// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <time.h> #include "base/threading/platform_thread.h" #include "base/time.h" #include "build/build_config.h" #include "testing/gtest/include/gtest/gtest.h" using base::Time; using base::TimeDelta; using base::TimeTicks; // Test conversions to/from time_t and exploding/unexploding. TEST(Time, TimeT) { // C library time and exploded time. time_t now_t_1 = time(NULL); struct tm tms; #if defined(OS_WIN) localtime_s(&tms, &now_t_1); #elif defined(OS_POSIX) localtime_r(&now_t_1, &tms); #endif // Convert to ours. Time our_time_1 = Time::FromTimeT(now_t_1); Time::Exploded exploded; our_time_1.LocalExplode(&exploded); // This will test both our exploding and our time_t -> Time conversion. EXPECT_EQ(tms.tm_year + 1900, exploded.year); EXPECT_EQ(tms.tm_mon + 1, exploded.month); EXPECT_EQ(tms.tm_mday, exploded.day_of_month); EXPECT_EQ(tms.tm_hour, exploded.hour); EXPECT_EQ(tms.tm_min, exploded.minute); EXPECT_EQ(tms.tm_sec, exploded.second); // Convert exploded back to the time struct. Time our_time_2 = Time::FromLocalExploded(exploded); EXPECT_TRUE(our_time_1 == our_time_2); time_t now_t_2 = our_time_2.ToTimeT(); EXPECT_EQ(now_t_1, now_t_2); EXPECT_EQ(10, Time().FromTimeT(10).ToTimeT()); EXPECT_EQ(10.0, Time().FromTimeT(10).ToDoubleT()); // Conversions of 0 should stay 0. EXPECT_EQ(0, Time().ToTimeT()); EXPECT_EQ(0, Time::FromTimeT(0).ToInternalValue()); } TEST(Time, FromExplodedWithMilliseconds) { // Some platform implementations of FromExploded are liable to drop // milliseconds if we aren't careful. Time now = Time::NowFromSystemTime(); Time::Exploded exploded1 = {0}; now.UTCExplode(&exploded1); exploded1.millisecond = 500; Time time = Time::FromUTCExploded(exploded1); Time::Exploded exploded2 = {0}; time.UTCExplode(&exploded2); EXPECT_EQ(exploded1.millisecond, exploded2.millisecond); } TEST(Time, ZeroIsSymmetric) { Time zero_time(Time::FromTimeT(0)); EXPECT_EQ(0, zero_time.ToTimeT()); EXPECT_EQ(0.0, zero_time.ToDoubleT()); } TEST(Time, LocalExplode) { Time a = Time::Now(); Time::Exploded exploded; a.LocalExplode(&exploded); Time b = Time::FromLocalExploded(exploded); // The exploded structure doesn't have microseconds, and on Mac & Linux, the // internal OS conversion uses seconds, which will cause truncation. So we // can only make sure that the delta is within one second. EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST(Time, UTCExplode) { Time a = Time::Now(); Time::Exploded exploded; a.UTCExplode(&exploded); Time b = Time::FromUTCExploded(exploded); EXPECT_TRUE((a - b) < TimeDelta::FromSeconds(1)); } TEST(Time, LocalMidnight) { Time::Exploded exploded; Time::Now().LocalMidnight().LocalExplode(&exploded); EXPECT_EQ(0, exploded.hour); EXPECT_EQ(0, exploded.minute); EXPECT_EQ(0, exploded.second); EXPECT_EQ(0, exploded.millisecond); } TEST(TimeTicks, Deltas) { for (int index = 0; index < 50; index++) { TimeTicks ticks_start = TimeTicks::Now(); base::PlatformThread::Sleep(10); TimeTicks ticks_stop = TimeTicks::Now(); TimeDelta delta = ticks_stop - ticks_start; // Note: Although we asked for a 10ms sleep, if the // time clock has a finer granularity than the Sleep() // clock, it is quite possible to wakeup early. Here // is how that works: // Time(ms timer) Time(us timer) // 5 5010 // 6 6010 // 7 7010 // 8 8010 // 9 9000 // Elapsed 4ms 3990us // // Unfortunately, our InMilliseconds() function truncates // rather than rounds. We should consider fixing this // so that our averages come out better. EXPECT_GE(delta.InMilliseconds(), 9); EXPECT_GE(delta.InMicroseconds(), 9000); EXPECT_EQ(delta.InSeconds(), 0); } } TEST(TimeTicks, HighResNow) { #if defined(OS_WIN) // HighResNow doesn't work on some systems. Since the product still works // even if it doesn't work, it makes this entire test questionable. if (!TimeTicks::IsHighResClockWorking()) return; #endif // Why do we loop here? // We're trying to measure that intervals increment in a VERY small amount // of time -- less than 15ms. Unfortunately, if we happen to have a // context switch in the middle of our test, the context switch could easily // exceed our limit. So, we iterate on this several times. As long as we're // able to detect the fine-granularity timers at least once, then the test // has succeeded. const int kTargetGranularityUs = 15000; // 15ms bool success = false; int retries = 100; // Arbitrary. TimeDelta delta; while (!success && retries--) { TimeTicks ticks_start = TimeTicks::HighResNow(); // Loop until we can detect that the clock has changed. Non-HighRes timers // will increment in chunks, e.g. 15ms. By spinning until we see a clock // change, we detect the minimum time between measurements. do { delta = TimeTicks::HighResNow() - ticks_start; } while (delta.InMilliseconds() == 0); if (delta.InMicroseconds() <= kTargetGranularityUs) success = true; } // In high resolution mode, we expect to see the clock increment // in intervals less than 15ms. EXPECT_TRUE(success); } TEST(TimeDelta, FromAndIn) { EXPECT_TRUE(TimeDelta::FromDays(2) == TimeDelta::FromHours(48)); EXPECT_TRUE(TimeDelta::FromHours(3) == TimeDelta::FromMinutes(180)); EXPECT_TRUE(TimeDelta::FromMinutes(2) == TimeDelta::FromSeconds(120)); EXPECT_TRUE(TimeDelta::FromSeconds(2) == TimeDelta::FromMilliseconds(2000)); EXPECT_TRUE(TimeDelta::FromMilliseconds(2) == TimeDelta::FromMicroseconds(2000)); EXPECT_EQ(13, TimeDelta::FromDays(13).InDays()); EXPECT_EQ(13, TimeDelta::FromHours(13).InHours()); EXPECT_EQ(13, TimeDelta::FromMinutes(13).InMinutes()); EXPECT_EQ(13, TimeDelta::FromSeconds(13).InSeconds()); EXPECT_EQ(13.0, TimeDelta::FromSeconds(13).InSecondsF()); EXPECT_EQ(13, TimeDelta::FromMilliseconds(13).InMilliseconds()); EXPECT_EQ(13.0, TimeDelta::FromMilliseconds(13).InMillisecondsF()); EXPECT_EQ(13, TimeDelta::FromMicroseconds(13).InMicroseconds()); } #if defined(OS_POSIX) TEST(TimeDelta, TimeSpecConversion) { struct timespec result = TimeDelta::FromSeconds(0).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromSeconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 0); result = TimeDelta::FromMicroseconds(1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 0); EXPECT_EQ(result.tv_nsec, 1000); result = TimeDelta::FromMicroseconds( Time::kMicrosecondsPerSecond + 1).ToTimeSpec(); EXPECT_EQ(result.tv_sec, 1); EXPECT_EQ(result.tv_nsec, 1000); } #endif // OS_POSIX // Our internal time format is serialized in things like databases, so it's // important that it's consistent across all our platforms. We use the 1601 // Windows epoch as the internal format across all platforms. TEST(TimeDelta, WindowsEpoch) { Time::Exploded exploded; exploded.year = 1970; exploded.month = 1; exploded.day_of_week = 0; // Should be unusued. exploded.day_of_month = 1; exploded.hour = 0; exploded.minute = 0; exploded.second = 0; exploded.millisecond = 0; Time t = Time::FromUTCExploded(exploded); // Unix 1970 epoch. EXPECT_EQ(GG_INT64_C(11644473600000000), t.ToInternalValue()); // We can't test 1601 epoch, since the system time functions on Linux // only compute years starting from 1900. }