/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include "native/InternalNativePriv.h" #include <stdlib.h> #include <stdint.h> #include <assert.h> /* * The VM makes guarantees about the atomicity of accesses to primitive * variables. These guarantees also apply to elements of arrays. * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and * must not cause "word tearing". Accesses to 64-bit array elements must * either be atomic or treated as two 32-bit operations. References are * always read and written atomically, regardless of the number of bits * used to represent them. * * We can't rely on standard libc functions like memcpy() and memmove() * in our implementation of System.arraycopy(), because they may copy * byte-by-byte (either for the full run or for "unaligned" parts at the * start or end). We need to use functions that guarantee 16-bit or 32-bit * atomicity as appropriate. * * System.arraycopy() is heavily used, so having an efficient implementation * is important. The bionic libc provides a platform-optimized memory move * function that should be used when possible. If it's not available, * the trivial "reference implementation" versions below can be used until * a proper version can be written. * * For these functions, The caller must guarantee that dest/src are aligned * appropriately for the element type, and that n is a multiple of the * element size. */ /* * Works like memmove(), except: * - if all arguments are at least 32-bit aligned, we guarantee that we * will use operations that preserve atomicity of 32-bit values * - if not, we guarantee atomicity of 16-bit values * * If all three arguments are not at least 16-bit aligned, the behavior * of this function is undefined. (We could remove this restriction by * testing for unaligned values and punting to memmove(), but that's * not currently useful.) * * TODO: add loop for 64-bit alignment * TODO: use __builtin_prefetch * TODO: write an ARM-optimized version */ static void memmove_words(void* dest, const void* src, size_t n) { assert((((uintptr_t) dest | (uintptr_t) src | n) & 0x01) == 0); char* d = (char*) dest; const char* s = (const char*) src; size_t copyCount; /* * If the source and destination pointers are the same, this is * an expensive no-op. Testing for an empty move now allows us * to skip a check later. */ if (n == 0 || d == s) return; /* * Determine if the source and destination buffers will overlap if * we copy data forward (i.e. *dest++ = *src++). * * It's okay if the destination buffer starts before the source and * there is some overlap, because the reader is always ahead of the * writer. */ if (__builtin_expect((d < s) || ((size_t)(d - s) >= n), 1)) { /* * Copy forward. We prefer 32-bit loads and stores even for 16-bit * data, so sort that out. */ if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) { /* * Not 32-bit aligned. Two possibilities: * (1) Congruent, we can align to 32-bit by copying one 16-bit val * (2) Non-congruent, we can do one of: * a. copy whole buffer as a series of 16-bit values * b. load/store 32 bits, using shifts to ensure alignment * c. just copy the as 32-bit values and assume the CPU * will do a reasonable job * * We're currently using (a), which is suboptimal. */ if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) { copyCount = n; } else { copyCount = 2; } n -= copyCount; copyCount /= sizeof(uint16_t); while (copyCount--) { *(uint16_t*)d = *(uint16_t*)s; d += sizeof(uint16_t); s += sizeof(uint16_t); } } /* * Copy 32-bit aligned words. */ copyCount = n / sizeof(uint32_t); while (copyCount--) { *(uint32_t*)d = *(uint32_t*)s; d += sizeof(uint32_t); s += sizeof(uint32_t); } /* * Check for leftovers. Either we finished exactly, or we have * one remaining 16-bit chunk. */ if ((n & 0x02) != 0) { *(uint16_t*)d = *(uint16_t*)s; } } else { /* * Copy backward, starting at the end. */ d += n; s += n; if ((((uintptr_t) d | (uintptr_t) s) & 0x03) != 0) { /* try for 32-bit alignment */ if ((((uintptr_t) d ^ (uintptr_t) s) & 0x03) != 0) { copyCount = n; } else { copyCount = 2; } n -= copyCount; copyCount /= sizeof(uint16_t); while (copyCount--) { d -= sizeof(uint16_t); s -= sizeof(uint16_t); *(uint16_t*)d = *(uint16_t*)s; } } /* copy 32-bit aligned words */ copyCount = n / sizeof(uint32_t); while (copyCount--) { d -= sizeof(uint32_t); s -= sizeof(uint32_t); *(uint32_t*)d = *(uint32_t*)s; } /* copy leftovers */ if ((n & 0x02) != 0) { d -= sizeof(uint16_t); s -= sizeof(uint16_t); *(uint16_t*)d = *(uint16_t*)s; } } } #define move16 memmove_words #define move32 memmove_words /* * public static void arraycopy(Object src, int srcPos, Object dest, * int destPos, int length) * * The description of this function is long, and describes a multitude * of checks and exceptions. */ static void Dalvik_java_lang_System_arraycopy(const u4* args, JValue* pResult) { ArrayObject* srcArray = (ArrayObject*) args[0]; int srcPos = args[1]; ArrayObject* dstArray = (ArrayObject*) args[2]; int dstPos = args[3]; int length = args[4]; /* Check for null pointers. */ if (srcArray == NULL) { dvmThrowNullPointerException("src == null"); RETURN_VOID(); } if (dstArray == NULL) { dvmThrowNullPointerException("dst == null"); RETURN_VOID(); } /* Make sure source and destination are arrays. */ if (!dvmIsArray(srcArray)) { dvmThrowArrayStoreExceptionNotArray(((Object*)srcArray)->clazz, "source"); RETURN_VOID(); } if (!dvmIsArray(dstArray)) { dvmThrowArrayStoreExceptionNotArray(((Object*)dstArray)->clazz, "destination"); RETURN_VOID(); } /* avoid int overflow */ if (srcPos < 0 || dstPos < 0 || length < 0 || srcPos > (int) srcArray->length - length || dstPos > (int) dstArray->length - length) { dvmThrowExceptionFmt(gDvm.exArrayIndexOutOfBoundsException, "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d", srcArray->length, srcPos, dstArray->length, dstPos, length); RETURN_VOID(); } ClassObject* srcClass = srcArray->clazz; ClassObject* dstClass = dstArray->clazz; char srcType = srcClass->descriptor[1]; char dstType = dstClass->descriptor[1]; /* * If one of the arrays holds a primitive type, the other array must * hold the same type. */ bool srcPrim = (srcType != '[' && srcType != 'L'); bool dstPrim = (dstType != '[' && dstType != 'L'); if (srcPrim || dstPrim) { if (srcPrim != dstPrim || srcType != dstType) { dvmThrowArrayStoreExceptionIncompatibleArrays(srcClass, dstClass); RETURN_VOID(); } if (false) ALOGD("arraycopy prim[%c] dst=%p %d src=%p %d len=%d", srcType, dstArray->contents, dstPos, srcArray->contents, srcPos, length); switch (srcType) { case 'B': case 'Z': /* 1 byte per element */ memmove((u1*) dstArray->contents + dstPos, (const u1*) srcArray->contents + srcPos, length); break; case 'C': case 'S': /* 2 bytes per element */ move16((u1*) dstArray->contents + dstPos * 2, (const u1*) srcArray->contents + srcPos * 2, length * 2); break; case 'F': case 'I': /* 4 bytes per element */ move32((u1*) dstArray->contents + dstPos * 4, (const u1*) srcArray->contents + srcPos * 4, length * 4); break; case 'D': case 'J': /* * 8 bytes per element. We don't need to guarantee atomicity * of the entire 64-bit word, so we can use the 32-bit copier. */ move32((u1*) dstArray->contents + dstPos * 8, (const u1*) srcArray->contents + srcPos * 8, length * 8); break; default: /* illegal array type */ ALOGE("Weird array type '%s'", srcClass->descriptor); dvmAbort(); } } else { /* * Neither class is primitive. See if elements in "src" are instances * of elements in "dst" (e.g. copy String to String or String to * Object). */ const int width = sizeof(Object*); if (srcClass->arrayDim == dstClass->arrayDim && dvmInstanceof(srcClass, dstClass)) { /* * "dst" can hold "src"; copy the whole thing. */ if (false) ALOGD("arraycopy ref dst=%p %d src=%p %d len=%d", dstArray->contents, dstPos * width, srcArray->contents, srcPos * width, length * width); move32((u1*)dstArray->contents + dstPos * width, (const u1*)srcArray->contents + srcPos * width, length * width); dvmWriteBarrierArray(dstArray, dstPos, dstPos+length); } else { /* * The arrays are not fundamentally compatible. However, we * may still be able to do this if the destination object is * compatible (e.g. copy Object[] to String[], but the Object * being copied is actually a String). We need to copy elements * one by one until something goes wrong. * * Because of overlapping moves, what we really want to do * is compare the types and count up how many we can move, * then call move32() to shift the actual data. If we just * start from the front we could do a smear rather than a move. */ Object** srcObj; int copyCount; ClassObject* clazz = NULL; srcObj = ((Object**)(void*)srcArray->contents) + srcPos; if (length > 0 && srcObj[0] != NULL) { clazz = srcObj[0]->clazz; if (!dvmCanPutArrayElement(clazz, dstClass)) clazz = NULL; } for (copyCount = 0; copyCount < length; copyCount++) { if (srcObj[copyCount] != NULL && srcObj[copyCount]->clazz != clazz && !dvmCanPutArrayElement(srcObj[copyCount]->clazz, dstClass)) { /* can't put this element into the array */ break; } } if (false) ALOGD("arraycopy iref dst=%p %d src=%p %d count=%d of %d", dstArray->contents, dstPos * width, srcArray->contents, srcPos * width, copyCount, length); move32((u1*)dstArray->contents + dstPos * width, (const u1*)srcArray->contents + srcPos * width, copyCount * width); dvmWriteBarrierArray(dstArray, 0, copyCount); if (copyCount != length) { dvmThrowArrayStoreExceptionIncompatibleArrayElement(srcPos + copyCount, srcObj[copyCount]->clazz, dstClass); RETURN_VOID(); } } } RETURN_VOID(); } /* * static int identityHashCode(Object x) * * Returns that hash code that the default hashCode() * method would return for "x", even if "x"s class * overrides hashCode(). */ static void Dalvik_java_lang_System_identityHashCode(const u4* args, JValue* pResult) { Object* thisPtr = (Object*) args[0]; RETURN_INT(dvmIdentityHashCode(thisPtr)); } const DalvikNativeMethod dvm_java_lang_System[] = { { "arraycopy", "(Ljava/lang/Object;ILjava/lang/Object;II)V", Dalvik_java_lang_System_arraycopy }, { "identityHashCode", "(Ljava/lang/Object;)I", Dalvik_java_lang_System_identityHashCode }, { NULL, NULL, NULL }, };