/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Array objects. */ #include "Dalvik.h" #include <stdlib.h> #include <stddef.h> #include <limits.h> /* width of an object reference, for arrays of objects */ static size_t kObjectArrayRefWidth = sizeof(Object*); static ClassObject* createArrayClass(const char* descriptor, Object* loader); /* * Allocate space for a new array object. This is the lowest-level array * allocation function. * * Pass in the array class and the width of each element. * * On failure, returns NULL with an exception raised. */ static ArrayObject* allocArray(ClassObject* arrayClass, size_t length, size_t elemWidth, int allocFlags) { assert(arrayClass != NULL); assert(arrayClass->descriptor != NULL); assert(arrayClass->descriptor[0] == '['); assert(length <= 0x7fffffff); assert(elemWidth > 0); assert(elemWidth <= 8); assert((elemWidth & (elemWidth - 1)) == 0); size_t elementShift = sizeof(size_t) * CHAR_BIT - 1 - CLZ(elemWidth); size_t elementSize = length << elementShift; size_t headerSize = OFFSETOF_MEMBER(ArrayObject, contents); size_t totalSize = elementSize + headerSize; if (elementSize >> elementShift != length || totalSize < elementSize) { std::string descriptor(dvmHumanReadableDescriptor(arrayClass->descriptor)); dvmThrowExceptionFmt(gDvm.exOutOfMemoryError, "%s of length %zd exceeds the VM limit", descriptor.c_str(), length); return NULL; } ArrayObject* newArray = (ArrayObject*)dvmMalloc(totalSize, allocFlags); if (newArray != NULL) { DVM_OBJECT_INIT(newArray, arrayClass); newArray->length = length; dvmTrackAllocation(arrayClass, totalSize); } return newArray; } /* * Create a new array, given an array class. The class may represent an * array of references or primitives. */ ArrayObject* dvmAllocArrayByClass(ClassObject* arrayClass, size_t length, int allocFlags) { const char* descriptor = arrayClass->descriptor; assert(descriptor[0] == '['); /* must be array class */ if (descriptor[1] != '[' && descriptor[1] != 'L') { /* primitive array */ assert(descriptor[2] == '\0'); return dvmAllocPrimitiveArray(descriptor[1], length, allocFlags); } else { return allocArray(arrayClass, length, kObjectArrayRefWidth, allocFlags); } } /* * Find the array class for "elemClassObj", which could itself be an * array class. */ ClassObject* dvmFindArrayClassForElement(ClassObject* elemClassObj) { ClassObject* arrayClass; assert(elemClassObj != NULL); /* Simply prepend "[" to the descriptor. */ int nameLen = strlen(elemClassObj->descriptor); char className[nameLen + 2]; className[0] = '['; memcpy(className+1, elemClassObj->descriptor, nameLen+1); arrayClass = dvmFindArrayClass(className, elemClassObj->classLoader); return arrayClass; } /* * Create a new array that holds primitive types. * * "type" is the primitive type letter, e.g. 'I' for int or 'J' for long. */ ArrayObject* dvmAllocPrimitiveArray(char type, size_t length, int allocFlags) { ArrayObject* newArray; ClassObject* arrayClass; int width; switch (type) { case 'I': arrayClass = gDvm.classArrayInt; width = 4; break; case 'C': arrayClass = gDvm.classArrayChar; width = 2; break; case 'B': arrayClass = gDvm.classArrayByte; width = 1; break; case 'Z': arrayClass = gDvm.classArrayBoolean; width = 1; /* special-case this? */ break; case 'F': arrayClass = gDvm.classArrayFloat; width = 4; break; case 'D': arrayClass = gDvm.classArrayDouble; width = 8; break; case 'S': arrayClass = gDvm.classArrayShort; width = 2; break; case 'J': arrayClass = gDvm.classArrayLong; width = 8; break; default: ALOGE("Unknown primitive type '%c'", type); dvmAbort(); return NULL; // Keeps the compiler happy. } newArray = allocArray(arrayClass, length, width, allocFlags); /* the caller must dvmReleaseTrackedAlloc if allocFlags==ALLOC_DEFAULT */ return newArray; } /* * Recursively create an array with multiple dimensions. Elements may be * Objects or primitive types. * * The dimension we're creating is in dimensions[0], so when we recurse * we advance the pointer. */ ArrayObject* dvmAllocMultiArray(ClassObject* arrayClass, int curDim, const int* dimensions) { ArrayObject* newArray; const char* elemName = arrayClass->descriptor + 1; // Advance past one '['. LOGVV("dvmAllocMultiArray: class='%s' curDim=%d *dimensions=%d", arrayClass->descriptor, curDim, *dimensions); if (curDim == 0) { if (*elemName == 'L' || *elemName == '[') { LOGVV(" end: array class (obj) is '%s'", arrayClass->descriptor); newArray = allocArray(arrayClass, *dimensions, kObjectArrayRefWidth, ALLOC_DEFAULT); } else { LOGVV(" end: array class (prim) is '%s'", arrayClass->descriptor); newArray = dvmAllocPrimitiveArray( dexGetPrimitiveTypeDescriptorChar(arrayClass->elementClass->primitiveType), *dimensions, ALLOC_DEFAULT); } } else { ClassObject* subArrayClass; int i; /* if we have X[][], find X[] */ subArrayClass = dvmFindArrayClass(elemName, arrayClass->classLoader); if (subArrayClass == NULL) { /* not enough '['s on the initial class? */ assert(dvmCheckException(dvmThreadSelf())); return NULL; } assert(dvmIsArrayClass(subArrayClass)); /* allocate the array that holds the sub-arrays */ newArray = allocArray(arrayClass, *dimensions, kObjectArrayRefWidth, ALLOC_DEFAULT); if (newArray == NULL) { assert(dvmCheckException(dvmThreadSelf())); return NULL; } /* * Create a new sub-array in every element of the array. */ for (i = 0; i < *dimensions; i++) { ArrayObject* newSubArray; newSubArray = dvmAllocMultiArray(subArrayClass, curDim-1, dimensions+1); if (newSubArray == NULL) { dvmReleaseTrackedAlloc((Object*) newArray, NULL); assert(dvmCheckException(dvmThreadSelf())); return NULL; } dvmSetObjectArrayElement(newArray, i, (Object *)newSubArray); dvmReleaseTrackedAlloc((Object*) newSubArray, NULL); } } /* caller must call dvmReleaseTrackedAlloc */ return newArray; } /* * Find an array class, by name (e.g. "[I"). * * If the array class doesn't exist, we generate it. * * If the element class doesn't exist, we return NULL (no exception raised). */ ClassObject* dvmFindArrayClass(const char* descriptor, Object* loader) { ClassObject* clazz; assert(descriptor[0] == '['); //ALOGV("dvmFindArrayClass: '%s' %p", descriptor, loader); clazz = dvmLookupClass(descriptor, loader, false); if (clazz == NULL) { ALOGV("Array class '%s' %p not found; creating", descriptor, loader); clazz = createArrayClass(descriptor, loader); if (clazz != NULL) dvmAddInitiatingLoader(clazz, loader); } return clazz; } /* * Create an array class (i.e. the class object for the array, not the * array itself). "descriptor" looks like "[C" or "[Ljava/lang/String;". * * If "descriptor" refers to an array of primitives, look up the * primitive type's internally-generated class object. * * "loader" is the class loader of the class that's referring to us. It's * used to ensure that we're looking for the element type in the right * context. It does NOT become the class loader for the array class; that * always comes from the base element class. * * Returns NULL with an exception raised on failure. */ static ClassObject* createArrayClass(const char* descriptor, Object* loader) { ClassObject* newClass = NULL; ClassObject* elementClass = NULL; int arrayDim; u4 extraFlags; assert(descriptor[0] == '['); assert(gDvm.classJavaLangClass != NULL); assert(gDvm.classJavaLangObject != NULL); /* * Identify the underlying element class and the array dimension depth. */ extraFlags = CLASS_ISARRAY; if (descriptor[1] == '[') { /* array of arrays; keep descriptor and grab stuff from parent */ ClassObject* outer; outer = dvmFindClassNoInit(&descriptor[1], loader); if (outer != NULL) { /* want the base class, not "outer", in our elementClass */ elementClass = outer->elementClass; arrayDim = outer->arrayDim + 1; extraFlags |= CLASS_ISOBJECTARRAY; } else { assert(elementClass == NULL); /* make sure we fail */ } } else { arrayDim = 1; if (descriptor[1] == 'L') { /* array of objects; strip off "[" and look up descriptor. */ const char* subDescriptor = &descriptor[1]; LOGVV("searching for element class '%s'", subDescriptor); elementClass = dvmFindClassNoInit(subDescriptor, loader); extraFlags |= CLASS_ISOBJECTARRAY; } else { /* array of a primitive type */ elementClass = dvmFindPrimitiveClass(descriptor[1]); } } if (elementClass == NULL) { /* failed */ assert(dvmCheckException(dvmThreadSelf())); dvmFreeClassInnards(newClass); dvmReleaseTrackedAlloc((Object*) newClass, NULL); return NULL; } /* * See if it's already loaded. Array classes are always associated * with the class loader of their underlying element type -- an array * of Strings goes with the loader for java/lang/String -- so we need * to look for it there. (The caller should have checked for the * existence of the class before calling here, but they did so with * *their* class loader, not the element class' loader.) * * If we find it, the caller adds "loader" to the class' initiating * loader list, which should prevent us from going through this again. * * This call is unnecessary if "loader" and "elementClass->classLoader" * are the same, because our caller (dvmFindArrayClass) just did the * lookup. (Even if we get this wrong we still have correct behavior, * because we effectively do this lookup again when we add the new * class to the hash table -- necessary because of possible races with * other threads.) */ if (loader != elementClass->classLoader) { LOGVV("--- checking for '%s' in %p vs. elem %p", descriptor, loader, elementClass->classLoader); newClass = dvmLookupClass(descriptor, elementClass->classLoader, false); if (newClass != NULL) { ALOGV("--- we already have %s in %p, don't need in %p", descriptor, elementClass->classLoader, loader); return newClass; } } /* * Fill out the fields in the ClassObject. * * It is possible to execute some methods against arrays, because all * arrays are instances of Object, so we need to set up a vtable. We * can just point at the one in Object. * * Array classes are simple enough that we don't need to do a full * link step. */ newClass = (ClassObject*) dvmMalloc(sizeof(*newClass), ALLOC_NON_MOVING); if (newClass == NULL) return NULL; DVM_OBJECT_INIT(newClass, gDvm.classJavaLangClass); dvmSetClassSerialNumber(newClass); newClass->descriptorAlloc = strdup(descriptor); newClass->descriptor = newClass->descriptorAlloc; dvmSetFieldObject((Object *)newClass, OFFSETOF_MEMBER(ClassObject, super), (Object *)gDvm.classJavaLangObject); newClass->vtableCount = gDvm.classJavaLangObject->vtableCount; newClass->vtable = gDvm.classJavaLangObject->vtable; newClass->primitiveType = PRIM_NOT; dvmSetFieldObject((Object *)newClass, OFFSETOF_MEMBER(ClassObject, elementClass), (Object *)elementClass); dvmSetFieldObject((Object *)newClass, OFFSETOF_MEMBER(ClassObject, classLoader), (Object *)elementClass->classLoader); newClass->arrayDim = arrayDim; newClass->status = CLASS_INITIALIZED; /* don't need to set newClass->objectSize */ /* * All arrays have java/lang/Cloneable and java/io/Serializable as * interfaces. We need to set that up here, so that stuff like * "instanceof" works right. * * Note: The GC could run during the call to dvmFindSystemClassNoInit(), * so we need to make sure the class object is GC-valid while we're in * there. Do this by clearing the interface list so the GC will just * think that the entries are null. * * TODO? * We may want to cache these two classes to avoid the lookup, though * it's not vital -- we only do it when creating an array class, not * every time we create an array. Better yet, create a single, global * copy of "interfaces" and "iftable" somewhere near the start and * just point to those (and remember not to free them for arrays). */ newClass->interfaceCount = 2; newClass->interfaces = (ClassObject**)dvmLinearAlloc(newClass->classLoader, sizeof(ClassObject*) * 2); memset(newClass->interfaces, 0, sizeof(ClassObject*) * 2); newClass->interfaces[0] = dvmFindSystemClassNoInit("Ljava/lang/Cloneable;"); newClass->interfaces[1] = dvmFindSystemClassNoInit("Ljava/io/Serializable;"); dvmLinearReadOnly(newClass->classLoader, newClass->interfaces); if (newClass->interfaces[0] == NULL || newClass->interfaces[1] == NULL) { ALOGE("Unable to create array class '%s': missing interfaces", descriptor); dvmFreeClassInnards(newClass); dvmThrowInternalError("missing array ifaces"); dvmReleaseTrackedAlloc((Object*) newClass, NULL); return NULL; } /* * We assume that Cloneable/Serializable don't have superinterfaces -- * normally we'd have to crawl up and explicitly list all of the * supers as well. These interfaces don't have any methods, so we * don't have to worry about the ifviPool either. */ newClass->iftableCount = 2; newClass->iftable = (InterfaceEntry*) dvmLinearAlloc(newClass->classLoader, sizeof(InterfaceEntry) * 2); memset(newClass->iftable, 0, sizeof(InterfaceEntry) * 2); newClass->iftable[0].clazz = newClass->interfaces[0]; newClass->iftable[1].clazz = newClass->interfaces[1]; dvmLinearReadOnly(newClass->classLoader, newClass->iftable); /* * Inherit access flags from the element. Arrays can't be used as a * superclass or interface, so we want to add "abstract final" and remove * "interface". */ int accessFlags = elementClass->accessFlags; if (!gDvm.optimizing) { // If the element class is an inner class, make sure we get the correct access flags. StringObject* className = NULL; dvmGetInnerClass(elementClass, &className, &accessFlags); dvmReleaseTrackedAlloc((Object*) className, NULL); } accessFlags &= JAVA_FLAGS_MASK; accessFlags &= ~ACC_INTERFACE; accessFlags |= ACC_ABSTRACT | ACC_FINAL; // Set the flags we determined above. SET_CLASS_FLAG(newClass, accessFlags | extraFlags); if (!dvmAddClassToHash(newClass)) { /* * Another thread must have loaded the class after we * started but before we finished. Discard what we've * done and leave some hints for the GC. * * (Yes, this happens.) */ /* Clean up the class before letting the * GC get its hands on it. */ dvmFreeClassInnards(newClass); /* Let the GC free the class. */ dvmReleaseTrackedAlloc((Object*) newClass, NULL); /* Grab the winning class. */ newClass = dvmLookupClass(descriptor, elementClass->classLoader, false); assert(newClass != NULL); return newClass; } dvmReleaseTrackedAlloc((Object*) newClass, NULL); ALOGV("Created array class '%s' %p (access=0x%04x.%04x)", descriptor, newClass->classLoader, newClass->accessFlags >> 16, newClass->accessFlags & JAVA_FLAGS_MASK); return newClass; } /* * Copy the entire contents of one array of objects to another. If the copy * is impossible because of a type clash, we fail and return "false". */ bool dvmCopyObjectArray(ArrayObject* dstArray, const ArrayObject* srcArray, ClassObject* dstElemClass) { Object** src = (Object**)(void*)srcArray->contents; u4 length, count; assert(srcArray->length == dstArray->length); assert(dstArray->clazz->elementClass == dstElemClass || (dstArray->clazz->elementClass == dstElemClass->elementClass && dstArray->clazz->arrayDim == dstElemClass->arrayDim+1)); length = dstArray->length; for (count = 0; count < length; count++) { if (!dvmInstanceof(src[count]->clazz, dstElemClass)) { ALOGW("dvmCopyObjectArray: can't store %s in %s", src[count]->clazz->descriptor, dstElemClass->descriptor); return false; } dvmSetObjectArrayElement(dstArray, count, src[count]); } return true; } /* * Copy the entire contents of an array of boxed primitives into an * array of primitives. The boxed value must fit in the primitive (i.e. * narrowing conversions are not allowed). */ bool dvmUnboxObjectArray(ArrayObject* dstArray, const ArrayObject* srcArray, ClassObject* dstElemClass) { Object** src = (Object**)(void*)srcArray->contents; void* dst = (void*)dstArray->contents; u4 count = dstArray->length; PrimitiveType typeIndex = dstElemClass->primitiveType; assert(typeIndex != PRIM_NOT); assert(srcArray->length == dstArray->length); while (count--) { JValue result; /* * This will perform widening conversions as appropriate. It * might make sense to be more restrictive and require that the * primitive type exactly matches the box class, but it's not * necessary for correctness. */ if (!dvmUnboxPrimitive(*src, dstElemClass, &result)) { ALOGW("dvmCopyObjectArray: can't store %s in %s", (*src)->clazz->descriptor, dstElemClass->descriptor); return false; } /* would be faster with 4 loops, but speed not crucial here */ switch (typeIndex) { case PRIM_BOOLEAN: case PRIM_BYTE: { u1* tmp = (u1*)dst; *tmp++ = result.b; dst = tmp; } break; case PRIM_CHAR: case PRIM_SHORT: { u2* tmp = (u2*)dst; *tmp++ = result.s; dst = tmp; } break; case PRIM_FLOAT: case PRIM_INT: { u4* tmp = (u4*)dst; *tmp++ = result.i; dst = tmp; } break; case PRIM_DOUBLE: case PRIM_LONG: { u8* tmp = (u8*)dst; *tmp++ = result.j; dst = tmp; } break; default: /* should not be possible to get here */ dvmAbort(); } src++; } return true; } /* * Returns the width, in bytes, required by elements in instances of * the array class. */ size_t dvmArrayClassElementWidth(const ClassObject* arrayClass) { const char *descriptor; assert(dvmIsArrayClass(arrayClass)); if (dvmIsObjectArrayClass(arrayClass)) { return sizeof(Object *); } else { descriptor = arrayClass->descriptor; switch (descriptor[1]) { case 'B': return 1; /* byte */ case 'C': return 2; /* char */ case 'D': return 8; /* double */ case 'F': return 4; /* float */ case 'I': return 4; /* int */ case 'J': return 8; /* long */ case 'S': return 2; /* short */ case 'Z': return 1; /* boolean */ } } ALOGE("class %p has an unhandled descriptor '%s'", arrayClass, descriptor); dvmDumpThread(dvmThreadSelf(), false); dvmAbort(); return 0; /* Quiet the compiler. */ } size_t dvmArrayObjectSize(const ArrayObject *array) { assert(array != NULL); size_t size = OFFSETOF_MEMBER(ArrayObject, contents); size += array->length * dvmArrayClassElementWidth(array->clazz); return size; }