamentalValue(); // Subclassed methods virtual bool GetAsBoolean(bool* out_value) const; virtual bool GetAsInteger(int* out_value) const; virtual bool GetAsDouble(double* out_value) const; virtual FundamentalValue* DeepCopy() const; virtual bool Equals(const Value* other) const; private: union { bool boolean_value_; int integer_value_; double double_value_; }; DISALLOW_COPY_AND_ASSIGN(FundamentalValue); }; class BASE_API StringValue : public Value { public: // Initializes a StringValue with a UTF-8 narrow character string. explicit StringValue(const std::string& in_value); // Initializes a StringValue with a string16. explicit StringValue(const string16& in_value); virtual ~StringValue(); // Subclassed methods virtual bool GetAsString(std::string* out_value) const; virtual bool GetAsString(string16* out_value) const; virtual StringValue* DeepCopy() const; virtual bool Equals(const Value* other) const; private: std::string value_; DISALLOW_COPY_AND_ASSIGN(StringValue); }; class BASE_API BinaryValue: public Value { public: virtual ~BinaryValue(); // Creates a Value to represent a binary buffer. The new object takes // ownership of the pointer passed in, if successful. // Returns NULL if buffer is NULL. static BinaryValue* Create(char* buffer, size_t size); // For situations where you want to keep ownership of your buffer, this // factory method creates a new BinaryValue by copying the contents of the // buffer that's passed in. // Returns NULL if buffer is NULL. static BinaryValue* CreateWithCopiedBuffer(const char* buffer, size_t size); size_t GetSize() const { return size_; } char* GetBuffer() { return buffer_; } const char* GetBuffer() const { return buffer_; } // Overridden from Value: virtual BinaryValue* DeepCopy() const; virtual bool Equals(const Value* other) const; private: // Constructor is private so that only objects with valid buffer pointers // and size values can be created. BinaryValue(char* buffer, size_t size); char* buffer_; size_t size_; DISALLOW_COPY_AND_ASSIGN(BinaryValue); }; // DictionaryValue provides a key-value dictionary with (optional) "path" // parsing for recursive access; see the comment at the top of the file. Keys // are |std::string|s and should be UTF-8 encoded. class BASE_API DictionaryValue : public Value { public: DictionaryValue(); virtual ~DictionaryValue(); // Returns true if the current dictionary has a value for the given key. bool HasKey(const std::string& key) const; // Returns the number of Values in this dictionary. size_t size() const { return dictionary_.size(); } // Returns whether the dictionary is empty. bool empty() const { return dictionary_.empty(); } // Clears any current contents of this dictionary. void Clear(); // Sets the Value associated with the given path starting from this object. // A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes // into the next DictionaryValue down. Obviously, "." can't be used // within a key, but there are no other restrictions on keys. // If the key at any step of the way doesn't exist, or exists but isn't // a DictionaryValue, a new DictionaryValue will be created and attached // to the path in that location. // Note that the dictionary takes ownership of the value referenced by // |in_value|, and therefore |in_value| must be non-NULL. void Set(const std::string& path, Value* in_value); // Convenience forms of Set(). These methods will replace any existing // value at that path, even if it has a different type. void SetBoolean(const std::string& path, bool in_value); void SetInteger(const std::string& path, int in_value); void SetDouble(const std::string& path, double in_value); void SetString(const std::string& path, const std::string& in_value); void SetString(const std::string& path, const string16& in_value); // Like Set(), but without special treatment of '.'. This allows e.g. URLs to // be used as paths. void SetWithoutPathExpansion(const std::string& key, Value* in_value); // Gets the Value associated with the given path starting from this object. // A path has the form "<key>" or "<key>.<key>.[...]", where "." indexes // into the next DictionaryValue down. If the path can be resolved // successfully, the value for the last key in the path will be returned // through the |out_value| parameter, and the function will return true. // Otherwise, it will return false and |out_value| will be untouched. // Note that the dictionary always owns the value that's returned. bool Get(const std::string& path, Value** out_value) const; // These are convenience forms of Get(). The value will be retrieved // and the return value will be true if the path is valid and the value at // the end of the path can be returned in the form specified. bool GetBoolean(const std::string& path, bool* out_value) const; bool GetInteger(const std::string& path, int* out_value) const; bool GetDouble(const std::string& path, double* out_value) const; bool GetString(const std::string& path, std::string* out_value) const; bool GetString(const std::string& path, string16* out_value) const; bool GetStringASCII(const std::string& path, std::string* out_value) const; bool GetBinary(const std::string& path, BinaryValue** out_value) const; bool GetDictionary(const std::string& path, DictionaryValue** out_value) const; bool GetList(const std::string& path, ListValue** out_value) const; // Like Get(), but without special treatment of '.'. This allows e.g. URLs to // be used as paths. bool GetWithoutPathExpansion(const std::string& key, Value** out_value) const; bool GetIntegerWithoutPathExpansion(const std::string& key, int* out_value) const; bool GetDoubleWithoutPathExpansion(const std::string& key, double* out_value) const; bool GetStringWithoutPathExpansion(const std::string& key, std::string* out_value) const; bool GetStringWithoutPathExpansion(const std::string& key, string16* out_value) const; bool GetDictionaryWithoutPathExpansion(const std::string& key, DictionaryValue** out_value) const; bool GetListWithoutPathExpansion(const std::string& key, ListValue** out_value) const; // Removes the Value with the specified path from this dictionary (or one // of its child dictionaries, if the path is more than just a local key). // If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be // passed out via out_value. If |out_value| is NULL, the removed value will // be deleted. This method returns true if |path| is a valid path; otherwise // it will return false and the DictionaryValue object will be unchanged. bool Remove(const std::string& path, Value** out_value); // Like Remove(), but without special treatment of '.'. This allows e.g. URLs // to be used as paths. bool RemoveWithoutPathExpansion(const std::string& key, Value** out_value); // Makes a copy of |this| but doesn't include empty dictionaries and lists in // the copy. This never returns NULL, even if |this| itself is empty. DictionaryValue* DeepCopyWithoutEmptyChildren(); // Merge a given dictionary into this dictionary. This is done recursively, // i.e. any subdictionaries will be merged as well. In case of key collisions, // the passed in dictionary takes precedence and data already present will be // replaced. void MergeDictionary(const DictionaryValue* dictionary); // This class provides an iterator for the keys in the dictionary. // It can't be used to modify the dictionary. // // YOU SHOULD ALWAYS USE THE XXXWithoutPathExpansion() APIs WITH THESE, NOT // THE NORMAL XXX() APIs. This makes sure things will work correctly if any // keys have '.'s in them. class BASE_API key_iterator : private std::iterator<std::input_iterator_tag, const std::string> { public: explicit key_iterator(ValueMap::const_iterator itr) { itr_ = itr; } key_iterator operator++() { ++itr_; return *this; } const std::string& operator*() { return itr_->first; } bool operator!=(const key_iterator& other) { return itr_ != other.itr_; } bool operator==(const key_iterator& other) { return itr_ == other.itr_; } private: ValueMap::const_iterator itr_; }; key_iterator begin_keys() const { return key_iterator(dictionary_.begin()); } key_iterator end_keys() const { return key_iterator(dictionary_.end()); } // Overridden from Value: virtual DictionaryValue* DeepCopy() const; virtual bool Equals(const Value* other) const; private: ValueMap dictionary_; DISALLOW_COPY_AND_ASSIGN(DictionaryValue); }; // This type of Value represents a list of other Value values. class BASE_API ListValue : public Value { public: typedef ValueVector::iterator iterator; typedef ValueVector::const_iterator const_iterator; ListValue(); ~ListValue(); // Clears the contents of this ListValue void Clear(); // Returns the number of Values in this list. size_t GetSize() const { return list_.size(); } // Returns whether the list is empty. bool empty() const { return list_.empty(); } // Sets the list item at the given index to be the Value specified by // the value given. If the index beyond the current end of the list, null // Values will be used to pad out the list. // Returns true if successful, or false if the index was negative or // the value is a null pointer. bool Set(size_t index, Value* in_value); // Gets the Value at the given index. Modifies |out_value| (and returns true) // only if the index falls within the current list range. // Note that the list always owns the Value passed out via |out_value|. bool Get(size_t index, Value** out_value) const; // Convenience forms of Get(). Modifies |out_value| (and returns true) // only if the index is valid and the Value at that index can be returned // in the specified form. bool GetBoolean(size_t index, bool* out_value) const; bool GetInteger(size_t index, int* out_value) const; bool GetDouble(size_t index, double* out_value) const; bool GetString(size_t index, std::string* out_value) const; bool GetString(size_t index, string16* out_value) const; bool GetBinary(size_t index, BinaryValue** out_value) const; bool GetDictionary(size_t index, DictionaryValue** out_value) const; bool GetList(size_t index, ListValue** out_value) const; // Removes the Value with the specified index from this list. // If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be // passed out via |out_value|. If |out_value| is NULL, the removed value will // be deleted. This method returns true if |index| is valid; otherwise // it will return false and the ListValue object will be unchanged. bool Remove(size_t index, Value** out_value); // Removes the first instance of |value| found in the list, if any, and // deletes it. Returns the index that it was located at (-1 for not present). int Remove(const Value& value); // Appends a Value to the end of the list. void Append(Value* in_value); // Appends a Value if it's not already present. Takes ownership of the // |in_value|. Returns true if successful, or false if the value was already // present. If the value was already present the |in_value| is deleted. bool AppendIfNotPresent(Value* in_value); // Insert a Value at index. // Returns true if successful, or false if the index was out of range. bool Insert(size_t index, Value* in_value); // Swaps contents with the |other| list. void Swap(ListValue* other) { list_.swap(other->list_); } // Iteration ListValue::iterator begin() { return list_.begin(); } ListValue::iterator end() { return list_.end(); } ListValue::const_iterator begin() const { return list_.begin(); } ListValue::const_iterator end() const { return list_.end(); } // Overridden from Value: virtual bool GetAsList(ListValue** out_value); virtual ListValue* DeepCopy() const; virtual bool Equals(const Value* other) const; private: ValueVector list_; DISALLOW_COPY_AND_ASSIGN(ListValue); }; // This interface is implemented by classes that know how to serialize and // deserialize Value objects. class BASE_API ValueSerializer { public: virtual ~ValueSerializer(); virtual bool Serialize(const Value& root) = 0; // This method deserializes the subclass-specific format into a Value object. // If the return value is non-NULL, the caller takes ownership of returned // Value. If the return value is NULL, and if error_code is non-NULL, // error_code will be set with the underlying error. // If |error_message| is non-null, it will be filled in with a formatted // error message including the location of the error if appropriate. virtual Value* Deserialize(int* error_code, std::string* error_str) = 0; }; #endif // BASE_VALUES_H_