/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <algorithm> #include <vector> #include "base/logging.h" #include "base/macros.h" #include "calling_convention.h" #include "class_linker.h" #include "compiled_method.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "disassembler.h" #include "entrypoints/quick/quick_entrypoints.h" #include "jni_internal.h" #include "utils/assembler.h" #include "utils/managed_register.h" #include "utils/arm/managed_register_arm.h" #include "utils/mips/managed_register_mips.h" #include "utils/x86/managed_register_x86.h" #include "thread.h" #include "UniquePtr.h" #define __ jni_asm-> namespace art { static void CopyParameter(Assembler* jni_asm, ManagedRuntimeCallingConvention* mr_conv, JniCallingConvention* jni_conv, size_t frame_size, size_t out_arg_size); static void SetNativeParameter(Assembler* jni_asm, JniCallingConvention* jni_conv, ManagedRegister in_reg); // Generate the JNI bridge for the given method, general contract: // - Arguments are in the managed runtime format, either on stack or in // registers, a reference to the method object is supplied as part of this // convention. // CompiledMethod* ArtJniCompileMethodInternal(CompilerDriver& compiler, uint32_t access_flags, uint32_t method_idx, const DexFile& dex_file) { const bool is_native = (access_flags & kAccNative) != 0; CHECK(is_native); const bool is_static = (access_flags & kAccStatic) != 0; const bool is_synchronized = (access_flags & kAccSynchronized) != 0; const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx)); InstructionSet instruction_set = compiler.GetInstructionSet(); if (instruction_set == kThumb2) { instruction_set = kArm; } // Calling conventions used to iterate over parameters to method UniquePtr<JniCallingConvention> main_jni_conv( JniCallingConvention::Create(is_static, is_synchronized, shorty, instruction_set)); bool reference_return = main_jni_conv->IsReturnAReference(); UniquePtr<ManagedRuntimeCallingConvention> mr_conv( ManagedRuntimeCallingConvention::Create(is_static, is_synchronized, shorty, instruction_set)); // Calling conventions to call into JNI method "end" possibly passing a returned reference, the // method and the current thread. size_t jni_end_arg_count = 0; if (reference_return) { jni_end_arg_count++; } if (is_synchronized) { jni_end_arg_count++; } const char* jni_end_shorty = jni_end_arg_count == 0 ? "I" : (jni_end_arg_count == 1 ? "II" : "III"); UniquePtr<JniCallingConvention> end_jni_conv( JniCallingConvention::Create(is_static, is_synchronized, jni_end_shorty, instruction_set)); // Assembler that holds generated instructions UniquePtr<Assembler> jni_asm(Assembler::Create(instruction_set)); bool should_disassemble = false; // Offsets into data structures // TODO: if cross compiling these offsets are for the host not the target const Offset functions(OFFSETOF_MEMBER(JNIEnvExt, functions)); const Offset monitor_enter(OFFSETOF_MEMBER(JNINativeInterface, MonitorEnter)); const Offset monitor_exit(OFFSETOF_MEMBER(JNINativeInterface, MonitorExit)); // 1. Build the frame saving all callee saves const size_t frame_size(main_jni_conv->FrameSize()); const std::vector<ManagedRegister>& callee_save_regs = main_jni_conv->CalleeSaveRegisters(); __ BuildFrame(frame_size, mr_conv->MethodRegister(), callee_save_regs, mr_conv->EntrySpills()); // 2. Set up the StackIndirectReferenceTable mr_conv->ResetIterator(FrameOffset(frame_size)); main_jni_conv->ResetIterator(FrameOffset(0)); __ StoreImmediateToFrame(main_jni_conv->SirtNumRefsOffset(), main_jni_conv->ReferenceCount(), mr_conv->InterproceduralScratchRegister()); __ CopyRawPtrFromThread(main_jni_conv->SirtLinkOffset(), Thread::TopSirtOffset(), mr_conv->InterproceduralScratchRegister()); __ StoreStackOffsetToThread(Thread::TopSirtOffset(), main_jni_conv->SirtOffset(), mr_conv->InterproceduralScratchRegister()); // 3. Place incoming reference arguments into SIRT main_jni_conv->Next(); // Skip JNIEnv* // 3.5. Create Class argument for static methods out of passed method if (is_static) { FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset(); // Check sirt offset is within frame CHECK_LT(sirt_offset.Uint32Value(), frame_size); __ LoadRef(main_jni_conv->InterproceduralScratchRegister(), mr_conv->MethodRegister(), mirror::ArtMethod::DeclaringClassOffset()); __ VerifyObject(main_jni_conv->InterproceduralScratchRegister(), false); __ StoreRef(sirt_offset, main_jni_conv->InterproceduralScratchRegister()); main_jni_conv->Next(); // in SIRT so move to next argument } while (mr_conv->HasNext()) { CHECK(main_jni_conv->HasNext()); bool ref_param = main_jni_conv->IsCurrentParamAReference(); CHECK(!ref_param || mr_conv->IsCurrentParamAReference()); // References need placing in SIRT and the entry value passing if (ref_param) { // Compute SIRT entry, note null is placed in the SIRT but its boxed value // must be NULL FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset(); // Check SIRT offset is within frame and doesn't run into the saved segment state CHECK_LT(sirt_offset.Uint32Value(), frame_size); CHECK_NE(sirt_offset.Uint32Value(), main_jni_conv->SavedLocalReferenceCookieOffset().Uint32Value()); bool input_in_reg = mr_conv->IsCurrentParamInRegister(); bool input_on_stack = mr_conv->IsCurrentParamOnStack(); CHECK(input_in_reg || input_on_stack); if (input_in_reg) { ManagedRegister in_reg = mr_conv->CurrentParamRegister(); __ VerifyObject(in_reg, mr_conv->IsCurrentArgPossiblyNull()); __ StoreRef(sirt_offset, in_reg); } else if (input_on_stack) { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); __ VerifyObject(in_off, mr_conv->IsCurrentArgPossiblyNull()); __ CopyRef(sirt_offset, in_off, mr_conv->InterproceduralScratchRegister()); } } mr_conv->Next(); main_jni_conv->Next(); } // 4. Write out the end of the quick frames. __ StoreStackPointerToThread(Thread::TopOfManagedStackOffset()); __ StoreImmediateToThread(Thread::TopOfManagedStackPcOffset(), 0, mr_conv->InterproceduralScratchRegister()); // 5. Move frame down to allow space for out going args. const size_t main_out_arg_size = main_jni_conv->OutArgSize(); const size_t end_out_arg_size = end_jni_conv->OutArgSize(); const size_t max_out_arg_size = std::max(main_out_arg_size, end_out_arg_size); __ IncreaseFrameSize(max_out_arg_size); // 6. Call into appropriate JniMethodStart passing Thread* so that transition out of Runnable // can occur. The result is the saved JNI local state that is restored by the exit call. We // abuse the JNI calling convention here, that is guaranteed to support passing 2 pointer // arguments. ThreadOffset jni_start = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodStartSynchronized) : QUICK_ENTRYPOINT_OFFSET(pJniMethodStart); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); FrameOffset locked_object_sirt_offset(0); if (is_synchronized) { // Pass object for locking. main_jni_conv->Next(); // Skip JNIEnv. locked_object_sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset(); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); if (main_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = main_jni_conv->CurrentParamStackOffset(); __ CreateSirtEntry(out_off, locked_object_sirt_offset, mr_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = main_jni_conv->CurrentParamRegister(); __ CreateSirtEntry(out_reg, locked_object_sirt_offset, ManagedRegister::NoRegister(), false); } main_jni_conv->Next(); } if (main_jni_conv->IsCurrentParamInRegister()) { __ GetCurrentThread(main_jni_conv->CurrentParamRegister()); __ Call(main_jni_conv->CurrentParamRegister(), Offset(jni_start), main_jni_conv->InterproceduralScratchRegister()); } else { __ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(), main_jni_conv->InterproceduralScratchRegister()); __ Call(ThreadOffset(jni_start), main_jni_conv->InterproceduralScratchRegister()); } if (is_synchronized) { // Check for exceptions from monitor enter. __ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), main_out_arg_size); } FrameOffset saved_cookie_offset = main_jni_conv->SavedLocalReferenceCookieOffset(); __ Store(saved_cookie_offset, main_jni_conv->IntReturnRegister(), 4); // 7. Iterate over arguments placing values from managed calling convention in // to the convention required for a native call (shuffling). For references // place an index/pointer to the reference after checking whether it is // NULL (which must be encoded as NULL). // Note: we do this prior to materializing the JNIEnv* and static's jclass to // give as many free registers for the shuffle as possible mr_conv->ResetIterator(FrameOffset(frame_size+main_out_arg_size)); uint32_t args_count = 0; while (mr_conv->HasNext()) { args_count++; mr_conv->Next(); } // Do a backward pass over arguments, so that the generated code will be "mov // R2, R3; mov R1, R2" instead of "mov R1, R2; mov R2, R3." // TODO: A reverse iterator to improve readability. for (uint32_t i = 0; i < args_count; ++i) { mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size)); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); main_jni_conv->Next(); // Skip JNIEnv*. if (is_static) { main_jni_conv->Next(); // Skip Class for now. } // Skip to the argument we're interested in. for (uint32_t j = 0; j < args_count - i - 1; ++j) { mr_conv->Next(); main_jni_conv->Next(); } CopyParameter(jni_asm.get(), mr_conv.get(), main_jni_conv.get(), frame_size, main_out_arg_size); } if (is_static) { // Create argument for Class mr_conv->ResetIterator(FrameOffset(frame_size+main_out_arg_size)); main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); main_jni_conv->Next(); // Skip JNIEnv* FrameOffset sirt_offset = main_jni_conv->CurrentParamSirtEntryOffset(); if (main_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = main_jni_conv->CurrentParamStackOffset(); __ CreateSirtEntry(out_off, sirt_offset, mr_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = main_jni_conv->CurrentParamRegister(); __ CreateSirtEntry(out_reg, sirt_offset, ManagedRegister::NoRegister(), false); } } // 8. Create 1st argument, the JNI environment ptr. main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); // Register that will hold local indirect reference table if (main_jni_conv->IsCurrentParamInRegister()) { ManagedRegister jni_env = main_jni_conv->CurrentParamRegister(); DCHECK(!jni_env.Equals(main_jni_conv->InterproceduralScratchRegister())); __ LoadRawPtrFromThread(jni_env, Thread::JniEnvOffset()); } else { FrameOffset jni_env = main_jni_conv->CurrentParamStackOffset(); __ CopyRawPtrFromThread(jni_env, Thread::JniEnvOffset(), main_jni_conv->InterproceduralScratchRegister()); } // 9. Plant call to native code associated with method. __ Call(main_jni_conv->MethodStackOffset(), mirror::ArtMethod::NativeMethodOffset(), mr_conv->InterproceduralScratchRegister()); // 10. Fix differences in result widths. if (instruction_set == kX86) { if (main_jni_conv->GetReturnType() == Primitive::kPrimByte || main_jni_conv->GetReturnType() == Primitive::kPrimShort) { __ SignExtend(main_jni_conv->ReturnRegister(), Primitive::ComponentSize(main_jni_conv->GetReturnType())); } else if (main_jni_conv->GetReturnType() == Primitive::kPrimBoolean || main_jni_conv->GetReturnType() == Primitive::kPrimChar) { __ ZeroExtend(main_jni_conv->ReturnRegister(), Primitive::ComponentSize(main_jni_conv->GetReturnType())); } } // 11. Save return value FrameOffset return_save_location = main_jni_conv->ReturnValueSaveLocation(); if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) { if (instruction_set == kMips && main_jni_conv->GetReturnType() == Primitive::kPrimDouble && return_save_location.Uint32Value() % 8 != 0) { // Ensure doubles are 8-byte aligned for MIPS return_save_location = FrameOffset(return_save_location.Uint32Value() + kPointerSize); } CHECK_LT(return_save_location.Uint32Value(), frame_size+main_out_arg_size); __ Store(return_save_location, main_jni_conv->ReturnRegister(), main_jni_conv->SizeOfReturnValue()); } // 12. Call into JNI method end possibly passing a returned reference, the method and the current // thread. end_jni_conv->ResetIterator(FrameOffset(end_out_arg_size)); ThreadOffset jni_end(-1); if (reference_return) { // Pass result. jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodEndWithReferenceSynchronized) : QUICK_ENTRYPOINT_OFFSET(pJniMethodEndWithReference); SetNativeParameter(jni_asm.get(), end_jni_conv.get(), end_jni_conv->ReturnRegister()); end_jni_conv->Next(); } else { jni_end = is_synchronized ? QUICK_ENTRYPOINT_OFFSET(pJniMethodEndSynchronized) : QUICK_ENTRYPOINT_OFFSET(pJniMethodEnd); } // Pass saved local reference state. if (end_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = end_jni_conv->CurrentParamStackOffset(); __ Copy(out_off, saved_cookie_offset, end_jni_conv->InterproceduralScratchRegister(), 4); } else { ManagedRegister out_reg = end_jni_conv->CurrentParamRegister(); __ Load(out_reg, saved_cookie_offset, 4); } end_jni_conv->Next(); if (is_synchronized) { // Pass object for unlocking. if (end_jni_conv->IsCurrentParamOnStack()) { FrameOffset out_off = end_jni_conv->CurrentParamStackOffset(); __ CreateSirtEntry(out_off, locked_object_sirt_offset, end_jni_conv->InterproceduralScratchRegister(), false); } else { ManagedRegister out_reg = end_jni_conv->CurrentParamRegister(); __ CreateSirtEntry(out_reg, locked_object_sirt_offset, ManagedRegister::NoRegister(), false); } end_jni_conv->Next(); } if (end_jni_conv->IsCurrentParamInRegister()) { __ GetCurrentThread(end_jni_conv->CurrentParamRegister()); __ Call(end_jni_conv->CurrentParamRegister(), Offset(jni_end), end_jni_conv->InterproceduralScratchRegister()); } else { __ GetCurrentThread(end_jni_conv->CurrentParamStackOffset(), end_jni_conv->InterproceduralScratchRegister()); __ Call(ThreadOffset(jni_end), end_jni_conv->InterproceduralScratchRegister()); } // 13. Reload return value if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) { __ Load(mr_conv->ReturnRegister(), return_save_location, mr_conv->SizeOfReturnValue()); } // 14. Move frame up now we're done with the out arg space. __ DecreaseFrameSize(max_out_arg_size); // 15. Process pending exceptions from JNI call or monitor exit. __ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), 0); // 16. Remove activation - no need to restore callee save registers because we didn't clobber // them. __ RemoveFrame(frame_size, std::vector<ManagedRegister>()); // 17. Finalize code generation __ EmitSlowPaths(); size_t cs = __ CodeSize(); std::vector<uint8_t> managed_code(cs); MemoryRegion code(&managed_code[0], managed_code.size()); __ FinalizeInstructions(code); if (should_disassemble) { UniquePtr<Disassembler> disassembler(Disassembler::Create(instruction_set)); disassembler->Dump(LOG(INFO), &managed_code[0], &managed_code[managed_code.size()]); } return new CompiledMethod(compiler, instruction_set, managed_code, frame_size, main_jni_conv->CoreSpillMask(), main_jni_conv->FpSpillMask()); } // Copy a single parameter from the managed to the JNI calling convention static void CopyParameter(Assembler* jni_asm, ManagedRuntimeCallingConvention* mr_conv, JniCallingConvention* jni_conv, size_t frame_size, size_t out_arg_size) { bool input_in_reg = mr_conv->IsCurrentParamInRegister(); bool output_in_reg = jni_conv->IsCurrentParamInRegister(); FrameOffset sirt_offset(0); bool null_allowed = false; bool ref_param = jni_conv->IsCurrentParamAReference(); CHECK(!ref_param || mr_conv->IsCurrentParamAReference()); // input may be in register, on stack or both - but not none! CHECK(input_in_reg || mr_conv->IsCurrentParamOnStack()); if (output_in_reg) { // output shouldn't straddle registers and stack CHECK(!jni_conv->IsCurrentParamOnStack()); } else { CHECK(jni_conv->IsCurrentParamOnStack()); } // References need placing in SIRT and the entry address passing if (ref_param) { null_allowed = mr_conv->IsCurrentArgPossiblyNull(); // Compute SIRT offset. Note null is placed in the SIRT but the jobject // passed to the native code must be null (not a pointer into the SIRT // as with regular references). sirt_offset = jni_conv->CurrentParamSirtEntryOffset(); // Check SIRT offset is within frame. CHECK_LT(sirt_offset.Uint32Value(), (frame_size + out_arg_size)); } if (input_in_reg && output_in_reg) { ManagedRegister in_reg = mr_conv->CurrentParamRegister(); ManagedRegister out_reg = jni_conv->CurrentParamRegister(); if (ref_param) { __ CreateSirtEntry(out_reg, sirt_offset, in_reg, null_allowed); } else { if (!mr_conv->IsCurrentParamOnStack()) { // regular non-straddling move __ Move(out_reg, in_reg, mr_conv->CurrentParamSize()); } else { UNIMPLEMENTED(FATAL); // we currently don't expect to see this case } } } else if (!input_in_reg && !output_in_reg) { FrameOffset out_off = jni_conv->CurrentParamStackOffset(); if (ref_param) { __ CreateSirtEntry(out_off, sirt_offset, mr_conv->InterproceduralScratchRegister(), null_allowed); } else { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); __ Copy(out_off, in_off, mr_conv->InterproceduralScratchRegister(), param_size); } } else if (!input_in_reg && output_in_reg) { FrameOffset in_off = mr_conv->CurrentParamStackOffset(); ManagedRegister out_reg = jni_conv->CurrentParamRegister(); // Check that incoming stack arguments are above the current stack frame. CHECK_GT(in_off.Uint32Value(), frame_size); if (ref_param) { __ CreateSirtEntry(out_reg, sirt_offset, ManagedRegister::NoRegister(), null_allowed); } else { size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); __ Load(out_reg, in_off, param_size); } } else { CHECK(input_in_reg && !output_in_reg); ManagedRegister in_reg = mr_conv->CurrentParamRegister(); FrameOffset out_off = jni_conv->CurrentParamStackOffset(); // Check outgoing argument is within frame CHECK_LT(out_off.Uint32Value(), frame_size); if (ref_param) { // TODO: recycle value in in_reg rather than reload from SIRT __ CreateSirtEntry(out_off, sirt_offset, mr_conv->InterproceduralScratchRegister(), null_allowed); } else { size_t param_size = mr_conv->CurrentParamSize(); CHECK_EQ(param_size, jni_conv->CurrentParamSize()); if (!mr_conv->IsCurrentParamOnStack()) { // regular non-straddling store __ Store(out_off, in_reg, param_size); } else { // store where input straddles registers and stack CHECK_EQ(param_size, 8u); FrameOffset in_off = mr_conv->CurrentParamStackOffset(); __ StoreSpanning(out_off, in_reg, in_off, mr_conv->InterproceduralScratchRegister()); } } } } static void SetNativeParameter(Assembler* jni_asm, JniCallingConvention* jni_conv, ManagedRegister in_reg) { if (jni_conv->IsCurrentParamOnStack()) { FrameOffset dest = jni_conv->CurrentParamStackOffset(); __ StoreRawPtr(dest, in_reg); } else { if (!jni_conv->CurrentParamRegister().Equals(in_reg)) { __ Move(jni_conv->CurrentParamRegister(), in_reg, jni_conv->CurrentParamSize()); } } } } // namespace art extern "C" art::CompiledMethod* ArtQuickJniCompileMethod(art::CompilerDriver& compiler, uint32_t access_flags, uint32_t method_idx, const art::DexFile& dex_file) { return ArtJniCompileMethodInternal(compiler, access_flags, method_idx, dex_file); }