HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Jelly Bean MR2
|
4.3_r1
下载
查看原文件
收藏
根目录
external
clang
lib
AST
ItaniumMangle.cpp
//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implements C++ name mangling according to the Itanium C++ ABI, // which is used in GCC 3.2 and newer (and many compilers that are // ABI-compatible with GCC): // // http://www.codesourcery.com/public/cxx-abi/abi.html // //===----------------------------------------------------------------------===// #include "clang/AST/Mangle.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/ABI.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #define MANGLE_CHECKER 0 #if MANGLE_CHECKER #include
#endif using namespace clang; namespace { /// \brief Retrieve the declaration context that should be used when mangling /// the given declaration. static const DeclContext *getEffectiveDeclContext(const Decl *D) { // The ABI assumes that lambda closure types that occur within // default arguments live in the context of the function. However, due to // the way in which Clang parses and creates function declarations, this is // not the case: the lambda closure type ends up living in the context // where the function itself resides, because the function declaration itself // had not yet been created. Fix the context here. if (const CXXRecordDecl *RD = dyn_cast
(D)) { if (RD->isLambda()) if (ParmVarDecl *ContextParam = dyn_cast_or_null
(RD->getLambdaContextDecl())) return ContextParam->getDeclContext(); } return D->getDeclContext(); } static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { return getEffectiveDeclContext(cast
(DC)); } static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) { const DeclContext *DC = dyn_cast
(ND); if (!DC) DC = getEffectiveDeclContext(ND); while (!DC->isNamespace() && !DC->isTranslationUnit()) { const DeclContext *Parent = getEffectiveDeclContext(cast
(DC)); if (isa
(Parent)) return dyn_cast
(DC); DC = Parent; } return 0; } static const FunctionDecl *getStructor(const FunctionDecl *fn) { if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) return ftd->getTemplatedDecl(); return fn; } static const NamedDecl *getStructor(const NamedDecl *decl) { const FunctionDecl *fn = dyn_cast_or_null
(decl); return (fn ? getStructor(fn) : decl); } static const unsigned UnknownArity = ~0U; class ItaniumMangleContext : public MangleContext { llvm::DenseMap
AnonStructIds; unsigned Discriminator; llvm::DenseMap
Uniquifier; public: explicit ItaniumMangleContext(ASTContext &Context, DiagnosticsEngine &Diags) : MangleContext(Context, Diags) { } uint64_t getAnonymousStructId(const TagDecl *TD) { std::pair
::iterator, bool> Result = AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size())); return Result.first->second; } void startNewFunction() { MangleContext::startNewFunction(); mangleInitDiscriminator(); } /// @name Mangler Entry Points /// @{ bool shouldMangleDeclName(const NamedDecl *D); void mangleName(const NamedDecl *D, raw_ostream &); void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk, raw_ostream &); void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, const ThisAdjustment &ThisAdjustment, raw_ostream &); void mangleReferenceTemporary(const VarDecl *D, raw_ostream &); void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &); void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &); void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, const CXXRecordDecl *Type, raw_ostream &); void mangleCXXRTTI(QualType T, raw_ostream &); void mangleCXXRTTIName(QualType T, raw_ostream &); void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, raw_ostream &); void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, raw_ostream &); void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &); void mangleInitDiscriminator() { Discriminator = 0; } bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { // Lambda closure types with external linkage (indicated by a // non-zero lambda mangling number) have their own numbering scheme, so // they do not need a discriminator. if (const CXXRecordDecl *RD = dyn_cast
(ND)) if (RD->isLambda() && RD->getLambdaManglingNumber() > 0) return false; unsigned &discriminator = Uniquifier[ND]; if (!discriminator) discriminator = ++Discriminator; if (discriminator == 1) return false; disc = discriminator-2; return true; } /// @} }; /// CXXNameMangler - Manage the mangling of a single name. class CXXNameMangler { ItaniumMangleContext &Context; raw_ostream &Out; /// The "structor" is the top-level declaration being mangled, if /// that's not a template specialization; otherwise it's the pattern /// for that specialization. const NamedDecl *Structor; unsigned StructorType; /// SeqID - The next subsitution sequence number. unsigned SeqID; class FunctionTypeDepthState { unsigned Bits; enum { InResultTypeMask = 1 }; public: FunctionTypeDepthState() : Bits(0) {} /// The number of function types we're inside. unsigned getDepth() const { return Bits >> 1; } /// True if we're in the return type of the innermost function type. bool isInResultType() const { return Bits & InResultTypeMask; } FunctionTypeDepthState push() { FunctionTypeDepthState tmp = *this; Bits = (Bits & ~InResultTypeMask) + 2; return tmp; } void enterResultType() { Bits |= InResultTypeMask; } void leaveResultType() { Bits &= ~InResultTypeMask; } void pop(FunctionTypeDepthState saved) { assert(getDepth() == saved.getDepth() + 1); Bits = saved.Bits; } } FunctionTypeDepth; llvm::DenseMap
Substitutions; ASTContext &getASTContext() const { return Context.getASTContext(); } public: CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const NamedDecl *D = 0) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0), SeqID(0) { // These can't be mangled without a ctor type or dtor type. assert(!D || (!isa
(D) && !isa
(D))); } CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const CXXConstructorDecl *D, CXXCtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, const CXXDestructorDecl *D, CXXDtorType Type) : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), SeqID(0) { } #if MANGLE_CHECKER ~CXXNameMangler() { if (Out.str()[0] == '\01') return; int status = 0; char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); assert(status == 0 && "Could not demangle mangled name!"); free(result); } #endif raw_ostream &getStream() { return Out; } void mangle(const NamedDecl *D, StringRef Prefix = "_Z"); void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); void mangleNumber(const llvm::APSInt &I); void mangleNumber(int64_t Number); void mangleFloat(const llvm::APFloat &F); void mangleFunctionEncoding(const FunctionDecl *FD); void mangleName(const NamedDecl *ND); void mangleType(QualType T); void mangleNameOrStandardSubstitution(const NamedDecl *ND); private: bool mangleSubstitution(const NamedDecl *ND); bool mangleSubstitution(QualType T); bool mangleSubstitution(TemplateName Template); bool mangleSubstitution(uintptr_t Ptr); void mangleExistingSubstitution(QualType type); void mangleExistingSubstitution(TemplateName name); bool mangleStandardSubstitution(const NamedDecl *ND); void addSubstitution(const NamedDecl *ND) { ND = cast
(ND->getCanonicalDecl()); addSubstitution(reinterpret_cast
(ND)); } void addSubstitution(QualType T); void addSubstitution(TemplateName Template); void addSubstitution(uintptr_t Ptr); void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive = false); void mangleUnresolvedName(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned KnownArity = UnknownArity); void mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleUnqualifiedName(const NamedDecl *ND) { mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); } void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, unsigned KnownArity); void mangleUnscopedName(const NamedDecl *ND); void mangleUnscopedTemplateName(const TemplateDecl *ND); void mangleUnscopedTemplateName(TemplateName); void mangleSourceName(const IdentifierInfo *II); void mangleLocalName(const NamedDecl *ND); void mangleLambda(const CXXRecordDecl *Lambda); void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, bool NoFunction=false); void mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void manglePrefix(NestedNameSpecifier *qualifier); void manglePrefix(const DeclContext *DC, bool NoFunction=false); void manglePrefix(QualType type); void mangleTemplatePrefix(const TemplateDecl *ND); void mangleTemplatePrefix(TemplateName Template); void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); void mangleQualifiers(Qualifiers Quals); void mangleRefQualifier(RefQualifierKind RefQualifier); void mangleObjCMethodName(const ObjCMethodDecl *MD); // Declare manglers for every type class. #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); #include "clang/AST/TypeNodes.def" void mangleType(const TagType*); void mangleType(TemplateName); void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType); void mangleNeonVectorType(const VectorType *T); void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); void mangleMemberExpr(const Expr *base, bool isArrow, NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned knownArity); void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); void mangleCXXCtorType(CXXCtorType T); void mangleCXXDtorType(CXXDtorType T); void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs); void mangleTemplateArgs(const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs); void mangleTemplateArgs(const TemplateArgumentList &AL); void mangleTemplateArg(TemplateArgument A); void mangleTemplateParameter(unsigned Index); void mangleFunctionParam(const ParmVarDecl *parm); }; } bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) { // In C, functions with no attributes never need to be mangled. Fastpath them. if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs()) return false; // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (D->hasAttr
()) return true; const FunctionDecl *FD = dyn_cast
(D); if (FD) { LanguageLinkage L = FD->getLanguageLinkage(); // Overloadable functions need mangling. if (FD->hasAttr
()) return true; // "main" is not mangled. if (FD->isMain()) return false; // C++ functions and those whose names are not a simple identifier need // mangling. if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage) return true; // C functions are not mangled. if (L == CLanguageLinkage) return false; } // Otherwise, no mangling is done outside C++ mode. if (!getASTContext().getLangOpts().CPlusPlus) return false; const VarDecl *VD = dyn_cast
(D); if (VD) { // C variables are not mangled. if (VD->isExternC()) return false; // Variables at global scope with non-internal linkage are not mangled const DeclContext *DC = getEffectiveDeclContext(D); // Check for extern variable declared locally. if (DC->isFunctionOrMethod() && D->hasLinkage()) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage) return false; } return true; } void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { // Any decl can be declared with __asm("foo") on it, and this takes precedence // over all other naming in the .o file. if (const AsmLabelAttr *ALA = D->getAttr
()) { // If we have an asm name, then we use it as the mangling. // Adding the prefix can cause problems when one file has a "foo" and // another has a "\01foo". That is known to happen on ELF with the // tricks normally used for producing aliases (PR9177). Fortunately the // llvm mangler on ELF is a nop, so we can just avoid adding the \01 // marker. We also avoid adding the marker if this is an alias for an // LLVM intrinsic. StringRef UserLabelPrefix = getASTContext().getTargetInfo().getUserLabelPrefix(); if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm.")) Out << '\01'; // LLVM IR Marker for __asm("foo") Out << ALA->getLabel(); return; } //
::= _Z
// ::=
// ::=
Out << Prefix; if (const FunctionDecl *FD = dyn_cast
(D)) mangleFunctionEncoding(FD); else if (const VarDecl *VD = dyn_cast
(D)) mangleName(VD); else mangleName(cast
(D)); } void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { //
::=
mangleName(FD); // Don't mangle in the type if this isn't a decl we should typically mangle. if (!Context.shouldMangleDeclName(FD)) return; // Whether the mangling of a function type includes the return type depends on // the context and the nature of the function. The rules for deciding whether // the return type is included are: // // 1. Template functions (names or types) have return types encoded, with // the exceptions listed below. // 2. Function types not appearing as part of a function name mangling, // e.g. parameters, pointer types, etc., have return type encoded, with the // exceptions listed below. // 3. Non-template function names do not have return types encoded. // // The exceptions mentioned in (1) and (2) above, for which the return type is // never included, are // 1. Constructors. // 2. Destructors. // 3. Conversion operator functions, e.g. operator int. bool MangleReturnType = false; if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { if (!(isa
(FD) || isa
(FD) || isa
(FD))) MangleReturnType = true; // Mangle the type of the primary template. FD = PrimaryTemplate->getTemplatedDecl(); } mangleBareFunctionType(FD->getType()->getAs
(), MangleReturnType); } static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { while (isa
(DC)) { DC = getEffectiveParentContext(DC); } return DC; } /// isStd - Return whether a given namespace is the 'std' namespace. static bool isStd(const NamespaceDecl *NS) { if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) ->isTranslationUnit()) return false; const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); return II && II->isStr("std"); } // isStdNamespace - Return whether a given decl context is a toplevel 'std' // namespace. static bool isStdNamespace(const DeclContext *DC) { if (!DC->isNamespace()) return false; return isStd(cast
(DC)); } static const TemplateDecl * isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { // Check if we have a function template. if (const FunctionDecl *FD = dyn_cast
(ND)){ if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { TemplateArgs = FD->getTemplateSpecializationArgs(); return TD; } } // Check if we have a class template. if (const ClassTemplateSpecializationDecl *Spec = dyn_cast
(ND)) { TemplateArgs = &Spec->getTemplateArgs(); return Spec->getSpecializedTemplate(); } return 0; } static bool isLambda(const NamedDecl *ND) { const CXXRecordDecl *Record = dyn_cast
(ND); if (!Record) return false; return Record->isLambda(); } void CXXNameMangler::mangleName(const NamedDecl *ND) { //
::=
// ::=
// ::=
// ::=
// const DeclContext *DC = getEffectiveDeclContext(ND); // If this is an extern variable declared locally, the relevant DeclContext // is that of the containing namespace, or the translation unit. // FIXME: This is a hack; extern variables declared locally should have // a proper semantic declaration context! if (isa
(DC) && ND->hasLinkage() && !isLambda(ND)) while (!DC->isNamespace() && !DC->isTranslationUnit()) DC = getEffectiveParentContext(DC); else if (GetLocalClassDecl(ND)) { mangleLocalName(ND); return; } DC = IgnoreLinkageSpecDecls(DC); if (DC->isTranslationUnit() || isStdNamespace(DC)) { // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleUnscopedTemplateName(TD); mangleTemplateArgs(*TemplateArgs); return; } mangleUnscopedName(ND); return; } if (isa
(DC) || isa
(DC)) { mangleLocalName(ND); return; } mangleNestedName(ND, DC); } void CXXNameMangler::mangleName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); if (DC->isTranslationUnit() || isStdNamespace(DC)) { mangleUnscopedTemplateName(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); } else { mangleNestedName(TD, TemplateArgs, NumTemplateArgs); } } void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { //
::=
// ::= St
# ::std:: if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) Out << "St"; mangleUnqualifiedName(ND); } void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { //
::=
// ::=
if (mangleSubstitution(ND)) return; //
::=
if (const TemplateTemplateParmDecl *TTP = dyn_cast
(ND)) { mangleTemplateParameter(TTP->getIndex()); return; } mangleUnscopedName(ND->getTemplatedDecl()); addSubstitution(ND); } void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { //
::=
// ::=
if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleUnscopedTemplateName(TD); if (mangleSubstitution(Template)) return; DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); assert(Dependent && "Not a dependent template name?"); if (const IdentifierInfo *Id = Dependent->getIdentifier()) mangleSourceName(Id); else mangleOperatorName(Dependent->getOperator(), UnknownArity); addSubstitution(Template); } void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { // ABI: // Floating-point literals are encoded using a fixed-length // lowercase hexadecimal string corresponding to the internal // representation (IEEE on Itanium), high-order bytes first, // without leading zeroes. For example: "Lf bf800000 E" is -1.0f // on Itanium. // The 'without leading zeroes' thing seems to be an editorial // mistake; see the discussion on cxx-abi-dev beginning on // 2012-01-16. // Our requirements here are just barely weird enough to justify // using a custom algorithm instead of post-processing APInt::toString(). llvm::APInt valueBits = f.bitcastToAPInt(); unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; assert(numCharacters != 0); // Allocate a buffer of the right number of characters. SmallVector
buffer; buffer.set_size(numCharacters); // Fill the buffer left-to-right. for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { // The bit-index of the next hex digit. unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); // Project out 4 bits starting at 'digitIndex'. llvm::integerPart hexDigit = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth]; hexDigit >>= (digitBitIndex % llvm::integerPartWidth); hexDigit &= 0xF; // Map that over to a lowercase hex digit. static const char charForHex[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; buffer[stringIndex] = charForHex[hexDigit]; } Out.write(buffer.data(), numCharacters); } void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { if (Value.isSigned() && Value.isNegative()) { Out << 'n'; Value.abs().print(Out, /*signed*/ false); } else { Value.print(Out, /*signed*/ false); } } void CXXNameMangler::mangleNumber(int64_t Number) { //
::= [n]
if (Number < 0) { Out << 'n'; Number = -Number; } Out << Number; } void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { //
::= h
_ // ::= v
_ //
::=
# non-virtual base override //
::=
_
// # virtual base override, with vcall offset if (!Virtual) { Out << 'h'; mangleNumber(NonVirtual); Out << '_'; return; } Out << 'v'; mangleNumber(NonVirtual); Out << '_'; mangleNumber(Virtual); Out << '_'; } void CXXNameMangler::manglePrefix(QualType type) { if (const TemplateSpecializationType *TST = type->getAs
()) { if (!mangleSubstitution(QualType(TST, 0))) { mangleTemplatePrefix(TST->getTemplateName()); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(TST->getArgs(), TST->getNumArgs()); addSubstitution(QualType(TST, 0)); } } else if (const DependentTemplateSpecializationType *DTST = type->getAs
()) { TemplateName Template = getASTContext().getDependentTemplateName(DTST->getQualifier(), DTST->getIdentifier()); mangleTemplatePrefix(Template); // FIXME: GCC does not appear to mangle the template arguments when // the template in question is a dependent template name. Should we // emulate that badness? mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs()); } else { // We use the QualType mangle type variant here because it handles // substitutions. mangleType(type); } } /// Mangle everything prior to the base-unresolved-name in an unresolved-name. /// /// \param firstQualifierLookup - the entity found by unqualified lookup /// for the first name in the qualifier, if this is for a member expression /// \param recursive - true if this is being called recursively, /// i.e. if there is more prefix "to the right". void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, bool recursive) { // x, ::x //
::= [gs]
// T::x / decltype(p)::x //
::= sr
// T::N::x /decltype(p)::N::x //
::= srN
+ E //
// A::x, N::y, A
::z; "gs" means leading "::" //
::= [gs] sr
+ E //
switch (qualifier->getKind()) { case NestedNameSpecifier::Global: Out << "gs"; // We want an 'sr' unless this is the entire NNS. if (recursive) Out << "sr"; // We never want an 'E' here. return; case NestedNameSpecifier::Namespace: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespace()->getIdentifier()); break; case NestedNameSpecifier::NamespaceAlias: if (qualifier->getPrefix()) mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); else Out << "sr"; mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier()); break; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: { const Type *type = qualifier->getAsType(); // We only want to use an unresolved-type encoding if this is one of: // - a decltype // - a template type parameter // - a template template parameter with arguments // In all of these cases, we should have no prefix. if (qualifier->getPrefix()) { mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); } else { // Otherwise, all the cases want this. Out << "sr"; } // Only certain other types are valid as prefixes; enumerate them. switch (type->getTypeClass()) { case Type::Builtin: case Type::Complex: case Type::Pointer: case Type::BlockPointer: case Type::LValueReference: case Type::RValueReference: case Type::MemberPointer: case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::DependentSizedArray: case Type::DependentSizedExtVector: case Type::Vector: case Type::ExtVector: case Type::FunctionProto: case Type::FunctionNoProto: case Type::Enum: case Type::Paren: case Type::Elaborated: case Type::Attributed: case Type::Auto: case Type::PackExpansion: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::Atomic: llvm_unreachable("type is illegal as a nested name specifier"); case Type::SubstTemplateTypeParmPack: // FIXME: not clear how to mangle this! // template
class A { // template
void foo(decltype(T::foo(U())) x...); // }; Out << "_SUBSTPACK_"; break; //
::=
// ::=
// ::=
// (this last is not official yet) case Type::TypeOfExpr: case Type::TypeOf: case Type::Decltype: case Type::TemplateTypeParm: case Type::UnaryTransform: case Type::SubstTemplateTypeParm: unresolvedType: assert(!qualifier->getPrefix()); // We only get here recursively if we're followed by identifiers. if (recursive) Out << 'N'; // This seems to do everything we want. It's not really // sanctioned for a substituted template parameter, though. mangleType(QualType(type, 0)); // We never want to print 'E' directly after an unresolved-type, // so we return directly. return; case Type::Typedef: mangleSourceName(cast
(type)->getDecl()->getIdentifier()); break; case Type::UnresolvedUsing: mangleSourceName(cast
(type)->getDecl() ->getIdentifier()); break; case Type::Record: mangleSourceName(cast
(type)->getDecl()->getIdentifier()); break; case Type::TemplateSpecialization: { const TemplateSpecializationType *tst = cast
(type); TemplateName name = tst->getTemplateName(); switch (name.getKind()) { case TemplateName::Template: case TemplateName::QualifiedTemplate: { TemplateDecl *temp = name.getAsTemplateDecl(); // If the base is a template template parameter, this is an // unresolved type. assert(temp && "no template for template specialization type"); if (isa
(temp)) goto unresolvedType; mangleSourceName(temp->getIdentifier()); break; } case TemplateName::OverloadedTemplate: case TemplateName::DependentTemplate: llvm_unreachable("invalid base for a template specialization type"); case TemplateName::SubstTemplateTemplateParm: { SubstTemplateTemplateParmStorage *subst = name.getAsSubstTemplateTemplateParm(); mangleExistingSubstitution(subst->getReplacement()); break; } case TemplateName::SubstTemplateTemplateParmPack: { // FIXME: not clear how to mangle this! // template
class T...> class A { // template
void foo(decltype(T
::foo) x...); // }; Out << "_SUBSTPACK_"; break; } } mangleTemplateArgs(tst->getArgs(), tst->getNumArgs()); break; } case Type::InjectedClassName: mangleSourceName(cast
(type)->getDecl() ->getIdentifier()); break; case Type::DependentName: mangleSourceName(cast
(type)->getIdentifier()); break; case Type::DependentTemplateSpecialization: { const DependentTemplateSpecializationType *tst = cast
(type); mangleSourceName(tst->getIdentifier()); mangleTemplateArgs(tst->getArgs(), tst->getNumArgs()); break; } } break; } case NestedNameSpecifier::Identifier: // Member expressions can have these without prefixes. if (qualifier->getPrefix()) { mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, /*recursive*/ true); } else if (firstQualifierLookup) { // Try to make a proper qualifier out of the lookup result, and // then just recurse on that. NestedNameSpecifier *newQualifier; if (TypeDecl *typeDecl = dyn_cast
(firstQualifierLookup)) { QualType type = getASTContext().getTypeDeclType(typeDecl); // Pretend we had a different nested name specifier. newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ 0, /*template*/ false, type.getTypePtr()); } else if (NamespaceDecl *nspace = dyn_cast
(firstQualifierLookup)) { newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ 0, nspace); } else if (NamespaceAliasDecl *alias = dyn_cast
(firstQualifierLookup)) { newQualifier = NestedNameSpecifier::Create(getASTContext(), /*prefix*/ 0, alias); } else { // No sensible mangling to do here. newQualifier = 0; } if (newQualifier) return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive); } else { Out << "sr"; } mangleSourceName(qualifier->getAsIdentifier()); break; } // If this was the innermost part of the NNS, and we fell out to // here, append an 'E'. if (!recursive) Out << 'E'; } /// Mangle an unresolved-name, which is generally used for names which /// weren't resolved to specific entities. void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier, NamedDecl *firstQualifierLookup, DeclarationName name, unsigned knownArity) { if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup); mangleUnqualifiedName(0, name, knownArity); } static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) { assert(RD->isAnonymousStructOrUnion() && "Expected anonymous struct or union!"); for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); I != E; ++I) { if (I->getIdentifier()) return *I; if (const RecordType *RT = I->getType()->getAs
()) if (const FieldDecl *NamedDataMember = FindFirstNamedDataMember(RT->getDecl())) return NamedDataMember; } // We didn't find a named data member. return 0; } void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, unsigned KnownArity) { //
::=
// ::=
// ::=
switch (Name.getNameKind()) { case DeclarationName::Identifier: { if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { // We must avoid conflicts between internally- and externally- // linked variable and function declaration names in the same TU: // void test() { extern void foo(); } // static void foo(); // This naming convention is the same as that followed by GCC, // though it shouldn't actually matter. if (ND && ND->getLinkage() == InternalLinkage && getEffectiveDeclContext(ND)->isFileContext()) Out << 'L'; mangleSourceName(II); break; } // Otherwise, an anonymous entity. We must have a declaration. assert(ND && "mangling empty name without declaration"); if (const NamespaceDecl *NS = dyn_cast
(ND)) { if (NS->isAnonymousNamespace()) { // This is how gcc mangles these names. Out << "12_GLOBAL__N_1"; break; } } if (const VarDecl *VD = dyn_cast
(ND)) { // We must have an anonymous union or struct declaration. const RecordDecl *RD = cast
(VD->getType()->getAs
()->getDecl()); // Itanium C++ ABI 5.1.2: // // For the purposes of mangling, the name of an anonymous union is // considered to be the name of the first named data member found by a // pre-order, depth-first, declaration-order walk of the data members of // the anonymous union. If there is no such data member (i.e., if all of // the data members in the union are unnamed), then there is no way for // a program to refer to the anonymous union, and there is therefore no // need to mangle its name. const FieldDecl *FD = FindFirstNamedDataMember(RD); // It's actually possible for various reasons for us to get here // with an empty anonymous struct / union. Fortunately, it // doesn't really matter what name we generate. if (!FD) break; assert(FD->getIdentifier() && "Data member name isn't an identifier!"); mangleSourceName(FD->getIdentifier()); break; } // We must have an anonymous struct. const TagDecl *TD = cast
(ND); if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { assert(TD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); mangleSourceName(D->getDeclName().getAsIdentifierInfo()); break; } //
::=
// //
::= Ul
E [
] _ //
::=
+ # Parameter types or 'v' for 'void'. if (const CXXRecordDecl *Record = dyn_cast
(TD)) { if (Record->isLambda() && Record->getLambdaManglingNumber()) { mangleLambda(Record); break; } } int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD); if (UnnamedMangle != -1) { Out << "Ut"; if (UnnamedMangle != 0) Out << llvm::utostr(UnnamedMangle - 1); Out << '_'; break; } // Get a unique id for the anonymous struct. uint64_t AnonStructId = Context.getAnonymousStructId(TD); // Mangle it as a source name in the form // [n] $_
// where n is the length of the string. SmallString<8> Str; Str += "$_"; Str += llvm::utostr(AnonStructId); Out << Str.size(); Out << Str.str(); break; } case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: llvm_unreachable("Can't mangle Objective-C selector names here!"); case DeclarationName::CXXConstructorName: if (ND == Structor) // If the named decl is the C++ constructor we're mangling, use the type // we were given. mangleCXXCtorType(static_cast
(StructorType)); else // Otherwise, use the complete constructor name. This is relevant if a // class with a constructor is declared within a constructor. mangleCXXCtorType(Ctor_Complete); break; case DeclarationName::CXXDestructorName: if (ND == Structor) // If the named decl is the C++ destructor we're mangling, use the type we // were given. mangleCXXDtorType(static_cast
(StructorType)); else // Otherwise, use the complete destructor name. This is relevant if a // class with a destructor is declared within a destructor. mangleCXXDtorType(Dtor_Complete); break; case DeclarationName::CXXConversionFunctionName: //
::= cv
# (cast) Out << "cv"; mangleType(Name.getCXXNameType()); break; case DeclarationName::CXXOperatorName: { unsigned Arity; if (ND) { Arity = cast
(ND)->getNumParams(); // If we have a C++ member function, we need to include the 'this' pointer. // FIXME: This does not make sense for operators that are static, but their // names stay the same regardless of the arity (operator new for instance). if (isa
(ND)) Arity++; } else Arity = KnownArity; mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); break; } case DeclarationName::CXXLiteralOperatorName: // FIXME: This mangling is not yet official. Out << "li"; mangleSourceName(Name.getCXXLiteralIdentifier()); break; case DeclarationName::CXXUsingDirective: llvm_unreachable("Can't mangle a using directive name!"); } } void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { //
::=
//
::= [n]
//
::=
Out << II->getLength() << II->getName(); } void CXXNameMangler::mangleNestedName(const NamedDecl *ND, const DeclContext *DC, bool NoFunction) { //
// ::= N [
] [
]
E // ::= N [
] [
]
//
E Out << 'N'; if (const CXXMethodDecl *Method = dyn_cast
(ND)) { mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers())); mangleRefQualifier(Method->getRefQualifier()); } // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleTemplatePrefix(TD); mangleTemplateArgs(*TemplateArgs); } else { manglePrefix(DC, NoFunction); mangleUnqualifiedName(ND); } Out << 'E'; } void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, const TemplateArgument *TemplateArgs, unsigned NumTemplateArgs) { //
::= N [
]
E Out << 'N'; mangleTemplatePrefix(TD); mangleTemplateArgs(TemplateArgs, NumTemplateArgs); Out << 'E'; } void CXXNameMangler::mangleLocalName(const NamedDecl *ND) { //
:= Z
E
[
] // := Z
E s [
] //
:= Z
E d [
] // _
//
:= _
const DeclContext *DC = getEffectiveDeclContext(ND); if (isa
(DC) && isa
(ND)) { // Don't add objc method name mangling to locally declared function mangleUnqualifiedName(ND); return; } Out << 'Z'; if (const ObjCMethodDecl *MD = dyn_cast
(DC)) { mangleObjCMethodName(MD); } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) { mangleFunctionEncoding(cast
(getEffectiveDeclContext(RD))); Out << 'E'; // The parameter number is omitted for the last parameter, 0 for the // second-to-last parameter, 1 for the third-to-last parameter, etc. The //
will of course contain a
: Its // numbering will be local to the particular argument in which it appears // -- other default arguments do not affect its encoding. bool SkipDiscriminator = false; if (RD->isLambda()) { if (const ParmVarDecl *Parm = dyn_cast_or_null
(RD->getLambdaContextDecl())) { if (const FunctionDecl *Func = dyn_cast
(Parm->getDeclContext())) { Out << 'd'; unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); if (Num > 1) mangleNumber(Num - 2); Out << '_'; SkipDiscriminator = true; } } } // Mangle the name relative to the closest enclosing function. if (ND == RD) // equality ok because RD derived from ND above mangleUnqualifiedName(ND); else mangleNestedName(ND, DC, true /*NoFunction*/); if (!SkipDiscriminator) { unsigned disc; if (Context.getNextDiscriminator(RD, disc)) { if (disc < 10) Out << '_' << disc; else Out << "__" << disc << '_'; } } return; } else mangleFunctionEncoding(cast
(DC)); Out << 'E'; mangleUnqualifiedName(ND); } void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { // If the context of a closure type is an initializer for a class member // (static or nonstatic), it is encoded in a qualified name with a final //
of the form: // //
:=
M // // Technically, the data-member-prefix is part of the
. However, // since a closure type will always be mangled with a prefix, it's easier // to emit that last part of the prefix here. if (Decl *Context = Lambda->getLambdaContextDecl()) { if ((isa
(Context) || isa
(Context)) && Context->getDeclContext()->isRecord()) { if (const IdentifierInfo *Name = cast
(Context)->getIdentifier()) { mangleSourceName(Name); Out << 'M'; } } } Out << "Ul"; const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()-> getAs
(); mangleBareFunctionType(Proto, /*MangleReturnType=*/false); Out << "E"; // The number is omitted for the first closure type with a given //
in a given context; it is n-2 for the nth closure type // (in lexical order) with that same
and context. // // The AST keeps track of the number for us. unsigned Number = Lambda->getLambdaManglingNumber(); assert(Number > 0 && "Lambda should be mangled as an unnamed class"); if (Number > 1) mangleNumber(Number - 2); Out << '_'; } void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { switch (qualifier->getKind()) { case NestedNameSpecifier::Global: // nothing return; case NestedNameSpecifier::Namespace: mangleName(qualifier->getAsNamespace()); return; case NestedNameSpecifier::NamespaceAlias: mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); return; case NestedNameSpecifier::TypeSpec: case NestedNameSpecifier::TypeSpecWithTemplate: manglePrefix(QualType(qualifier->getAsType(), 0)); return; case NestedNameSpecifier::Identifier: // Member expressions can have these without prefixes, but that // should end up in mangleUnresolvedPrefix instead. assert(qualifier->getPrefix()); manglePrefix(qualifier->getPrefix()); mangleSourceName(qualifier->getAsIdentifier()); return; } llvm_unreachable("unexpected nested name specifier"); } void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { //
::=
// ::=
// ::=
// ::= # empty // ::=
DC = IgnoreLinkageSpecDecls(DC); if (DC->isTranslationUnit()) return; if (const BlockDecl *Block = dyn_cast
(DC)) { manglePrefix(getEffectiveParentContext(DC), NoFunction); SmallString<64> Name; llvm::raw_svector_ostream NameStream(Name); Context.mangleBlock(Block, NameStream); NameStream.flush(); Out << Name.size() << Name; return; } const NamedDecl *ND = cast
(DC); if (mangleSubstitution(ND)) return; // Check if we have a template. const TemplateArgumentList *TemplateArgs = 0; if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { mangleTemplatePrefix(TD); mangleTemplateArgs(*TemplateArgs); } else if(NoFunction && (isa
(ND) || isa
(ND))) return; else if (const ObjCMethodDecl *Method = dyn_cast
(ND)) mangleObjCMethodName(Method); else { manglePrefix(getEffectiveDeclContext(ND), NoFunction); mangleUnqualifiedName(ND); } addSubstitution(ND); } void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { //
::=
// ::=
// ::=
if (TemplateDecl *TD = Template.getAsTemplateDecl()) return mangleTemplatePrefix(TD); if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) manglePrefix(Qualified->getQualifier()); if (OverloadedTemplateStorage *Overloaded = Template.getAsOverloadedTemplate()) { mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), UnknownArity); return; } DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); assert(Dependent && "Unknown template name kind?"); manglePrefix(Dependent->getQualifier()); mangleUnscopedTemplateName(Template); } void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) { //
::=
// ::=
// ::=
//
::=
//
if (mangleSubstitution(ND)) return; //
::=
if (const TemplateTemplateParmDecl *TTP = dyn_cast
(ND)) { mangleTemplateParameter(TTP->getIndex()); return; } manglePrefix(getEffectiveDeclContext(ND)); mangleUnqualifiedName(ND->getTemplatedDecl()); addSubstitution(ND); } /// Mangles a template name under the production
. Required for /// template template arguments. ///
::=
/// ::=
/// ::=
void CXXNameMangler::mangleType(TemplateName TN) { if (mangleSubstitution(TN)) return; TemplateDecl *TD = 0; switch (TN.getKind()) { case TemplateName::QualifiedTemplate: TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); goto HaveDecl; case TemplateName::Template: TD = TN.getAsTemplateDecl(); goto HaveDecl; HaveDecl: if (isa
(TD)) mangleTemplateParameter(cast
(TD)->getIndex()); else mangleName(TD); break; case TemplateName::OverloadedTemplate: llvm_unreachable("can't mangle an overloaded template name as a
"); case TemplateName::DependentTemplate: { const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); assert(Dependent->isIdentifier()); //
::=
//
::=
mangleUnresolvedPrefix(Dependent->getQualifier(), 0); mangleSourceName(Dependent->getIdentifier()); break; } case TemplateName::SubstTemplateTemplateParm: { // Substituted template parameters are mangled as the substituted // template. This will check for the substitution twice, which is // fine, but we have to return early so that we don't try to *add* // the substitution twice. SubstTemplateTemplateParmStorage *subst = TN.getAsSubstTemplateTemplateParm(); mangleType(subst->getReplacement()); return; } case TemplateName::SubstTemplateTemplateParmPack: { // FIXME: not clear how to mangle this! // template
class T...> class A { // template
class U...> void foo(B
x...); // }; Out << "_SUBSTPACK_"; break; } } addSubstitution(TN); } void CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { switch (OO) { //
::= nw # new case OO_New: Out << "nw"; break; // ::= na # new[] case OO_Array_New: Out << "na"; break; // ::= dl # delete case OO_Delete: Out << "dl"; break; // ::= da # delete[] case OO_Array_Delete: Out << "da"; break; // ::= ps # + (unary) // ::= pl # + (binary or unknown) case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break; // ::= ng # - (unary) // ::= mi # - (binary or unknown) case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break; // ::= ad # & (unary) // ::= an # & (binary or unknown) case OO_Amp: Out << (Arity == 1? "ad" : "an"); break; // ::= de # * (unary) // ::= ml # * (binary or unknown) case OO_Star: // Use binary when unknown. Out << (Arity == 1? "de" : "ml"); break; // ::= co # ~ case OO_Tilde: Out << "co"; break; // ::= dv # / case OO_Slash: Out << "dv"; break; // ::= rm # % case OO_Percent: Out << "rm"; break; // ::= or # | case OO_Pipe: Out << "or"; break; // ::= eo # ^ case OO_Caret: Out << "eo"; break; // ::= aS # = case OO_Equal: Out << "aS"; break; // ::= pL # += case OO_PlusEqual: Out << "pL"; break; // ::= mI # -= case OO_MinusEqual: Out << "mI"; break; // ::= mL # *= case OO_StarEqual: Out << "mL"; break; // ::= dV # /= case OO_SlashEqual: Out << "dV"; break; // ::= rM # %= case OO_PercentEqual: Out << "rM"; break; // ::= aN # &= case OO_AmpEqual: Out << "aN"; break; // ::= oR # |= case OO_PipeEqual: Out << "oR"; break; // ::= eO # ^= case OO_CaretEqual: Out << "eO"; break; // ::= ls # << case OO_LessLess: Out << "ls"; break; // ::= rs # >> case OO_GreaterGreater: Out << "rs"; break; // ::= lS # <<= case OO_LessLessEqual: Out << "lS"; break; // ::= rS # >>= case OO_GreaterGreaterEqual: Out << "rS"; break; // ::= eq # == case OO_EqualEqual: Out << "eq"; break; // ::= ne # != case OO_ExclaimEqual: Out << "ne"; break; // ::= lt # < case OO_Less: Out << "lt"; break; // ::= gt # > case OO_Greater: Out << "gt"; break; // ::= le # <= case OO_LessEqual: Out << "le"; break; // ::= ge # >= case OO_GreaterEqual: Out << "ge"; break; // ::= nt # ! case OO_Exclaim: Out << "nt"; break; // ::= aa # && case OO_AmpAmp: Out << "aa"; break; // ::= oo # || case OO_PipePipe: Out << "oo"; break; // ::= pp # ++ case OO_PlusPlus: Out << "pp"; break; // ::= mm # -- case OO_MinusMinus: Out << "mm"; break; // ::= cm # , case OO_Comma: Out << "cm"; break; // ::= pm # ->* case OO_ArrowStar: Out << "pm"; break; // ::= pt # -> case OO_Arrow: Out << "pt"; break; // ::= cl # () case OO_Call: Out << "cl"; break; // ::= ix # [] case OO_Subscript: Out << "ix"; break; // ::= qu # ? // The conditional operator can't be overloaded, but we still handle it when // mangling expressions. case OO_Conditional: Out << "qu"; break; case OO_None: case NUM_OVERLOADED_OPERATORS: llvm_unreachable("Not an overloaded operator"); } } void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { //
::= [r] [V] [K] # restrict (C99), volatile, const if (Quals.hasRestrict()) Out << 'r'; if (Quals.hasVolatile()) Out << 'V'; if (Quals.hasConst()) Out << 'K'; if (Quals.hasAddressSpace()) { // Extension: // //
::= U
// // where
is a source name consisting of 'AS' // followed by the address space
. SmallString<64> ASString; ASString = "AS" + llvm::utostr_32( Context.getASTContext().getTargetAddressSpace(Quals.getAddressSpace())); Out << 'U' << ASString.size() << ASString; } StringRef LifetimeName; switch (Quals.getObjCLifetime()) { // Objective-C ARC Extension: // //
::= U "__strong" //
::= U "__weak" //
::= U "__autoreleasing" case Qualifiers::OCL_None: break; case Qualifiers::OCL_Weak: LifetimeName = "__weak"; break; case Qualifiers::OCL_Strong: LifetimeName = "__strong"; break; case Qualifiers::OCL_Autoreleasing: LifetimeName = "__autoreleasing"; break; case Qualifiers::OCL_ExplicitNone: // The __unsafe_unretained qualifier is *not* mangled, so that // __unsafe_unretained types in ARC produce the same manglings as the // equivalent (but, naturally, unqualified) types in non-ARC, providing // better ABI compatibility. // // It's safe to do this because unqualified 'id' won't show up // in any type signatures that need to be mangled. break; } if (!LifetimeName.empty()) Out << 'U' << LifetimeName.size() << LifetimeName; } void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { //
::= R # lvalue reference // ::= O # rvalue-reference // Proposal to Itanium C++ ABI list on 1/26/11 switch (RefQualifier) { case RQ_None: break; case RQ_LValue: Out << 'R'; break; case RQ_RValue: Out << 'O'; break; } } void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { Context.mangleObjCMethodName(MD, Out); } void CXXNameMangler::mangleType(QualType T) { // If our type is instantiation-dependent but not dependent, we mangle // it as it was written in the source, removing any top-level sugar. // Otherwise, use the canonical type. // // FIXME: This is an approximation of the instantiation-dependent name // mangling rules, since we should really be using the type as written and // augmented via semantic analysis (i.e., with implicit conversions and // default template arguments) for any instantiation-dependent type. // Unfortunately, that requires several changes to our AST: // - Instantiation-dependent TemplateSpecializationTypes will need to be // uniqued, so that we can handle substitutions properly // - Default template arguments will need to be represented in the // TemplateSpecializationType, since they need to be mangled even though // they aren't written. // - Conversions on non-type template arguments need to be expressed, since // they can affect the mangling of sizeof/alignof. if (!T->isInstantiationDependentType() || T->isDependentType()) T = T.getCanonicalType(); else { // Desugar any types that are purely sugar. do { // Don't desugar through template specialization types that aren't // type aliases. We need to mangle the template arguments as written. if (const TemplateSpecializationType *TST = dyn_cast
(T)) if (!TST->isTypeAlias()) break; QualType Desugared = T.getSingleStepDesugaredType(Context.getASTContext()); if (Desugared == T) break; T = Desugared; } while (true); } SplitQualType split = T.split(); Qualifiers quals = split.Quals; const Type *ty = split.Ty; bool isSubstitutable = quals || !isa
(T); if (isSubstitutable && mangleSubstitution(T)) return; // If we're mangling a qualified array type, push the qualifiers to // the element type. if (quals && isa
(T)) { ty = Context.getASTContext().getAsArrayType(T); quals = Qualifiers(); // Note that we don't update T: we want to add the // substitution at the original type. } if (quals) { mangleQualifiers(quals); // Recurse: even if the qualified type isn't yet substitutable, // the unqualified type might be. mangleType(QualType(ty, 0)); } else { switch (ty->getTypeClass()) { #define ABSTRACT_TYPE(CLASS, PARENT) #define NON_CANONICAL_TYPE(CLASS, PARENT) \ case Type::CLASS: \ llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ return; #define TYPE(CLASS, PARENT) \ case Type::CLASS: \ mangleType(static_cast
(ty)); \ break; #include "clang/AST/TypeNodes.def" } } // Add the substitution. if (isSubstitutable) addSubstitution(T); } void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { if (!mangleStandardSubstitution(ND)) mangleName(ND); } void CXXNameMangler::mangleType(const BuiltinType *T) { //
::=
//
::= v # void // ::= w # wchar_t // ::= b # bool // ::= c # char // ::= a # signed char // ::= h # unsigned char // ::= s # short // ::= t # unsigned short // ::= i # int // ::= j # unsigned int // ::= l # long // ::= m # unsigned long // ::= x # long long, __int64 // ::= y # unsigned long long, __int64 // ::= n # __int128 // UNSUPPORTED: ::= o # unsigned __int128 // ::= f # float // ::= d # double // ::= e # long double, __float80 // UNSUPPORTED: ::= g # __float128 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) // ::= Dh # IEEE 754r half-precision floating point (16 bits) // ::= Di # char32_t // ::= Ds # char16_t // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) // ::= u
# vendor extended type switch (T->getKind()) { case BuiltinType::Void: Out << 'v'; break; case BuiltinType::Bool: Out << 'b'; break; case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; case BuiltinType::UChar: Out << 'h'; break; case BuiltinType::UShort: Out << 't'; break; case BuiltinType::UInt: Out << 'j'; break; case BuiltinType::ULong: Out << 'm'; break; case BuiltinType::ULongLong: Out << 'y'; break; case BuiltinType::UInt128: Out << 'o'; break; case BuiltinType::SChar: Out << 'a'; break; case BuiltinType::WChar_S: case BuiltinType::WChar_U: Out << 'w'; break; case BuiltinType::Char16: Out << "Ds"; break; case BuiltinType::Char32: Out << "Di"; break; case BuiltinType::Short: Out << 's'; break; case BuiltinType::Int: Out << 'i'; break; case BuiltinType::Long: Out << 'l'; break; case BuiltinType::LongLong: Out << 'x'; break; case BuiltinType::Int128: Out << 'n'; break; case BuiltinType::Half: Out << "Dh"; break; case BuiltinType::Float: Out << 'f'; break; case BuiltinType::Double: Out << 'd'; break; case BuiltinType::LongDouble: Out << 'e'; break; case BuiltinType::NullPtr: Out << "Dn"; break; #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case BuiltinType::Dependent: llvm_unreachable("mangling a placeholder type"); case BuiltinType::ObjCId: Out << "11objc_object"; break; case BuiltinType::ObjCClass: Out << "10objc_class"; break; case BuiltinType::ObjCSel: Out << "13objc_selector"; break; case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break; case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break; case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break; case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break; case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break; case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break; case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break; case BuiltinType::OCLEvent: Out << "9ocl_event"; break; } } //
::=
//
::= [
] F [Y] //
[