/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include "libdex/DexOpcodes.h" #include "../../CompilerInternals.h" #include "MipsLIR.h" #include "Codegen.h" #include <unistd.h> /* for cacheflush */ #include <sys/mman.h> /* for protection change */ #define MAX_ASSEMBLER_RETRIES 10 /* * opcode: MipsOpCode enum * skeleton: pre-designated bit-pattern for this opcode * k0: key to applying ds/de * ds: dest start bit position * de: dest end bit position * k1: key to applying s1s/s1e * s1s: src1 start bit position * s1e: src1 end bit position * k2: key to applying s2s/s2e * s2s: src2 start bit position * s2e: src2 end bit position * operands: number of operands (for sanity check purposes) * name: mnemonic name * fmt: for pretty-printing */ #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \ k3, k3s, k3e, flags, name, fmt, size) \ {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \ {k3, k3s, k3e}}, opcode, flags, name, fmt, size} /* Instruction dump string format keys: !pf, where "!" is the start * of the key, "p" is which numeric operand to use and "f" is the * print format. * * [p]ositions: * 0 -> operands[0] (dest) * 1 -> operands[1] (src1) * 2 -> operands[2] (src2) * 3 -> operands[3] (extra) * * [f]ormats: * h -> 4-digit hex * d -> decimal * E -> decimal*4 * F -> decimal*2 * c -> branch condition (beq, bne, etc.) * t -> pc-relative target * T -> pc-region target * u -> 1st half of bl[x] target * v -> 2nd half ob bl[x] target * R -> register list * s -> single precision floating point register * S -> double precision floating point register * m -> Thumb2 modified immediate * n -> complimented Thumb2 modified immediate * M -> Thumb2 16-bit zero-extended immediate * b -> 4-digit binary * * [!] escape. To insert "!", use "!!" */ /* NOTE: must be kept in sync with enum MipsOpcode from MipsLIR.h */ MipsEncodingMap EncodingMap[kMipsLast] = { ENCODING_MAP(kMips32BitData, 0x00000000, kFmtBitBlt, 31, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 2), ENCODING_MAP(kMipsAddiu, 0x24000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "addiu", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsAddu, 0x00000021, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "addu", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsAnd, 0x00000024, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "and", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsAndi, 0x30000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "andi", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsB, 0x10000000, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH, "b", "!0t", 2), ENCODING_MAP(kMipsBal, 0x04110000, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH | REG_DEF_LR, "bal", "!0t", 2), ENCODING_MAP(kMipsBeq, 0x10000000, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01, "beq", "!0r,!1r,!2t", 2), ENCODING_MAP(kMipsBeqz, 0x10000000, /* same as beq above with t = $zero */ kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "beqz", "!0r,!1t", 2), ENCODING_MAP(kMipsBgez, 0x04010000, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "bgez", "!0r,!1t", 2), ENCODING_MAP(kMipsBgtz, 0x1C000000, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "bgtz", "!0r,!1t", 2), ENCODING_MAP(kMipsBlez, 0x18000000, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "blez", "!0r,!1t", 2), ENCODING_MAP(kMipsBltz, 0x04000000, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "bltz", "!0r,!1t", 2), ENCODING_MAP(kMipsBnez, 0x14000000, /* same as bne below with t = $zero */ kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "bnez", "!0r,!1t", 2), ENCODING_MAP(kMipsBne, 0x14000000, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01, "bne", "!0r,!1r,!2t", 2), ENCODING_MAP(kMipsDiv, 0x0000001a, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, IS_QUAD_OP | REG_DEF01 | REG_USE23, "div", "!2r,!3r", 2), #if __mips_isa_rev>=2 ENCODING_MAP(kMipsExt, 0x7c000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 10, 6, kFmtBitBlt, 15, 11, IS_QUAD_OP | REG_DEF0 | REG_USE1, "ext", "!0r,!1r,!2d,!3D", 2), #endif ENCODING_MAP(kMipsJal, 0x0c000000, kFmtBitBlt, 25, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, "jal", "!0T(!0E)", 2), ENCODING_MAP(kMipsJalr, 0x00000009, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF0_USE1, "jalr", "!0r,!1r", 2), ENCODING_MAP(kMipsJr, 0x00000008, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, "jr", "!0r", 2), ENCODING_MAP(kMipsLahi, 0x3C000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, "lahi/lui", "!0r,0x!1h(!1d)", 2), ENCODING_MAP(kMipsLalo, 0x34000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "lalo/ori", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsLui, 0x3C000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, "lui", "!0r,0x!1h(!1d)", 2), ENCODING_MAP(kMipsLb, 0x80000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lb", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsLbu, 0x90000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lbu", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsLh, 0x84000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lh", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsLhu, 0x94000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lhu", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsLw, 0x8C000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lw", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsMfhi, 0x00000010, kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "mfhi", "!0r", 2), ENCODING_MAP(kMipsMflo, 0x00000012, kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "mflo", "!0r", 2), ENCODING_MAP(kMipsMove, 0x00000025, /* or using zero reg */ kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "move", "!0r,!1r", 2), ENCODING_MAP(kMipsMovz, 0x0000000a, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "movz", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsMul, 0x70000002, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "mul", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsNop, 0x00000000, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, NO_OPERAND, "nop", "", 2), ENCODING_MAP(kMipsNor, 0x00000027, /* used for "not" too */ kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "nor", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsOr, 0x00000025, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "or", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsOri, 0x34000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "ori", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsPref, 0xCC000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE2, "pref", "!0d,!1d(!2r)", 2), ENCODING_MAP(kMipsSb, 0xA0000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, "sb", "!0r,!1d(!2r)", 2), #if __mips_isa_rev>=2 ENCODING_MAP(kMipsSeb, 0x7c000420, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "seb", "!0r,!1r", 2), ENCODING_MAP(kMipsSeh, 0x7c000620, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "seh", "!0r,!1r", 2), #endif ENCODING_MAP(kMipsSh, 0xA4000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, "sh", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsSll, 0x00000000, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "sll", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsSllv, 0x00000004, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "sllv", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSlt, 0x0000002a, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "slt", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSlti, 0x28000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "slti", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsSltu, 0x0000002b, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "sltu", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSra, 0x00000003, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "sra", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsSrav, 0x00000007, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "srav", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSrl, 0x00000002, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "srl", "!0r,!1r,0x!2h(!2d)", 2), ENCODING_MAP(kMipsSrlv, 0x00000006, kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "srlv", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSubu, 0x00000023, /* used for "neg" too */ kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "subu", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsSw, 0xAC000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, "sw", "!0r,!1d(!2r)", 2), ENCODING_MAP(kMipsXor, 0x00000026, kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "xor", "!0r,!1r,!2r", 2), ENCODING_MAP(kMipsXori, 0x38000000, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, "xori", "!0r,!1r,0x!2h(!2d)", 2), #ifdef __mips_hard_float ENCODING_MAP(kMipsFadds, 0x46000000, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "add.s", "!0s,!1s,!2s", 2), ENCODING_MAP(kMipsFsubs, 0x46000001, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "sub.s", "!0s,!1s,!2s", 2), ENCODING_MAP(kMipsFmuls, 0x46000002, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "mul.s", "!0s,!1s,!2s", 2), ENCODING_MAP(kMipsFdivs, 0x46000003, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "div.s", "!0s,!1s,!2s", 2), ENCODING_MAP(kMipsFaddd, 0x46200000, kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "add.d", "!0S,!1S,!2S", 2), ENCODING_MAP(kMipsFsubd, 0x46200001, kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "sub.d", "!0S,!1S,!2S", 2), ENCODING_MAP(kMipsFmuld, 0x46200002, kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "mul.d", "!0S,!1S,!2S", 2), ENCODING_MAP(kMipsFdivd, 0x46200003, kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, "div.d", "!0S,!1S,!2S", 2), ENCODING_MAP(kMipsFcvtsd, 0x46200020, kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.s.d", "!0s,!1S", 2), ENCODING_MAP(kMipsFcvtsw, 0x46800020, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.s.w", "!0s,!1s", 2), ENCODING_MAP(kMipsFcvtds, 0x46000021, kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.d.s", "!0S,!1s", 2), ENCODING_MAP(kMipsFcvtdw, 0x46800021, kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.d.w", "!0S,!1s", 2), ENCODING_MAP(kMipsFcvtws, 0x46000024, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.w.s", "!0s,!1s", 2), ENCODING_MAP(kMipsFcvtwd, 0x46200024, kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "cvt.w.d", "!0s,!1S", 2), ENCODING_MAP(kMipsFmovs, 0x46000006, kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "mov.s", "!0s,!1s", 2), ENCODING_MAP(kMipsFmovd, 0x46200006, kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "mov.d", "!0S,!1S", 2), ENCODING_MAP(kMipsFlwc1, 0xC4000000, kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "lwc1", "!0s,!1d(!2r)", 2), ENCODING_MAP(kMipsFldc1, 0xD4000000, kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, "ldc1", "!0S,!1d(!2r)", 2), ENCODING_MAP(kMipsFswc1, 0xE4000000, kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, "swc1", "!0s,!1d(!2r)", 2), ENCODING_MAP(kMipsFsdc1, 0xF4000000, kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, "sdc1", "!0S,!1d(!2r)", 2), ENCODING_MAP(kMipsMfc1, 0x44000000, kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, "mfc1", "!0r,!1s", 2), ENCODING_MAP(kMipsMtc1, 0x44800000, kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | REG_DEF1, "mtc1", "!0r,!1s", 2), #endif ENCODING_MAP(kMipsUndefined, 0x64000000, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, NO_OPERAND, "undefined", "", 2), }; /* Track the number of times that the code cache is patched */ #if defined(WITH_JIT_TUNING) #define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++) #else #define UPDATE_CODE_CACHE_PATCHES() #endif /* Write the numbers in the constant and class pool to the output stream */ static void installLiteralPools(CompilationUnit *cUnit) { int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset); /* Install number of class pointer literals */ *dataPtr++ = cUnit->numClassPointers; MipsLIR *dataLIR = (MipsLIR *) cUnit->classPointerList; while (dataLIR) { /* * Install the callsiteinfo pointers into the cells for now. They will * be converted into real pointers in dvmJitInstallClassObjectPointers. */ *dataPtr++ = dataLIR->operands[0]; dataLIR = NEXT_LIR(dataLIR); } dataLIR = (MipsLIR *) cUnit->literalList; while (dataLIR) { *dataPtr++ = dataLIR->operands[0]; dataLIR = NEXT_LIR(dataLIR); } } /* * Assemble the LIR into binary instruction format. Note that we may * discover that pc-relative displacements may not fit the selected * instruction. In those cases we will try to substitute a new code * sequence or request that the trace be shortened and retried. */ static AssemblerStatus assembleInstructions(CompilationUnit *cUnit, intptr_t startAddr) { int *bufferAddr = (int *) cUnit->codeBuffer; MipsLIR *lir; for (lir = (MipsLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) { if (lir->opcode < 0) { continue; } if (lir->flags.isNop) { continue; } if (lir->opcode == kMipsB || lir->opcode == kMipsBal) { MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta & 0x3) { ALOGE("PC-rel distance is not multiple of 4: %d", delta); dvmAbort(); } if (delta > 131068 || delta < -131069) { ALOGE("Unconditional branch distance out of range: %d", delta); dvmAbort(); } lir->operands[0] = delta >> 2; } else if (lir->opcode >= kMipsBeqz && lir->opcode <= kMipsBnez) { MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta & 0x3) { ALOGE("PC-rel distance is not multiple of 4: %d", delta); dvmAbort(); } if (delta > 131068 || delta < -131069) { ALOGE("Conditional branch distance out of range: %d", delta); dvmAbort(); } lir->operands[1] = delta >> 2; } else if (lir->opcode == kMipsBeq || lir->opcode == kMipsBne) { MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; intptr_t pc = lir->generic.offset + 4; intptr_t target = targetLIR->generic.offset; int delta = target - pc; if (delta & 0x3) { ALOGE("PC-rel distance is not multiple of 4: %d", delta); dvmAbort(); } if (delta > 131068 || delta < -131069) { ALOGE("Conditional branch distance out of range: %d", delta); dvmAbort(); } lir->operands[2] = delta >> 2; } else if (lir->opcode == kMipsJal) { intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3; intptr_t target = lir->operands[0]; /* ensure PC-region branch can be used */ assert((curPC & 0xF0000000) == (target & 0xF0000000)); if (target & 0x3) { ALOGE("Jump target is not multiple of 4: %d", target); dvmAbort(); } lir->operands[0] = target >> 2; } else if (lir->opcode == kMipsLahi) { /* load address hi (via lui) */ MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; intptr_t target = startAddr + targetLIR->generic.offset; lir->operands[1] = target >> 16; } else if (lir->opcode == kMipsLalo) { /* load address lo (via ori) */ MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; intptr_t target = startAddr + targetLIR->generic.offset; lir->operands[2] = lir->operands[2] + target; } MipsEncodingMap *encoder = &EncodingMap[lir->opcode]; u4 bits = encoder->skeleton; int i; for (i = 0; i < 4; i++) { u4 operand; u4 value; operand = lir->operands[i]; switch(encoder->fieldLoc[i].kind) { case kFmtUnused: break; case kFmtBitBlt: if (encoder->fieldLoc[i].start == 0 && encoder->fieldLoc[i].end == 31) { value = operand; } else { value = (operand << encoder->fieldLoc[i].start) & ((1 << (encoder->fieldLoc[i].end + 1)) - 1); } bits |= value; break; case kFmtDfp: { assert(DOUBLEREG(operand)); assert((operand & 0x1) == 0); value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) & ((1 << (encoder->fieldLoc[i].end + 1)) - 1); bits |= value; break; } case kFmtSfp: assert(SINGLEREG(operand)); value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) & ((1 << (encoder->fieldLoc[i].end + 1)) - 1); bits |= value; break; default: assert(0); } } assert(encoder->size == 2); *bufferAddr++ = bits; } return kSuccess; } static int assignLiteralOffsetCommon(LIR *lir, int offset) { for (;lir != NULL; lir = lir->next) { lir->offset = offset; offset += 4; } return offset; } /* Determine the offset of each literal field */ static int assignLiteralOffset(CompilationUnit *cUnit, int offset) { /* Reserved for the size field of class pointer pool */ offset += 4; offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset); offset = assignLiteralOffsetCommon(cUnit->literalList, offset); return offset; } /* * Translation layout in the code cache. Note that the codeAddress pointer * in JitTable will point directly to the code body (field codeAddress). The * chain cell offset codeAddress - 4, and the address of the trace profile * counter is at codeAddress - 8. * * +----------------------------+ * | Trace Profile Counter addr | -> 4 bytes (PROF_COUNTER_ADDR_SIZE) * +----------------------------+ * +--| Offset to chain cell counts| -> 4 bytes (CHAIN_CELL_OFFSET_SIZE) * | +----------------------------+ * | | Trace profile code | <- entry point when profiling * | . - - - - - - - . * | | Code body | <- entry point when not profiling * | . . * | | | * | +----------------------------+ * | | Chaining Cells | -> 16/20 bytes, 4 byte aligned * | . . * | . . * | | | * | +----------------------------+ * | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES * | +----------------------------+ * +->| Chaining cell counts | -> 8 bytes, chain cell counts by type * +----------------------------+ * | Trace description | -> variable sized * . . * | | * +----------------------------+ * | # Class pointer pool size | -> 4 bytes * +----------------------------+ * | Class pointer pool | -> 4-byte aligned, variable size * . . * . . * | | * +----------------------------+ * | Literal pool | -> 4-byte aligned, variable size * . . * . . * | | * +----------------------------+ * */ #define PROF_COUNTER_ADDR_SIZE 4 #define CHAIN_CELL_OFFSET_SIZE 4 /* * Utility functions to navigate various parts in a trace. If we change the * layout/offset in the future, we just modify these functions and we don't need * to propagate the changes to all the use cases. */ static inline char *getTraceBase(const JitEntry *p) { return (char*)p->codeAddress - (PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE); } /* Handy function to retrieve the profile count */ static inline JitTraceCounter_t getProfileCount(const JitEntry *entry) { if (entry->dPC == 0 || entry->codeAddress == 0 || entry->codeAddress == dvmCompilerGetInterpretTemplate()) return 0; JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry); return **p; } /* Handy function to reset the profile count */ static inline void resetProfileCount(const JitEntry *entry) { if (entry->dPC == 0 || entry->codeAddress == 0 || entry->codeAddress == dvmCompilerGetInterpretTemplate()) return; JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry); **p = 0; } /* Get the pointer of the chain cell count */ static inline ChainCellCounts* getChainCellCountsPointer(const char *base) { /* 4 is the size of the profile count */ u4 *chainCellOffsetP = (u4 *) (base + PROF_COUNTER_ADDR_SIZE); u4 chainCellOffset = *chainCellOffsetP; return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset); } /* Get the size of all chaining cells */ static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts) { int cellSize = 0; int i; /* Get total count of chain cells */ for (i = 0; i < kChainingCellGap; i++) { if (i != kChainingCellInvokePredicted) { cellSize += pChainCellCounts->u.count[i] * (CHAIN_CELL_NORMAL_SIZE >> 2); } else { cellSize += pChainCellCounts->u.count[i] * (CHAIN_CELL_PREDICTED_SIZE >> 2); } } return cellSize; } /* Get the starting pointer of the trace description section */ static JitTraceDescription* getTraceDescriptionPointer(const char *base) { ChainCellCounts* pCellCounts = getChainCellCountsPointer(base); return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); } /* Get the size of a trace description */ static int getTraceDescriptionSize(const JitTraceDescription *desc) { int runCount; /* Trace end is always of non-meta type (ie isCode == true) */ for (runCount = 0; ; runCount++) { if (desc->trace[runCount].isCode && desc->trace[runCount].info.frag.runEnd) break; } return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun)); } #if defined(SIGNATURE_BREAKPOINT) /* Inspect the assembled instruction stream to find potential matches */ static void matchSignatureBreakpoint(const CompilationUnit *cUnit, unsigned int size) { unsigned int i, j; u4 *ptr = (u4 *) cUnit->codeBuffer; for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) { if (ptr[i] == gDvmJit.signatureBreakpoint[0]) { for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) { if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) { break; } } if (j == gDvmJit.signatureBreakpointSize) { ALOGD("Signature match starting from offset %#x (%d words)", i*4, gDvmJit.signatureBreakpointSize); int descSize = getTraceDescriptionSize(cUnit->traceDesc); JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize); memcpy(newCopy, cUnit->traceDesc, descSize); dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy); break; } } } } #endif /* * Go over each instruction in the list and calculate the offset from the top * before sending them off to the assembler. If out-of-range branch distance is * seen rearrange the instructions a bit to correct it. */ void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info) { MipsLIR *mipsLIR; int offset = 0; int i; ChainCellCounts chainCellCounts; int descSize = (cUnit->jitMode == kJitMethod) ? 0 : getTraceDescriptionSize(cUnit->traceDesc); int chainingCellGap = 0; info->instructionSet = cUnit->instructionSet; /* Beginning offset needs to allow space for chain cell offset */ for (mipsLIR = (MipsLIR *) cUnit->firstLIRInsn; mipsLIR; mipsLIR = NEXT_LIR(mipsLIR)) { mipsLIR->generic.offset = offset; if (mipsLIR->opcode >= 0 && !mipsLIR->flags.isNop) { mipsLIR->flags.size = EncodingMap[mipsLIR->opcode].size * 2; offset += mipsLIR->flags.size; } /* Pseudo opcodes don't consume space */ } /* Const values have to be word aligned */ offset = (offset + 3) & ~3; u4 chainCellOffset = offset; MipsLIR *chainCellOffsetLIR = NULL; if (cUnit->jitMode != kJitMethod) { /* * Get the gap (# of u4) between the offset of chaining cell count and * the bottom of real chaining cells. If the translation has chaining * cells, the gap is guaranteed to be multiples of 4. */ chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2; /* Add space for chain cell counts & trace description */ chainCellOffsetLIR = (MipsLIR *) cUnit->chainCellOffsetLIR; assert(chainCellOffsetLIR); assert(chainCellOffset < 0x10000); assert(chainCellOffsetLIR->opcode == kMips32BitData && chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG); /* * Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the * space occupied by the pointer to the trace profiling counter. */ chainCellOffsetLIR->operands[0] = chainCellOffset - 4; offset += sizeof(chainCellCounts) + descSize; assert((offset & 0x3) == 0); /* Should still be word aligned */ } /* Set up offsets for literals */ cUnit->dataOffset = offset; /* * Assign each class pointer/constant an offset from the beginning of the * compilation unit. */ offset = assignLiteralOffset(cUnit, offset); cUnit->totalSize = offset; if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) { gDvmJit.codeCacheFull = true; info->discardResult = true; return; } /* Allocate enough space for the code block */ cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true); if (cUnit->codeBuffer == NULL) { ALOGE("Code buffer allocation failure"); info->discardResult = true; return; } /* * Attempt to assemble the trace. Note that assembleInstructions * may rewrite the code sequence and request a retry. */ cUnit->assemblerStatus = assembleInstructions(cUnit, (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed); switch(cUnit->assemblerStatus) { case kSuccess: break; case kRetryAll: if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) { if (cUnit->jitMode != kJitMethod) { /* Restore pristine chain cell marker on retry */ chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG; } return; } /* Too many retries - reset and try cutting the trace in half */ cUnit->assemblerRetries = 0; cUnit->assemblerStatus = kRetryHalve; return; case kRetryHalve: return; default: ALOGE("Unexpected assembler status: %d", cUnit->assemblerStatus); dvmAbort(); } #if defined(SIGNATURE_BREAKPOINT) if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL && chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) { matchSignatureBreakpoint(cUnit, chainCellOffset/4); } #endif /* Don't go all the way if the goal is just to get the verbose output */ if (info->discardResult) return; /* * The cache might disappear - acquire lock and check version * Continue holding lock until translation cache update is complete. * These actions are required here in the compiler thread because * it is unaffected by suspend requests and doesn't know if a * translation cache flush is in progress. */ dvmLockMutex(&gDvmJit.compilerLock); if (info->cacheVersion != gDvmJit.cacheVersion) { /* Cache changed - discard current translation */ info->discardResult = true; info->codeAddress = NULL; dvmUnlockMutex(&gDvmJit.compilerLock); return; } cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed; gDvmJit.codeCacheByteUsed += offset; UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset); /* Install the code block */ memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset); gDvmJit.numCompilations++; if (cUnit->jitMode != kJitMethod) { /* Install the chaining cell counts */ for (i=0; i< kChainingCellGap; i++) { chainCellCounts.u.count[i] = cUnit->numChainingCells[i]; } /* Set the gap number in the chaining cell count structure */ chainCellCounts.u.count[kChainingCellGap] = chainingCellGap; memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts, sizeof(chainCellCounts)); /* Install the trace description */ memcpy((char*) cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts), cUnit->traceDesc, descSize); } /* Write the literals directly into the code cache */ installLiteralPools(cUnit); /* Flush dcache and invalidate the icache to maintain coherence */ dvmCompilerCacheFlush((long)cUnit->baseAddr, (long)((char *) cUnit->baseAddr + offset), 0); UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(cUnit->baseAddr, offset); /* Translation cache update complete - release lock */ dvmUnlockMutex(&gDvmJit.compilerLock); /* Record code entry point and instruction set */ info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize; /* transfer the size of the profiling code */ info->profileCodeSize = cUnit->profileCodeSize; } /* * Returns the skeleton bit pattern associated with an opcode. All * variable fields are zeroed. */ static u4 getSkeleton(MipsOpCode op) { return EncodingMap[op].skeleton; } static u4 assembleChainingBranch(int branchOffset, bool thumbTarget) { return getSkeleton(kMipsJal) | ((branchOffset & 0x0FFFFFFF) >> 2); } /* * Perform translation chain operation. * For MIPS, we'll use a JAL instruction to generate an * unconditional chaining branch of up to 256M. The JAL * instruction also has a restriction that the jump target * must be in the same 256M page as the JAL instruction's * delay slot address. * If the target is out of JAL's range, don't chain. * If one or more threads is suspended, don't chain. */ void* dvmJitChain(void* tgtAddr, u4* branchAddr) { u4 newInst; /* * Only chain translations when there is no urge to ask all threads to * suspend themselves via the interpreter. */ if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) && (gDvmJit.codeCacheFull == false) && ((((int) tgtAddr) & 0xF0000000) == (((int) branchAddr+4) & 0xF0000000))) { gDvmJit.translationChains++; COMPILER_TRACE_CHAINING( ALOGD("Jit Runtime: chaining 0x%x to 0x%x", (int) branchAddr, (int) tgtAddr & -2)); newInst = assembleChainingBranch((int) tgtAddr & -2, 0); UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); *branchAddr = newInst; dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4, 0); UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); gDvmJit.hasNewChain = true; } return tgtAddr; } #if !defined(WITH_SELF_VERIFICATION) /* * Attempt to enqueue a work order to patch an inline cache for a predicted * chaining cell for virtual/interface calls. */ static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr, PredictedChainingCell *newContent) { /* * Make sure only one thread gets here since updating the cell (ie fast * path and queueing the request (ie the queued path) have to be done * in an atomic fashion. */ dvmLockMutex(&gDvmJit.compilerICPatchLock); /* Fast path for uninitialized chaining cell */ if (cellAddr->clazz == NULL && cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) { UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); cellAddr->method = newContent->method; cellAddr->branch = newContent->branch; /* * The update order matters - make sure clazz is updated last since it * will bring the uninitialized chaining cell to life. */ android_atomic_release_store((int32_t)newContent->clazz, (volatile int32_t *)(void*) &cellAddr->clazz); dvmCompilerCacheFlush((long) cellAddr, (long) (cellAddr+1), 0); UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); #if defined(WITH_JIT_TUNING) gDvmJit.icPatchInit++; #endif /* Check if this is a frequently missed clazz */ } else if (cellAddr->stagedClazz != newContent->clazz) { /* Not proven to be frequent yet - build up the filter cache */ UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); cellAddr->stagedClazz = newContent->clazz; UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); #if defined(WITH_JIT_TUNING) gDvmJit.icPatchRejected++; #endif /* * Different classes but same method implementation - it is safe to just * patch the class value without the need to stop the world. */ } else if (cellAddr->method == newContent->method) { UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); cellAddr->clazz = newContent->clazz; /* No need to flush the cache here since the branch is not patched */ UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); #if defined(WITH_JIT_TUNING) gDvmJit.icPatchLockFree++; #endif /* * Cannot patch the chaining cell inline - queue it until the next safe * point. */ } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) { int index = gDvmJit.compilerICPatchIndex++; const ClassObject *clazz = newContent->clazz; gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr; gDvmJit.compilerICPatchQueue[index].cellContent = *newContent; gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor; gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader; /* For verification purpose only */ gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber; #if defined(WITH_JIT_TUNING) gDvmJit.icPatchQueued++; #endif } else { /* Queue is full - just drop this patch request */ #if defined(WITH_JIT_TUNING) gDvmJit.icPatchDropped++; #endif } dvmUnlockMutex(&gDvmJit.compilerICPatchLock); } #endif /* * This method is called from the invoke templates for virtual and interface * methods to speculatively setup a chain to the callee. The templates are * written in assembly and have setup method, cell, and clazz at r0, r2, and * r3 respectively, so there is a unused argument in the list. Upon return one * of the following three results may happen: * 1) Chain is not setup because the callee is native. Reset the rechain * count to a big number so that it will take a long time before the next * rechain attempt to happen. * 2) Chain is not setup because the callee has not been created yet. Reset * the rechain count to a small number and retry in the near future. * 3) Ask all other threads to stop before patching this chaining cell. * This is required because another thread may have passed the class check * but hasn't reached the chaining cell yet to follow the chain. If we * patch the content before halting the other thread, there could be a * small window for race conditions to happen that it may follow the new * but wrong chain to invoke a different method. */ const Method *dvmJitToPatchPredictedChain(const Method *method, Thread *self, PredictedChainingCell *cell, const ClassObject *clazz) { int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN; #if defined(WITH_SELF_VERIFICATION) newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID; goto done; #else PredictedChainingCell newCell; int baseAddr, tgtAddr; if (dvmIsNativeMethod(method)) { UNPROTECT_CODE_CACHE(cell, sizeof(*cell)); /* * Put a non-zero/bogus value in the clazz field so that it won't * trigger immediate patching and will continue to fail to match with * a real clazz pointer. */ cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ; UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(cell, sizeof(*cell)); goto done; } tgtAddr = (int) dvmJitGetTraceAddr(method->insns); baseAddr = (int) cell + 4; // PC is cur_addr + 4 if ((baseAddr & 0xF0000000) != (tgtAddr & 0xF0000000)) { COMPILER_TRACE_CHAINING( ALOGD("Jit Runtime: predicted chain %p to distant target %s ignored", cell, method->name)); goto done; } /* * Compilation not made yet for the callee. Reset the counter to a small * value and come back to check soon. */ if ((tgtAddr == 0) || ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) { COMPILER_TRACE_CHAINING( ALOGD("Jit Runtime: predicted chain %p to method %s%s delayed", cell, method->clazz->descriptor, method->name)); goto done; } if (cell->clazz == NULL) { newRechainCount = self->icRechainCount; } newCell.branch = assembleChainingBranch(tgtAddr, true); newCell.delay_slot = getSkeleton(kMipsNop); newCell.clazz = clazz; newCell.method = method; newCell.stagedClazz = NULL; /* * Enter the work order to the queue and the chaining cell will be patched * the next time a safe point is entered. * * If the enqueuing fails reset the rechain count to a normal value so that * it won't get indefinitely delayed. */ inlineCachePatchEnqueue(cell, &newCell); #endif done: self->icRechainCount = newRechainCount; return method; } /* * Patch the inline cache content based on the content passed from the work * order. */ void dvmCompilerPatchInlineCache(void) { int i; PredictedChainingCell *minAddr, *maxAddr; /* Nothing to be done */ if (gDvmJit.compilerICPatchIndex == 0) return; /* * Since all threads are already stopped we don't really need to acquire * the lock. But race condition can be easily introduced in the future w/o * paying attention so we still acquire the lock here. */ dvmLockMutex(&gDvmJit.compilerICPatchLock); UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); //ALOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex); /* Initialize the min/max address range */ minAddr = (PredictedChainingCell *) ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize); maxAddr = (PredictedChainingCell *) gDvmJit.codeCache; for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) { ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i]; PredictedChainingCell *cellAddr = workOrder->cellAddr; PredictedChainingCell *cellContent = &workOrder->cellContent; ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor, workOrder->classLoader); assert(clazz->serialNumber == workOrder->serialNumber); /* Use the newly resolved clazz pointer */ cellContent->clazz = clazz; COMPILER_TRACE_CHAINING( ALOGD("Jit Runtime: predicted chain %p from %s to %s (%s) " "patched", cellAddr, cellAddr->clazz->descriptor, cellContent->clazz->descriptor, cellContent->method->name)); /* Patch the chaining cell */ *cellAddr = *cellContent; minAddr = (cellAddr < minAddr) ? cellAddr : minAddr; maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr; } /* Then synchronize the I/D cache */ dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1), 0); UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); gDvmJit.compilerICPatchIndex = 0; dvmUnlockMutex(&gDvmJit.compilerICPatchLock); } /* * Unchain a trace given the starting address of the translation * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR. * Returns the address following the last cell unchained. Note that * the incoming codeAddr is a thumb code address, and therefore has * the low bit set. */ static u4* unchainSingle(JitEntry *trace) { const char *base = getTraceBase(trace); ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base); int cellSize = getChainCellSize(pChainCellCounts); u4* pChainCells; int i,j; PredictedChainingCell *predChainCell; if (cellSize == 0) return (u4 *) pChainCellCounts; /* Locate the beginning of the chain cell region */ pChainCells = ((u4 *) pChainCellCounts) - cellSize - pChainCellCounts->u.count[kChainingCellGap]; /* The cells are sorted in order - walk through them and reset */ for (i = 0; i < kChainingCellGap; i++) { int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */ if (i == kChainingCellInvokePredicted) { elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2; } for (j = 0; j < pChainCellCounts->u.count[i]; j++) { int targetOffset; switch(i) { case kChainingCellNormal: targetOffset = offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal); break; case kChainingCellHot: case kChainingCellInvokeSingleton: targetOffset = offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect); break; case kChainingCellInvokePredicted: targetOffset = 0; predChainCell = (PredictedChainingCell *) pChainCells; /* * There could be a race on another mutator thread to use * this particular predicted cell and the check has passed * the clazz comparison. So we cannot safely wipe the * method and branch but it is safe to clear the clazz, * which serves as the key. */ predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT; break; #if defined(WITH_SELF_VERIFICATION) case kChainingCellBackwardBranch: targetOffset = offsetof(Thread, jitToInterpEntries.dvmJitToInterpBackwardBranch); break; #else case kChainingCellBackwardBranch: targetOffset = offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal); break; #endif default: targetOffset = 0; // make gcc happy ALOGE("Unexpected chaining type: %d", i); dvmAbort(); // dvmAbort OK here - can't safely recover } COMPILER_TRACE_CHAINING( ALOGD("Jit Runtime: unchaining %#x", (int)pChainCells)); /* * Code sequence for a chaining cell is: * lw a0, offset(rSELF) * jalr ra, a0 */ if (i != kChainingCellInvokePredicted) { *pChainCells = getSkeleton(kMipsLw) | (r_A0 << 16) | targetOffset | (rSELF << 21); *(pChainCells+1) = getSkeleton(kMipsJalr) | (r_RA << 11) | (r_A0 << 21); } pChainCells += elemSize; /* Advance by a fixed number of words */ } } return pChainCells; } /* Unchain all translation in the cache. */ void dvmJitUnchainAll() { u4* lowAddress = NULL; u4* highAddress = NULL; unsigned int i; if (gDvmJit.pJitEntryTable != NULL) { COMPILER_TRACE_CHAINING(ALOGD("Jit Runtime: unchaining all")); dvmLockMutex(&gDvmJit.tableLock); UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); for (i = 0; i < gDvmJit.jitTableSize; i++) { if (gDvmJit.pJitEntryTable[i].dPC && !gDvmJit.pJitEntryTable[i].u.info.isMethodEntry && gDvmJit.pJitEntryTable[i].codeAddress && (gDvmJit.pJitEntryTable[i].codeAddress != dvmCompilerGetInterpretTemplate())) { u4* lastAddress; lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]); if (lowAddress == NULL || (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress) lowAddress = (u4*)gDvmJit.pJitEntryTable[i].codeAddress; if (lastAddress > highAddress) highAddress = lastAddress; } } if (lowAddress && highAddress) dvmCompilerCacheFlush((long)lowAddress, (long)highAddress, 0); UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); dvmUnlockMutex(&gDvmJit.tableLock); gDvmJit.translationChains = 0; } gDvmJit.hasNewChain = false; } typedef struct jitProfileAddrToLine { u4 lineNum; u4 bytecodeOffset; } jitProfileAddrToLine; /* Callback function to track the bytecode offset/line number relationiship */ static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum) { jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt; /* Best match so far for this offset */ if (addrToLine->bytecodeOffset >= bytecodeOffset) { addrToLine->lineNum = lineNum; } return 0; } /* Dumps profile info for a single trace */ static int dumpTraceProfile(JitEntry *p, bool silent, bool reset, unsigned long sum) { int idx; if (p->codeAddress == NULL) { if (!silent) ALOGD("TRACEPROFILE NULL"); return 0; } if (p->codeAddress == dvmCompilerGetInterpretTemplate()) { if (!silent) ALOGD("TRACEPROFILE INTERPRET_ONLY"); return 0; } JitTraceCounter_t count = getProfileCount(p); if (reset) { resetProfileCount(p); } if (silent) { return count; } JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p)); const Method *method = desc->method; char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset}; /* * We may end up decoding the debug information for the same method * multiple times, but the tradeoff is we don't need to allocate extra * space to store the addr/line mapping. Since this is a debugging feature * and done infrequently so the slower but simpler mechanism should work * just fine. */ dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile, dvmGetMethodCode(method), method->clazz->descriptor, method->prototype.protoIdx, method->accessFlags, addrToLineCb, NULL, &addrToLine); ALOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s", (int) getTraceBase(p), count, ((float ) count) / sum * 100.0, desc->trace[0].info.frag.startOffset, desc->trace[0].info.frag.numInsts, addrToLine.lineNum, method->clazz->descriptor, method->name, methodDesc); free(methodDesc); /* Find the last fragment (ie runEnd is set) */ for (idx = 0; desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd; idx++) { } /* * runEnd must comes with a JitCodeDesc frag. If isCode is false it must * be a meta info field (only used by callsite info for now). */ if (!desc->trace[idx].isCode) { const Method *method = (const Method *) desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta; char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); /* Print the callee info in the trace */ ALOGD(" -> %s%s;%s", method->clazz->descriptor, method->name, methodDesc); } return count; } /* Create a copy of the trace descriptor of an existing compilation */ JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc, const JitEntry *knownEntry) { const JitEntry *jitEntry = knownEntry ? knownEntry : dvmJitFindEntry(pc, false); if ((jitEntry == NULL) || (jitEntry->codeAddress == 0)) return NULL; JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(jitEntry)); /* Now make a copy and return */ int descSize = getTraceDescriptionSize(desc); JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize); memcpy(newCopy, desc, descSize); return newCopy; } /* qsort callback function */ static int sortTraceProfileCount(const void *entry1, const void *entry2) { const JitEntry *jitEntry1 = (const JitEntry *)entry1; const JitEntry *jitEntry2 = (const JitEntry *)entry2; JitTraceCounter_t count1 = getProfileCount(jitEntry1); JitTraceCounter_t count2 = getProfileCount(jitEntry2); return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1); } /* Sort the trace profile counts and dump them */ void dvmCompilerSortAndPrintTraceProfiles() { JitEntry *sortedEntries; int numTraces = 0; unsigned long sum = 0; unsigned int i; /* Make sure that the table is not changing */ dvmLockMutex(&gDvmJit.tableLock); /* Sort the entries by descending order */ sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize); if (sortedEntries == NULL) goto done; memcpy(sortedEntries, gDvmJit.pJitEntryTable, sizeof(JitEntry) * gDvmJit.jitTableSize); qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry), sortTraceProfileCount); /* Analyze the sorted entries */ for (i=0; i < gDvmJit.jitTableSize; i++) { if (sortedEntries[i].dPC != 0) { sum += dumpTraceProfile(&sortedEntries[i], true /* silent */, false /* reset */, 0); numTraces++; } } if (numTraces == 0) numTraces = 1; if (sum == 0) { sum = 1; } ALOGD("JIT: Average execution count -> %d",(int)(sum / numTraces)); /* Dump the sorted entries. The count of each trace will be reset to 0. */ for (i=0; i < gDvmJit.jitTableSize; i++) { if (sortedEntries[i].dPC != 0) { dumpTraceProfile(&sortedEntries[i], false /* silent */, true /* reset */, sum); } } for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) { /* Stip interpreter stubs */ if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) { continue; } JitTraceDescription* desc = dvmCopyTraceDescriptor(NULL, &sortedEntries[i]); if (desc) { dvmCompilerWorkEnqueue(sortedEntries[i].dPC, kWorkOrderTraceDebug, desc); } } free(sortedEntries); done: dvmUnlockMutex(&gDvmJit.tableLock); return; } static void findClassPointersSingleTrace(char *base, void (*callback)(void *)) { unsigned int chainTypeIdx, chainIdx; ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base); int cellSize = getChainCellSize(pChainCellCounts); /* Scan the chaining cells */ if (cellSize) { /* Locate the beginning of the chain cell region */ u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize - pChainCellCounts->u.count[kChainingCellGap]; /* The cells are sorted in order - walk through them */ for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap; chainTypeIdx++) { if (chainTypeIdx != kChainingCellInvokePredicted) { /* In 32-bit words */ pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) * pChainCellCounts->u.count[chainTypeIdx]; continue; } for (chainIdx = 0; chainIdx < pChainCellCounts->u.count[chainTypeIdx]; chainIdx++) { PredictedChainingCell *cell = (PredictedChainingCell *) pChainCells; /* * Report the cell if it contains a sane class * pointer. */ if (cell->clazz != NULL && cell->clazz != (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) { callback(&cell->clazz); } pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2; } } } /* Scan the class pointer pool */ JitTraceDescription *desc = getTraceDescriptionPointer(base); int descSize = getTraceDescriptionSize(desc); int *classPointerP = (int *) ((char *) desc + descSize); int numClassPointers = *classPointerP++; for (; numClassPointers; numClassPointers--, classPointerP++) { callback(classPointerP); } } /* * Scan class pointers in each translation and pass its address to the callback * function. Currently such a pointers can be found in the pointer pool and the * clazz field in the predicted chaining cells. */ void dvmJitScanAllClassPointers(void (*callback)(void *)) { UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); /* Handle the inflight compilation first */ if (gDvmJit.inflightBaseAddr) findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr, callback); if (gDvmJit.pJitEntryTable != NULL) { unsigned int traceIdx; dvmLockMutex(&gDvmJit.tableLock); for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) { const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx]; if (entry->dPC && !entry->u.info.isMethodEntry && entry->codeAddress && (entry->codeAddress != dvmCompilerGetInterpretTemplate())) { char *base = getTraceBase(entry); findClassPointersSingleTrace(base, callback); } } dvmUnlockMutex(&gDvmJit.tableLock); } UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); } /* * Provide the final touch on the class object pointer pool to install the * actual pointers. The thread has to be in the running state. */ void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress) { char *base = codeAddress - cUnit->headerSize; /* Scan the class pointer pool */ JitTraceDescription *desc = getTraceDescriptionPointer(base); int descSize = getTraceDescriptionSize(desc); intptr_t *classPointerP = (int *) ((char *) desc + descSize); int numClassPointers = *(int *)classPointerP++; intptr_t *startClassPointerP = classPointerP; /* * Change the thread state to VM_RUNNING so that GC won't be happening * when the assembler looks up the class pointers. May suspend the current * thread if there is a pending request before the state is actually * changed to RUNNING. */ dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING); /* * Unprotecting the code cache will need to acquire the code cache * protection lock first. Doing so after the state change may increase the * time spent in the RUNNING state (which may delay the next GC request * should there be contention on codeCacheProtectionLock). In practice * this is probably not going to happen often since a GC is just served. * More importantly, acquiring the lock before the state change will * cause deadlock (b/4192964). */ UNPROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t)); #if defined(WITH_JIT_TUNING) u8 startTime = dvmGetRelativeTimeUsec(); #endif for (;numClassPointers; numClassPointers--) { CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP; ClassObject *clazz = dvmFindClassNoInit( callsiteInfo->classDescriptor, callsiteInfo->classLoader); assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor)); *classPointerP++ = (intptr_t) clazz; } /* * Register the base address so that if GC kicks in after the thread state * has been changed to VMWAIT and before the compiled code is registered * in the JIT table, its content can be patched if class objects are * moved. */ gDvmJit.inflightBaseAddr = base; #if defined(WITH_JIT_TUNING) u8 blockTime = dvmGetRelativeTimeUsec() - startTime; gDvmJit.compilerThreadBlockGCTime += blockTime; if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime) gDvmJit.maxCompilerThreadBlockGCTime = blockTime; gDvmJit.numCompilerThreadBlockGC++; #endif UPDATE_CODE_CACHE_PATCHES(); PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t)); /* Change the thread state back to VMWAIT */ dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT); } #if defined(WITH_SELF_VERIFICATION) /* * The following are used to keep compiled loads and stores from modifying * memory during self verification mode. * * Stores do not modify memory. Instead, the address and value pair are stored * into heapSpace. Addresses within heapSpace are unique. For accesses smaller * than a word, the word containing the address is loaded first before being * updated. * * Loads check heapSpace first and return data from there if an entry exists. * Otherwise, data is loaded from memory as usual. */ /* Used to specify sizes of memory operations */ enum { kSVByte, kSVSignedByte, kSVHalfword, kSVSignedHalfword, kSVWord, kSVDoubleword, kSVVariable, }; /* Load the value of a decoded register from the stack */ static int selfVerificationMemRegLoad(int* sp, int reg) { assert(0); /* MIPSTODO retarg func */ return *(sp + reg); } /* Load the value of a decoded doubleword register from the stack */ static s8 selfVerificationMemRegLoadDouble(int* sp, int reg) { assert(0); /* MIPSTODO retarg func */ return *((s8*)(sp + reg)); } /* Store the value of a decoded register out to the stack */ static void selfVerificationMemRegStore(int* sp, int data, int reg) { assert(0); /* MIPSTODO retarg func */ *(sp + reg) = data; } /* Store the value of a decoded doubleword register out to the stack */ static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg) { assert(0); /* MIPSTODO retarg func */ *((s8*)(sp + reg)) = data; } /* * Load the specified size of data from the specified address, checking * heapSpace first if Self Verification mode wrote to it previously, and * falling back to actual memory otherwise. */ static int selfVerificationLoad(int addr, int size) { assert(0); /* MIPSTODO retarg func */ Thread *self = dvmThreadSelf(); ShadowSpace *shadowSpace = self->shadowSpace; ShadowHeap *heapSpacePtr; int data; int maskedAddr = addr & 0xFFFFFFFC; int alignment = addr & 0x3; for (heapSpacePtr = shadowSpace->heapSpace; heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { if (heapSpacePtr->addr == maskedAddr) { addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; break; } } switch (size) { case kSVByte: data = *((u1*) addr); break; case kSVSignedByte: data = *((s1*) addr); break; case kSVHalfword: data = *((u2*) addr); break; case kSVSignedHalfword: data = *((s2*) addr); break; case kSVWord: data = *((u4*) addr); break; default: ALOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size); data = 0; dvmAbort(); } //ALOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size); return data; } /* Like selfVerificationLoad, but specifically for doublewords */ static s8 selfVerificationLoadDoubleword(int addr) { assert(0); /* MIPSTODO retarg func */ Thread *self = dvmThreadSelf(); ShadowSpace* shadowSpace = self->shadowSpace; ShadowHeap* heapSpacePtr; int addr2 = addr+4; unsigned int data = *((unsigned int*) addr); unsigned int data2 = *((unsigned int*) addr2); for (heapSpacePtr = shadowSpace->heapSpace; heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { if (heapSpacePtr->addr == addr) { data = heapSpacePtr->data; } else if (heapSpacePtr->addr == addr2) { data2 = heapSpacePtr->data; } } //ALOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x", // addr, data, data2); return (((s8) data2) << 32) | data; } /* * Handles a store of a specified size of data to a specified address. * This gets logged as an addr/data pair in heapSpace instead of modifying * memory. Addresses in heapSpace are unique, and accesses smaller than a * word pull the entire word from memory first before updating. */ static void selfVerificationStore(int addr, int data, int size) { assert(0); /* MIPSTODO retarg func */ Thread *self = dvmThreadSelf(); ShadowSpace *shadowSpace = self->shadowSpace; ShadowHeap *heapSpacePtr; int maskedAddr = addr & 0xFFFFFFFC; int alignment = addr & 0x3; //ALOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size); for (heapSpacePtr = shadowSpace->heapSpace; heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { if (heapSpacePtr->addr == maskedAddr) break; } if (heapSpacePtr == shadowSpace->heapSpaceTail) { heapSpacePtr->addr = maskedAddr; heapSpacePtr->data = *((unsigned int*) maskedAddr); shadowSpace->heapSpaceTail++; } addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; switch (size) { case kSVByte: *((u1*) addr) = data; break; case kSVSignedByte: *((s1*) addr) = data; break; case kSVHalfword: *((u2*) addr) = data; break; case kSVSignedHalfword: *((s2*) addr) = data; break; case kSVWord: *((u4*) addr) = data; break; default: ALOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size); dvmAbort(); } } /* Like selfVerificationStore, but specifically for doublewords */ static void selfVerificationStoreDoubleword(int addr, s8 double_data) { assert(0); /* MIPSTODO retarg func */ Thread *self = dvmThreadSelf(); ShadowSpace *shadowSpace = self->shadowSpace; ShadowHeap *heapSpacePtr; int addr2 = addr+4; int data = double_data; int data2 = double_data >> 32; bool store1 = false, store2 = false; //ALOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x", // addr, data, data2); for (heapSpacePtr = shadowSpace->heapSpace; heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { if (heapSpacePtr->addr == addr) { heapSpacePtr->data = data; store1 = true; } else if (heapSpacePtr->addr == addr2) { heapSpacePtr->data = data2; store2 = true; } } if (!store1) { shadowSpace->heapSpaceTail->addr = addr; shadowSpace->heapSpaceTail->data = data; shadowSpace->heapSpaceTail++; } if (!store2) { shadowSpace->heapSpaceTail->addr = addr2; shadowSpace->heapSpaceTail->data = data2; shadowSpace->heapSpaceTail++; } } /* * Decodes the memory instruction at the address specified in the link * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored * consecutively on the stack beginning at the specified stack pointer. * Calls the proper Self Verification handler for the memory instruction and * updates the link register to point past the decoded memory instruction. */ void dvmSelfVerificationMemOpDecode(int lr, int* sp) { assert(0); /* MIPSTODO retarg func */ enum { kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0] kMemOpRRR = 0x0A, // Full opcode is 7 bits kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs kMemOpRRR2 = 0x0B, // Full opcode is 7 bits kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0] kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0] kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0] kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0] kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0] kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0] kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0] kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0] kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0] kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0] kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0] kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0] kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0] kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0] kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0] kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0] kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0] kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0] kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0] kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0] kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0] kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100] rn[19..16] rt[15..12] imm12[11..0] */ kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101] rn[19..16] rt[15..12] imm12[11..0] */ kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011] rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011] rt[15..12] rn[19..16] imm12[11..0] */ kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2 }; int addr, offset, data; long long double_data; int size = kSVWord; bool store = false; unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE); unsigned int insn = *lr_masked; int old_lr; old_lr = selfVerificationMemRegLoad(sp, 13); if ((insn & kMemOp2) == kMemOp2) { insn = (insn << 16) | (insn >> 16); //ALOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn); int opcode12 = (insn >> 20) & 0xFFF; int opcode6 = (insn >> 6) & 0x3F; int opcode4 = (insn >> 8) & 0xF; int imm2 = (insn >> 4) & 0x3; int imm8 = insn & 0xFF; int imm12 = insn & 0xFFF; int rd = (insn >> 12) & 0xF; int rm = insn & 0xF; int rn = (insn >> 16) & 0xF; int rt = (insn >> 12) & 0xF; bool wBack = true; // Update the link register selfVerificationMemRegStore(sp, old_lr+4, 13); // Determine whether the mem op is a store or load switch (opcode12) { case kMemOp2Stmia: case kMemOp2Stmia2: case kMemOp2Vstr: case kMemOp2Vstr2: case kMemOp2StrbRRR: case kMemOp2StrhRRR: case kMemOp2StrRRR: case kMemOp2StrbRRI12: case kMemOp2StrhRRI12: case kMemOp2StrRRI12: store = true; } // Determine the size of the mem access switch (opcode12) { case kMemOp2StrbRRR: case kMemOp2LdrbRRR: case kMemOp2StrbRRI12: case kMemOp2LdrbRRI12: size = kSVByte; break; case kMemOp2LdrsbRRR: case kMemOp2LdrsbRRI12: size = kSVSignedByte; break; case kMemOp2StrhRRR: case kMemOp2LdrhRRR: case kMemOp2StrhRRI12: case kMemOp2LdrhRRI12: size = kSVHalfword; break; case kMemOp2LdrshRRR: case kMemOp2LdrshRRI12: size = kSVSignedHalfword; break; case kMemOp2Vstr: case kMemOp2Vstr2: case kMemOp2Vldr: case kMemOp2Vldr2: if (opcode4 == kMemOp2Double) size = kSVDoubleword; break; case kMemOp2Stmia: case kMemOp2Ldmia: case kMemOp2Stmia2: case kMemOp2Ldmia2: size = kSVVariable; break; } // Load the value of the address addr = selfVerificationMemRegLoad(sp, rn); // Figure out the offset switch (opcode12) { case kMemOp2Vstr: case kMemOp2Vstr2: case kMemOp2Vldr: case kMemOp2Vldr2: offset = imm8 << 2; if (opcode4 == kMemOp2Single) { rt = rd << 1; if (insn & 0x400000) rt |= 0x1; } else if (opcode4 == kMemOp2Double) { if (insn & 0x400000) rt |= 0x10; rt = rt << 1; } else { ALOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4); dvmAbort(); } rt += 14; break; case kMemOp2StrbRRR: case kMemOp2LdrbRRR: case kMemOp2StrhRRR: case kMemOp2LdrhRRR: case kMemOp2StrRRR: case kMemOp2LdrRRR: case kMemOp2LdrsbRRR: case kMemOp2LdrshRRR: offset = selfVerificationMemRegLoad(sp, rm) << imm2; break; case kMemOp2StrbRRI12: case kMemOp2LdrbRRI12: case kMemOp2StrhRRI12: case kMemOp2LdrhRRI12: case kMemOp2StrRRI12: case kMemOp2LdrRRI12: case kMemOp2LdrsbRRI12: case kMemOp2LdrshRRI12: offset = imm12; break; case kMemOp2Stmia: case kMemOp2Ldmia: wBack = false; case kMemOp2Stmia2: case kMemOp2Ldmia2: offset = 0; break; default: ALOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12); offset = 0; dvmAbort(); } // Handle the decoded mem op accordingly if (store) { if (size == kSVVariable) { ALOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)"); int i; int regList = insn & 0xFFFF; for (i = 0; i < 16; i++) { if (regList & 0x1) { data = selfVerificationMemRegLoad(sp, i); selfVerificationStore(addr, data, kSVWord); addr += 4; } regList = regList >> 1; } if (wBack) selfVerificationMemRegStore(sp, addr, rn); } else if (size == kSVDoubleword) { double_data = selfVerificationMemRegLoadDouble(sp, rt); selfVerificationStoreDoubleword(addr+offset, double_data); } else { data = selfVerificationMemRegLoad(sp, rt); selfVerificationStore(addr+offset, data, size); } } else { if (size == kSVVariable) { ALOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)"); int i; int regList = insn & 0xFFFF; for (i = 0; i < 16; i++) { if (regList & 0x1) { data = selfVerificationLoad(addr, kSVWord); selfVerificationMemRegStore(sp, data, i); addr += 4; } regList = regList >> 1; } if (wBack) selfVerificationMemRegStore(sp, addr, rn); } else if (size == kSVDoubleword) { double_data = selfVerificationLoadDoubleword(addr+offset); selfVerificationMemRegStoreDouble(sp, double_data, rt); } else { data = selfVerificationLoad(addr+offset, size); selfVerificationMemRegStore(sp, data, rt); } } } else { //ALOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn); // Update the link register selfVerificationMemRegStore(sp, old_lr+2, 13); int opcode5 = (insn >> 11) & 0x1F; int opcode7 = (insn >> 9) & 0x7F; int imm = (insn >> 6) & 0x1F; int rd = (insn >> 8) & 0x7; int rm = (insn >> 6) & 0x7; int rn = (insn >> 3) & 0x7; int rt = insn & 0x7; // Determine whether the mem op is a store or load switch (opcode5) { case kMemOpRRR: switch (opcode7) { case kMemOpStrRRR: case kMemOpStrhRRR: case kMemOpStrbRRR: store = true; } break; case kMemOpStrRRI5: case kMemOpStrbRRI5: case kMemOpStrhRRI5: case kMemOpStmia: store = true; } // Determine the size of the mem access switch (opcode5) { case kMemOpRRR: case kMemOpRRR2: switch (opcode7) { case kMemOpStrbRRR: case kMemOpLdrbRRR: size = kSVByte; break; case kMemOpLdrsbRRR: size = kSVSignedByte; break; case kMemOpStrhRRR: case kMemOpLdrhRRR: size = kSVHalfword; break; case kMemOpLdrshRRR: size = kSVSignedHalfword; break; } break; case kMemOpStrbRRI5: case kMemOpLdrbRRI5: size = kSVByte; break; case kMemOpStrhRRI5: case kMemOpLdrhRRI5: size = kSVHalfword; break; case kMemOpStmia: case kMemOpLdmia: size = kSVVariable; break; } // Load the value of the address if (opcode5 == kMemOpLdrPcRel) addr = selfVerificationMemRegLoad(sp, 4); else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia) addr = selfVerificationMemRegLoad(sp, rd); else addr = selfVerificationMemRegLoad(sp, rn); // Figure out the offset switch (opcode5) { case kMemOpLdrPcRel: offset = (insn & 0xFF) << 2; rt = rd; break; case kMemOpRRR: case kMemOpRRR2: offset = selfVerificationMemRegLoad(sp, rm); break; case kMemOpStrRRI5: case kMemOpLdrRRI5: offset = imm << 2; break; case kMemOpStrhRRI5: case kMemOpLdrhRRI5: offset = imm << 1; break; case kMemOpStrbRRI5: case kMemOpLdrbRRI5: offset = imm; break; case kMemOpStmia: case kMemOpLdmia: offset = 0; break; default: ALOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5); offset = 0; dvmAbort(); } // Handle the decoded mem op accordingly if (store) { if (size == kSVVariable) { int i; int regList = insn & 0xFF; for (i = 0; i < 8; i++) { if (regList & 0x1) { data = selfVerificationMemRegLoad(sp, i); selfVerificationStore(addr, data, kSVWord); addr += 4; } regList = regList >> 1; } selfVerificationMemRegStore(sp, addr, rd); } else { data = selfVerificationMemRegLoad(sp, rt); selfVerificationStore(addr+offset, data, size); } } else { if (size == kSVVariable) { bool wBack = true; int i; int regList = insn & 0xFF; for (i = 0; i < 8; i++) { if (regList & 0x1) { if (i == rd) wBack = false; data = selfVerificationLoad(addr, kSVWord); selfVerificationMemRegStore(sp, data, i); addr += 4; } regList = regList >> 1; } if (wBack) selfVerificationMemRegStore(sp, addr, rd); } else { data = selfVerificationLoad(addr+offset, size); selfVerificationMemRegStore(sp, data, rt); } } } } #endif