// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/triplet_sparse_matrix.h"
#include <algorithm>
#include <cstddef>
#include "ceres/internal/eigen.h"
#include "ceres/internal/port.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/matrix_proto.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
namespace internal {
TripletSparseMatrix::TripletSparseMatrix()
: num_rows_(0),
num_cols_(0),
max_num_nonzeros_(0),
num_nonzeros_(0),
rows_(NULL),
cols_(NULL),
values_(NULL) {}
TripletSparseMatrix::~TripletSparseMatrix() {}
TripletSparseMatrix::TripletSparseMatrix(int num_rows,
int num_cols,
int max_num_nonzeros)
: num_rows_(num_rows),
num_cols_(num_cols),
max_num_nonzeros_(max_num_nonzeros),
num_nonzeros_(0),
rows_(NULL),
cols_(NULL),
values_(NULL) {
// All the sizes should at least be zero
CHECK_GE(num_rows, 0);
CHECK_GE(num_cols, 0);
CHECK_GE(max_num_nonzeros, 0);
AllocateMemory();
}
TripletSparseMatrix::TripletSparseMatrix(const TripletSparseMatrix& orig)
: SparseMatrix(),
num_rows_(orig.num_rows_),
num_cols_(orig.num_cols_),
max_num_nonzeros_(orig.max_num_nonzeros_),
num_nonzeros_(orig.num_nonzeros_),
rows_(NULL),
cols_(NULL),
values_(NULL) {
AllocateMemory();
CopyData(orig);
}
#ifndef CERES_NO_PROTOCOL_BUFFERS
TripletSparseMatrix::TripletSparseMatrix(const SparseMatrixProto& outer_proto) {
CHECK(outer_proto.has_triplet_matrix());
const TripletSparseMatrixProto& proto = outer_proto.triplet_matrix();
CHECK(proto.has_num_rows());
CHECK(proto.has_num_cols());
CHECK_EQ(proto.rows_size(), proto.cols_size());
CHECK_EQ(proto.cols_size(), proto.values_size());
// Initialize the matrix with the appropriate size and capacity.
max_num_nonzeros_ = 0;
set_num_nonzeros(0);
Reserve(proto.num_nonzeros());
Resize(proto.num_rows(), proto.num_cols());
set_num_nonzeros(proto.num_nonzeros());
// Copy the entries in.
for (int i = 0; i < proto.num_nonzeros(); ++i) {
rows_[i] = proto.rows(i);
cols_[i] = proto.cols(i);
values_[i] = proto.values(i);
}
}
#endif
TripletSparseMatrix& TripletSparseMatrix::operator=(
const TripletSparseMatrix& rhs) {
num_rows_ = rhs.num_rows_;
num_cols_ = rhs.num_cols_;
num_nonzeros_ = rhs.num_nonzeros_;
max_num_nonzeros_ = rhs.max_num_nonzeros_;
AllocateMemory();
CopyData(rhs);
return *this;
}
bool TripletSparseMatrix::AllTripletsWithinBounds() const {
for (int i = 0; i < num_nonzeros_; ++i) {
if ((rows_[i] < 0) || (rows_[i] >= num_rows_) ||
(cols_[i] < 0) || (cols_[i] >= num_cols_))
return false;
}
return true;
}
void TripletSparseMatrix::Reserve(int new_max_num_nonzeros) {
CHECK_LE(num_nonzeros_, new_max_num_nonzeros)
<< "Reallocation will cause data loss";
// Nothing to do if we have enough space already.
if (new_max_num_nonzeros <= max_num_nonzeros_)
return;
int* new_rows = new int[new_max_num_nonzeros];
int* new_cols = new int[new_max_num_nonzeros];
double* new_values = new double[new_max_num_nonzeros];
for (int i = 0; i < num_nonzeros_; ++i) {
new_rows[i] = rows_[i];
new_cols[i] = cols_[i];
new_values[i] = values_[i];
}
rows_.reset(new_rows);
cols_.reset(new_cols);
values_.reset(new_values);
max_num_nonzeros_ = new_max_num_nonzeros;
}
void TripletSparseMatrix::SetZero() {
fill(values_.get(), values_.get() + max_num_nonzeros_, 0.0);
num_nonzeros_ = 0;
}
void TripletSparseMatrix::set_num_nonzeros(int num_nonzeros) {
CHECK_GE(num_nonzeros, 0);
CHECK_LE(num_nonzeros, max_num_nonzeros_);
num_nonzeros_ = num_nonzeros;
};
void TripletSparseMatrix::AllocateMemory() {
rows_.reset(new int[max_num_nonzeros_]);
cols_.reset(new int[max_num_nonzeros_]);
values_.reset(new double[max_num_nonzeros_]);
}
void TripletSparseMatrix::CopyData(const TripletSparseMatrix& orig) {
for (int i = 0; i < num_nonzeros_; ++i) {
rows_[i] = orig.rows_[i];
cols_[i] = orig.cols_[i];
values_[i] = orig.values_[i];
}
}
void TripletSparseMatrix::RightMultiply(const double* x, double* y) const {
for (int i = 0; i < num_nonzeros_; ++i) {
y[rows_[i]] += values_[i]*x[cols_[i]];
}
}
void TripletSparseMatrix::LeftMultiply(const double* x, double* y) const {
for (int i = 0; i < num_nonzeros_; ++i) {
y[cols_[i]] += values_[i]*x[rows_[i]];
}
}
void TripletSparseMatrix::SquaredColumnNorm(double* x) const {
CHECK_NOTNULL(x);
VectorRef(x, num_cols_).setZero();
for (int i = 0; i < num_nonzeros_; ++i) {
x[cols_[i]] += values_[i] * values_[i];
}
}
void TripletSparseMatrix::ScaleColumns(const double* scale) {
CHECK_NOTNULL(scale);
for (int i = 0; i < num_nonzeros_; ++i) {
values_[i] = values_[i] * scale[cols_[i]];
}
}
void TripletSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
dense_matrix->resize(num_rows_, num_cols_);
dense_matrix->setZero();
Matrix& m = *dense_matrix;
for (int i = 0; i < num_nonzeros_; ++i) {
m(rows_[i], cols_[i]) += values_[i];
}
}
#ifndef CERES_NO_PROTOCOL_BUFFERS
void TripletSparseMatrix::ToProto(SparseMatrixProto *proto) const {
proto->Clear();
TripletSparseMatrixProto* tsm_proto = proto->mutable_triplet_matrix();
tsm_proto->set_num_rows(num_rows_);
tsm_proto->set_num_cols(num_cols_);
tsm_proto->set_num_nonzeros(num_nonzeros_);
for (int i = 0; i < num_nonzeros_; ++i) {
tsm_proto->add_rows(rows_[i]);
tsm_proto->add_cols(cols_[i]);
tsm_proto->add_values(values_[i]);
}
}
#endif
void TripletSparseMatrix::AppendRows(const TripletSparseMatrix& B) {
CHECK_EQ(B.num_cols(), num_cols_);
Reserve(num_nonzeros_ + B.num_nonzeros_);
for (int i = 0; i < B.num_nonzeros_; ++i) {
rows_.get()[num_nonzeros_] = B.rows()[i] + num_rows_;
cols_.get()[num_nonzeros_] = B.cols()[i];
values_.get()[num_nonzeros_++] = B.values()[i];
}
num_rows_ = num_rows_ + B.num_rows();
}
void TripletSparseMatrix::AppendCols(const TripletSparseMatrix& B) {
CHECK_EQ(B.num_rows(), num_rows_);
Reserve(num_nonzeros_ + B.num_nonzeros_);
for (int i = 0; i < B.num_nonzeros_; ++i, ++num_nonzeros_) {
rows_.get()[num_nonzeros_] = B.rows()[i];
cols_.get()[num_nonzeros_] = B.cols()[i] + num_cols_;
values_.get()[num_nonzeros_] = B.values()[i];
}
num_cols_ = num_cols_ + B.num_cols();
}
void TripletSparseMatrix::Resize(int new_num_rows, int new_num_cols) {
if ((new_num_rows >= num_rows_) && (new_num_cols >= num_cols_)) {
num_rows_ = new_num_rows;
num_cols_ = new_num_cols;
return;
}
num_rows_ = new_num_rows;
num_cols_ = new_num_cols;
int* r_ptr = rows_.get();
int* c_ptr = cols_.get();
double* v_ptr = values_.get();
int dropped_terms = 0;
for (int i = 0; i < num_nonzeros_; ++i) {
if ((r_ptr[i] < num_rows_) && (c_ptr[i] < num_cols_)) {
if (dropped_terms) {
r_ptr[i-dropped_terms] = r_ptr[i];
c_ptr[i-dropped_terms] = c_ptr[i];
v_ptr[i-dropped_terms] = v_ptr[i];
}
} else {
++dropped_terms;
}
}
num_nonzeros_ -= dropped_terms;
}
TripletSparseMatrix* TripletSparseMatrix::CreateSparseDiagonalMatrix(
const double* values, int num_rows) {
TripletSparseMatrix* m =
new TripletSparseMatrix(num_rows, num_rows, num_rows);
for (int i = 0; i < num_rows; ++i) {
m->mutable_rows()[i] = i;
m->mutable_cols()[i] = i;
m->mutable_values()[i] = values[i];
}
m->set_num_nonzeros(num_rows);
return m;
}
void TripletSparseMatrix::ToTextFile(FILE* file) const {
CHECK_NOTNULL(file);
for (int i = 0; i < num_nonzeros_; ++i) {
fprintf(file, "% 10d % 10d %17f\n", rows_[i], cols_[i], values_[i]);
}
}
} // namespace internal
} // namespace ceres