// This file was GENERATED by command: // pump.py bind_internal.h.pump // DO NOT EDIT BY HAND!!! // Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #pragma once #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/template_util.h" #include "build/build_config.h" #if defined(OS_WIN) #include "base/bind_internal_win.h" #endif namespace base { namespace internal { // The method by which a function is invoked is determined by 3 different // dimensions: // // 1) The type of function (normal or method). // 2) The arity of the function. // 3) The number of bound parameters. // // The templates below handle the determination of each of these dimensions. // In brief: // // FunctionTraits<> -- Provides a normalied signature, and other traits. // InvokerN<> -- Provides a DoInvoke() function that actually executes // a calback. // InvokerStorageN<> -- Provides storage for the bound parameters, and // typedefs to the above. // // More details about the design of each class is included in a comment closer // to their defition. // FunctionTraits<> // // The FunctionTraits<> template determines the type of function, and also // creates a NormalizedType used to select the InvokerN classes. It turns out // that syntactically, you only really have 2 variations when invoking a // funciton pointer: normal, and method. One is invoked func_ptr(arg1). The // other is invoked (*obj_->method_ptr(arg1)). // // However, in the type system, there are many more distinctions. In standard // C++, there's all variations of const, and volatile on the function pointer. // In Windows, there are additional calling conventions (eg., __stdcall, // __fastcall, etc.). FunctionTraits<> handles categorizing each of these into // a normalized signature. // // Having a NormalizedSignature signature, reduces the combinatoric // complexity of defintions for the InvokerN<> later. Even though there are // only 2 syntactic variations on invoking a function, without normalizing the // signature, there would need to be one specialization of InvokerN for each // unique (function_type, bound_arg, unbound_args) tuple in order to match all // function signatures. // // By normalizing the function signature, we reduce function_type to exactly 2. template <typename Sig> struct FunctionTraits; // Function: Arity 0. template <typename R> struct FunctionTraits<R(*)()> { typedef R (*NormalizedSig)(); typedef false_type IsMethod; }; // Method: Arity 0. template <typename R, typename T> struct FunctionTraits<R(T::*)()> { typedef R (T::*NormalizedSig)(); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; }; // Const Method: Arity 0. template <typename R, typename T> struct FunctionTraits<R(T::*)() const> { typedef R (T::*NormalizedSig)(); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; }; // Function: Arity 1. template <typename R, typename X1> struct FunctionTraits<R(*)(X1)> { typedef R (*NormalizedSig)(X1); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; }; // Method: Arity 1. template <typename R, typename T, typename X1> struct FunctionTraits<R(T::*)(X1)> { typedef R (T::*NormalizedSig)(X1); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; }; // Const Method: Arity 1. template <typename R, typename T, typename X1> struct FunctionTraits<R(T::*)(X1) const> { typedef R (T::*NormalizedSig)(X1); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; }; // Function: Arity 2. template <typename R, typename X1, typename X2> struct FunctionTraits<R(*)(X1, X2)> { typedef R (*NormalizedSig)(X1, X2); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; typedef X2 B2; }; // Method: Arity 2. template <typename R, typename T, typename X1, typename X2> struct FunctionTraits<R(T::*)(X1, X2)> { typedef R (T::*NormalizedSig)(X1, X2); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; }; // Const Method: Arity 2. template <typename R, typename T, typename X1, typename X2> struct FunctionTraits<R(T::*)(X1, X2) const> { typedef R (T::*NormalizedSig)(X1, X2); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; }; // Function: Arity 3. template <typename R, typename X1, typename X2, typename X3> struct FunctionTraits<R(*)(X1, X2, X3)> { typedef R (*NormalizedSig)(X1, X2, X3); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; typedef X2 B2; typedef X3 B3; }; // Method: Arity 3. template <typename R, typename T, typename X1, typename X2, typename X3> struct FunctionTraits<R(T::*)(X1, X2, X3)> { typedef R (T::*NormalizedSig)(X1, X2, X3); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; }; // Const Method: Arity 3. template <typename R, typename T, typename X1, typename X2, typename X3> struct FunctionTraits<R(T::*)(X1, X2, X3) const> { typedef R (T::*NormalizedSig)(X1, X2, X3); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; }; // Function: Arity 4. template <typename R, typename X1, typename X2, typename X3, typename X4> struct FunctionTraits<R(*)(X1, X2, X3, X4)> { typedef R (*NormalizedSig)(X1, X2, X3, X4); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; typedef X2 B2; typedef X3 B3; typedef X4 B4; }; // Method: Arity 4. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct FunctionTraits<R(T::*)(X1, X2, X3, X4)> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; }; // Const Method: Arity 4. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct FunctionTraits<R(T::*)(X1, X2, X3, X4) const> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; }; // Function: Arity 5. template <typename R, typename X1, typename X2, typename X3, typename X4, typename X5> struct FunctionTraits<R(*)(X1, X2, X3, X4, X5)> { typedef R (*NormalizedSig)(X1, X2, X3, X4, X5); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; typedef X2 B2; typedef X3 B3; typedef X4 B4; typedef X5 B5; }; // Method: Arity 5. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct FunctionTraits<R(T::*)(X1, X2, X3, X4, X5)> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4, X5); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; typedef X5 B6; }; // Const Method: Arity 5. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct FunctionTraits<R(T::*)(X1, X2, X3, X4, X5) const> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4, X5); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; typedef X5 B6; }; // Function: Arity 6. template <typename R, typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct FunctionTraits<R(*)(X1, X2, X3, X4, X5, X6)> { typedef R (*NormalizedSig)(X1, X2, X3, X4, X5, X6); typedef false_type IsMethod; // Target type for each bound parameter. typedef X1 B1; typedef X2 B2; typedef X3 B3; typedef X4 B4; typedef X5 B5; typedef X6 B6; }; // Method: Arity 6. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct FunctionTraits<R(T::*)(X1, X2, X3, X4, X5, X6)> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4, X5, X6); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; typedef X5 B6; typedef X6 B7; }; // Const Method: Arity 6. template <typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct FunctionTraits<R(T::*)(X1, X2, X3, X4, X5, X6) const> { typedef R (T::*NormalizedSig)(X1, X2, X3, X4, X5, X6); typedef true_type IsMethod; // Target type for each bound parameter. typedef T B1; typedef X1 B2; typedef X2 B3; typedef X3 B4; typedef X4 B5; typedef X5 B6; typedef X6 B7; }; // InvokerN<> // // The InvokerN templates contain a static DoInvoke() function that is the key // to implementing type erasure in the Callback() classes. // // DoInvoke() is a static function with a fixed signature that is independent // of StorageType; its first argument is a pointer to the non-templated common // baseclass of StorageType. This lets us store pointer to DoInvoke() in a // function pointer that has knowledge of the specific StorageType, and thus // no knowledge of the bound function and bound parameter types. // // As long as we ensure that DoInvoke() is only used with pointers there were // upcasted from the correct StorageType, we can be sure that execution is // safe. // // The InvokerN templates are the only point that knows the number of bound // and unbound arguments. This is intentional because it allows the other // templates classes in the system to only have as many specializations as // the max arity of function we wish to support. template <typename StorageType, typename NormalizedSig> struct Invoker0; // Function: Arity 0 -> 0. template <typename StorageType, typename R> struct Invoker0<StorageType, R(*)()> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(); } }; // Function: Arity 1 -> 1. template <typename StorageType, typename R,typename X1> struct Invoker0<StorageType, R(*)(X1)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1); } }; // Function: Arity 2 -> 2. template <typename StorageType, typename R,typename X1, typename X2> struct Invoker0<StorageType, R(*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1, x2); } }; // Function: Arity 3 -> 3. template <typename StorageType, typename R,typename X1, typename X2, typename X3> struct Invoker0<StorageType, R(*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1, x2, x3); } }; // Function: Arity 4 -> 4. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4> struct Invoker0<StorageType, R(*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1, x2, x3, x4); } }; // Function: Arity 5 -> 5. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker0<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1, x2, x3, x4, x5); } }; // Function: Arity 6 -> 6. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker0<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(x1, x2, x3, x4, x5, x6); } }; template <typename StorageType, typename NormalizedSig> struct Invoker1; // Function: Arity 1 -> 0. template <typename StorageType, typename R,typename X1> struct Invoker1<StorageType, R(*)(X1)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_)); } }; // Method: Arity 0 -> 0. template <typename StorageType, typename R, typename T> struct Invoker1<StorageType, R(T::*)()> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(); } }; // Function: Arity 2 -> 1. template <typename StorageType, typename R,typename X1, typename X2> struct Invoker1<StorageType, R(*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), x2); } }; // Method: Arity 1 -> 1. template <typename StorageType, typename R, typename T, typename X1> struct Invoker1<StorageType, R(T::*)(X1)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(x1); } }; // Function: Arity 3 -> 2. template <typename StorageType, typename R,typename X1, typename X2, typename X3> struct Invoker1<StorageType, R(*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), x2, x3); } }; // Method: Arity 2 -> 2. template <typename StorageType, typename R, typename T, typename X1, typename X2> struct Invoker1<StorageType, R(T::*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(x1, x2); } }; // Function: Arity 4 -> 3. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4> struct Invoker1<StorageType, R(*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), x2, x3, x4); } }; // Method: Arity 3 -> 3. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3> struct Invoker1<StorageType, R(T::*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(x1, x2, x3); } }; // Function: Arity 5 -> 4. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker1<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), x2, x3, x4, x5); } }; // Method: Arity 4 -> 4. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct Invoker1<StorageType, R(T::*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(x1, x2, x3, x4); } }; // Function: Arity 6 -> 5. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker1<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), x2, x3, x4, x5, x6); } }; // Method: Arity 5 -> 5. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker1<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X1>::ForwardType x1, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(x1, x2, x3, x4, x5); } }; template <typename StorageType, typename NormalizedSig> struct Invoker2; // Function: Arity 2 -> 0. template <typename StorageType, typename R,typename X1, typename X2> struct Invoker2<StorageType, R(*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_)); } }; // Method: Arity 1 -> 0. template <typename StorageType, typename R, typename T, typename X1> struct Invoker2<StorageType, R(T::*)(X1)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_)); } }; // Function: Arity 3 -> 1. template <typename StorageType, typename R,typename X1, typename X2, typename X3> struct Invoker2<StorageType, R(*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), x3); } }; // Method: Arity 2 -> 1. template <typename StorageType, typename R, typename T, typename X1, typename X2> struct Invoker2<StorageType, R(T::*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), x2); } }; // Function: Arity 4 -> 2. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4> struct Invoker2<StorageType, R(*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), x3, x4); } }; // Method: Arity 3 -> 2. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3> struct Invoker2<StorageType, R(T::*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), x2, x3); } }; // Function: Arity 5 -> 3. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker2<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), x3, x4, x5); } }; // Method: Arity 4 -> 3. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct Invoker2<StorageType, R(T::*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), x2, x3, x4); } }; // Function: Arity 6 -> 4. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker2<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), x3, x4, x5, x6); } }; // Method: Arity 5 -> 4. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker2<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X2>::ForwardType x2, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), x2, x3, x4, x5); } }; template <typename StorageType, typename NormalizedSig> struct Invoker3; // Function: Arity 3 -> 0. template <typename StorageType, typename R,typename X1, typename X2, typename X3> struct Invoker3<StorageType, R(*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_)); } }; // Method: Arity 2 -> 0. template <typename StorageType, typename R, typename T, typename X1, typename X2> struct Invoker3<StorageType, R(T::*)(X1, X2)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_)); } }; // Function: Arity 4 -> 1. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4> struct Invoker3<StorageType, R(*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), x4); } }; // Method: Arity 3 -> 1. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3> struct Invoker3<StorageType, R(T::*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), x3); } }; // Function: Arity 5 -> 2. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker3<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), x4, x5); } }; // Method: Arity 4 -> 2. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct Invoker3<StorageType, R(T::*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), x3, x4); } }; // Function: Arity 6 -> 3. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker3<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), x4, x5, x6); } }; // Method: Arity 5 -> 3. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker3<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X3>::ForwardType x3, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), x3, x4, x5); } }; template <typename StorageType, typename NormalizedSig> struct Invoker4; // Function: Arity 4 -> 0. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4> struct Invoker4<StorageType, R(*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_)); } }; // Method: Arity 3 -> 0. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3> struct Invoker4<StorageType, R(T::*)(X1, X2, X3)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_)); } }; // Function: Arity 5 -> 1. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker4<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), x5); } }; // Method: Arity 4 -> 1. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct Invoker4<StorageType, R(T::*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X4>::ForwardType x4) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), x4); } }; // Function: Arity 6 -> 2. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker4<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X5>::ForwardType x5, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), x5, x6); } }; // Method: Arity 5 -> 2. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker4<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X4>::ForwardType x4, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), x4, x5); } }; template <typename StorageType, typename NormalizedSig> struct Invoker5; // Function: Arity 5 -> 0. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker5<StorageType, R(*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_)); } }; // Method: Arity 4 -> 0. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4> struct Invoker5<StorageType, R(T::*)(X1, X2, X3, X4)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_)); } }; // Function: Arity 6 -> 1. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker5<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X6>::ForwardType x6) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_), x6); } }; // Method: Arity 5 -> 1. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker5<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base, typename internal::ParamTraits<X5>::ForwardType x5) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_), x5); } }; template <typename StorageType, typename NormalizedSig> struct Invoker6; // Function: Arity 6 -> 0. template <typename StorageType, typename R,typename X1, typename X2, typename X3, typename X4, typename X5, typename X6> struct Invoker6<StorageType, R(*)(X1, X2, X3, X4, X5, X6)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return invoker->f_(Unwrap(invoker->p1_), Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_), Unwrap(invoker->p6_)); } }; // Method: Arity 5 -> 0. template <typename StorageType, typename R, typename T, typename X1, typename X2, typename X3, typename X4, typename X5> struct Invoker6<StorageType, R(T::*)(X1, X2, X3, X4, X5)> { static R DoInvoke(InvokerStorageBase* base) { StorageType* invoker = static_cast<StorageType*>(base); return (Unwrap(invoker->p1_)->*invoker->f_)(Unwrap(invoker->p2_), Unwrap(invoker->p3_), Unwrap(invoker->p4_), Unwrap(invoker->p5_), Unwrap(invoker->p6_)); } }; // InvokerStorageN<> // // These are the actual storage classes for the Invokers. // // Though these types are "classes", they are being used as structs with // all member variable public. We cannot make it a struct because it inherits // from a class which causes a compiler warning. We cannot add a "Run()" method // that forwards the unbound arguments because that would require we unwrap the // Sig type like in InvokerN above to know the return type, and the arity // of Run(). // // An alternate solution would be to merge InvokerN and InvokerStorageN, // but the generated code seemed harder to read. template <typename Sig> class InvokerStorage0 : public InvokerStorageBase { public: typedef InvokerStorage0 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker0<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; InvokerStorage0(Sig f) : f_(f) { } virtual ~InvokerStorage0() { } Sig f_; }; template <typename Sig, typename P1> class InvokerStorage1 : public InvokerStorageBase { public: typedef InvokerStorage1 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker1<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage1(Sig f, const P1& p1) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage1() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; }; template <typename Sig, typename P1, typename P2> class InvokerStorage2 : public InvokerStorageBase { public: typedef InvokerStorage2 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker2<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P2>::value, p2_is_refcounted_type_and_needs_scoped_refptr); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value || is_non_const_reference<typename TargetTraits::B2>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage2(Sig f, const P1& p1, const P2& p2) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)), p2_(static_cast<typename ParamTraits<P2>::StorageType>(p2)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage2() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; typename ParamTraits<P2>::StorageType p2_; }; template <typename Sig, typename P1, typename P2, typename P3> class InvokerStorage3 : public InvokerStorageBase { public: typedef InvokerStorage3 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker3<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P2>::value, p2_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P3>::value, p3_is_refcounted_type_and_needs_scoped_refptr); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value || is_non_const_reference<typename TargetTraits::B2>::value || is_non_const_reference<typename TargetTraits::B3>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage3(Sig f, const P1& p1, const P2& p2, const P3& p3) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)), p2_(static_cast<typename ParamTraits<P2>::StorageType>(p2)), p3_(static_cast<typename ParamTraits<P3>::StorageType>(p3)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage3() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; typename ParamTraits<P2>::StorageType p2_; typename ParamTraits<P3>::StorageType p3_; }; template <typename Sig, typename P1, typename P2, typename P3, typename P4> class InvokerStorage4 : public InvokerStorageBase { public: typedef InvokerStorage4 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker4<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P2>::value, p2_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P3>::value, p3_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P4>::value, p4_is_refcounted_type_and_needs_scoped_refptr); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value || is_non_const_reference<typename TargetTraits::B2>::value || is_non_const_reference<typename TargetTraits::B3>::value || is_non_const_reference<typename TargetTraits::B4>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage4(Sig f, const P1& p1, const P2& p2, const P3& p3, const P4& p4) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)), p2_(static_cast<typename ParamTraits<P2>::StorageType>(p2)), p3_(static_cast<typename ParamTraits<P3>::StorageType>(p3)), p4_(static_cast<typename ParamTraits<P4>::StorageType>(p4)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage4() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; typename ParamTraits<P2>::StorageType p2_; typename ParamTraits<P3>::StorageType p3_; typename ParamTraits<P4>::StorageType p4_; }; template <typename Sig, typename P1, typename P2, typename P3, typename P4, typename P5> class InvokerStorage5 : public InvokerStorageBase { public: typedef InvokerStorage5 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker5<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P2>::value, p2_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P3>::value, p3_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P4>::value, p4_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P5>::value, p5_is_refcounted_type_and_needs_scoped_refptr); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value || is_non_const_reference<typename TargetTraits::B2>::value || is_non_const_reference<typename TargetTraits::B3>::value || is_non_const_reference<typename TargetTraits::B4>::value || is_non_const_reference<typename TargetTraits::B5>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage5(Sig f, const P1& p1, const P2& p2, const P3& p3, const P4& p4, const P5& p5) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)), p2_(static_cast<typename ParamTraits<P2>::StorageType>(p2)), p3_(static_cast<typename ParamTraits<P3>::StorageType>(p3)), p4_(static_cast<typename ParamTraits<P4>::StorageType>(p4)), p5_(static_cast<typename ParamTraits<P5>::StorageType>(p5)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage5() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; typename ParamTraits<P2>::StorageType p2_; typename ParamTraits<P3>::StorageType p3_; typename ParamTraits<P4>::StorageType p4_; typename ParamTraits<P5>::StorageType p5_; }; template <typename Sig, typename P1, typename P2, typename P3, typename P4, typename P5, typename P6> class InvokerStorage6 : public InvokerStorageBase { public: typedef InvokerStorage6 StorageType; typedef FunctionTraits<Sig> TargetTraits; typedef Invoker6<StorageType, typename TargetTraits::NormalizedSig> Invoker; typedef typename TargetTraits::IsMethod IsMethod; // For methods, we need to be careful for parameter 1. We skip the // scoped_refptr check because the binder itself takes care of this. We also // disallow binding of an array as the method's target object. COMPILE_ASSERT(IsMethod::value || !internal::UnsafeBindtoRefCountedArg<P1>::value, p1_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!IsMethod::value || !is_array<P1>::value, first_bound_argument_to_method_cannot_be_array); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P2>::value, p2_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P3>::value, p3_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P4>::value, p4_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P5>::value, p5_is_refcounted_type_and_needs_scoped_refptr); COMPILE_ASSERT(!internal::UnsafeBindtoRefCountedArg<P6>::value, p6_is_refcounted_type_and_needs_scoped_refptr); // Do not allow binding a non-const reference parameter. Non-const reference // parameters are disallowed by the Google style guide. Also, binding a // non-const reference parameter can make for subtle bugs because the // invoked function will receive a reference to the stored copy of the // argument and not the original. COMPILE_ASSERT( !( is_non_const_reference<typename TargetTraits::B1>::value || is_non_const_reference<typename TargetTraits::B2>::value || is_non_const_reference<typename TargetTraits::B3>::value || is_non_const_reference<typename TargetTraits::B4>::value || is_non_const_reference<typename TargetTraits::B5>::value || is_non_const_reference<typename TargetTraits::B6>::value ), do_not_bind_functions_with_nonconst_ref); InvokerStorage6(Sig f, const P1& p1, const P2& p2, const P3& p3, const P4& p4, const P5& p5, const P6& p6) : f_(f), p1_(static_cast<typename ParamTraits<P1>::StorageType>(p1)), p2_(static_cast<typename ParamTraits<P2>::StorageType>(p2)), p3_(static_cast<typename ParamTraits<P3>::StorageType>(p3)), p4_(static_cast<typename ParamTraits<P4>::StorageType>(p4)), p5_(static_cast<typename ParamTraits<P5>::StorageType>(p5)), p6_(static_cast<typename ParamTraits<P6>::StorageType>(p6)) { MaybeRefcount<IsMethod, P1>::AddRef(p1_); } virtual ~InvokerStorage6() { MaybeRefcount<IsMethod, P1>::Release(p1_); } Sig f_; typename ParamTraits<P1>::StorageType p1_; typename ParamTraits<P2>::StorageType p2_; typename ParamTraits<P3>::StorageType p3_; typename ParamTraits<P4>::StorageType p4_; typename ParamTraits<P5>::StorageType p5_; typename ParamTraits<P6>::StorageType p6_; }; } // namespace internal } // namespace base #endif // BASE_BIND_INTERNAL_H_