// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
#include "ceres/internal/autodiff.h"
#include "gtest/gtest.h"
#include "ceres/random.h"
namespace ceres {
namespace internal {
template <typename T> inline
T &RowMajorAccess(T *base, int rows, int cols, int i, int j) {
return base[cols * i + j];
}
// Do (symmetric) finite differencing using the given function object 'b' of
// type 'B' and scalar type 'T' with step size 'del'.
//
// The type B should have a signature
//
// bool operator()(T const *, T *) const;
//
// which maps a vector of parameters to a vector of outputs.
template <typename B, typename T, int M, int N> inline
bool SymmetricDiff(const B& b,
const T par[N],
T del, // step size.
T fun[M],
T jac[M * N]) { // row-major.
if (!b(par, fun)) {
return false;
}
// Temporary parameter vector.
T tmp_par[N];
for (int j = 0; j < N; ++j) {
tmp_par[j] = par[j];
}
// For each dimension, we do one forward step and one backward step in
// parameter space, and store the output vector vectors in these vectors.
T fwd_fun[M];
T bwd_fun[M];
for (int j = 0; j < N; ++j) {
// Forward step.
tmp_par[j] = par[j] + del;
if (!b(tmp_par, fwd_fun)) {
return false;
}
// Backward step.
tmp_par[j] = par[j] - del;
if (!b(tmp_par, bwd_fun)) {
return false;
}
// Symmetric differencing:
// f'(a) = (f(a + h) - f(a - h)) / (2 h)
for (int i = 0; i < M; ++i) {
RowMajorAccess(jac, M, N, i, j) =
(fwd_fun[i] - bwd_fun[i]) / (T(2) * del);
}
// Restore our temporary vector.
tmp_par[j] = par[j];
}
return true;
}
template <typename A> inline
void QuaternionToScaledRotation(A const q[4], A R[3 * 3]) {
// Make convenient names for elements of q.
A a = q[0];
A b = q[1];
A c = q[2];
A d = q[3];
// This is not to eliminate common sub-expression, but to
// make the lines shorter so that they fit in 80 columns!
A aa = a*a;
A ab = a*b;
A ac = a*c;
A ad = a*d;
A bb = b*b;
A bc = b*c;
A bd = b*d;
A cc = c*c;
A cd = c*d;
A dd = d*d;
#define R(i, j) RowMajorAccess(R, 3, 3, (i), (j))
R(0, 0) = aa+bb-cc-dd; R(0, 1) = A(2)*(bc-ad); R(0, 2) = A(2)*(ac+bd); // NOLINT
R(1, 0) = A(2)*(ad+bc); R(1, 1) = aa-bb+cc-dd; R(1, 2) = A(2)*(cd-ab); // NOLINT
R(2, 0) = A(2)*(bd-ac); R(2, 1) = A(2)*(ab+cd); R(2, 2) = aa-bb-cc+dd; // NOLINT
#undef R
}
// A structure for projecting a 3x4 camera matrix and a
// homogeneous 3D point, to a 2D inhomogeneous point.
struct Projective {
// Function that takes P and X as separate vectors:
// P, X -> x
template <typename A>
bool operator()(A const P[12], A const X[4], A x[2]) const {
A PX[3];
for (int i = 0; i < 3; ++i) {
PX[i] = RowMajorAccess(P, 3, 4, i, 0) * X[0] +
RowMajorAccess(P, 3, 4, i, 1) * X[1] +
RowMajorAccess(P, 3, 4, i, 2) * X[2] +
RowMajorAccess(P, 3, 4, i, 3) * X[3];
}
if (PX[2] != 0.0) {
x[0] = PX[0] / PX[2];
x[1] = PX[1] / PX[2];
return true;
}
return false;
}
// Version that takes P and X packed in one vector:
//
// (P, X) -> x
//
template <typename A>
bool operator()(A const P_X[12 + 4], A x[2]) const {
return operator()(P_X + 0, P_X + 12, x);
}
};
// Test projective camera model projector.
TEST(AutoDiff, ProjectiveCameraModel) {
srand(5);
double const tol = 1e-10; // floating-point tolerance.
double const del = 1e-4; // finite-difference step.
double const err = 1e-6; // finite-difference tolerance.
Projective b;
// Make random P and X, in a single vector.
double PX[12 + 4];
for (int i = 0; i < 12 + 4; ++i) {
PX[i] = RandDouble();
}
// Handy names for the P and X parts.
double *P = PX + 0;
double *X = PX + 12;
// Apply the mapping, to get image point b_x.
double b_x[2];
b(P, X, b_x);
// Use finite differencing to estimate the Jacobian.
double fd_x[2];
double fd_J[2 * (12 + 4)];
ASSERT_TRUE((SymmetricDiff<Projective, double, 2, 12 + 4>(b, PX, del,
fd_x, fd_J)));
for (int i = 0; i < 2; ++i) {
ASSERT_EQ(fd_x[i], b_x[i]);
}
// Use automatic differentiation to compute the Jacobian.
double ad_x1[2];
double J_PX[2 * (12 + 4)];
{
double *parameters[] = { PX };
double *jacobians[] = { J_PX };
ASSERT_TRUE((AutoDiff<Projective, double, 12 + 4>::Differentiate(
b, parameters, 2, ad_x1, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x1[i], b_x[i], tol);
}
}
// Use automatic differentiation (again), with two arguments.
{
double ad_x2[2];
double J_P[2 * 12];
double J_X[2 * 4];
double *parameters[] = { P, X };
double *jacobians[] = { J_P, J_X };
ASSERT_TRUE((AutoDiff<Projective, double, 12, 4>::Differentiate(
b, parameters, 2, ad_x2, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x2[i], b_x[i], tol);
}
// Now compare the jacobians we got.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 12 + 4; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + j], fd_J[(12 + 4) * i + j], err);
}
for (int j = 0; j < 12; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + j], J_P[12 * i + j], tol);
}
for (int j = 0; j < 4; ++j) {
ASSERT_NEAR(J_PX[(12 + 4) * i + 12 + j], J_X[4 * i + j], tol);
}
}
}
}
// Object to implement the projection by a calibrated camera.
struct Metric {
// The mapping is
//
// q, c, X -> x = dehomg(R(q) (X - c))
//
// where q is a quaternion and c is the center of projection.
//
// This function takes three input vectors.
template <typename A>
bool operator()(A const q[4], A const c[3], A const X[3], A x[2]) const {
A R[3 * 3];
QuaternionToScaledRotation(q, R);
// Convert the quaternion mapping all the way to projective matrix.
A P[3 * 4];
// Set P(:, 1:3) = R
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
RowMajorAccess(P, 3, 4, i, j) = RowMajorAccess(R, 3, 3, i, j);
}
}
// Set P(:, 4) = - R c
for (int i = 0; i < 3; ++i) {
RowMajorAccess(P, 3, 4, i, 3) =
- (RowMajorAccess(R, 3, 3, i, 0) * c[0] +
RowMajorAccess(R, 3, 3, i, 1) * c[1] +
RowMajorAccess(R, 3, 3, i, 2) * c[2]);
}
A X1[4] = { X[0], X[1], X[2], A(1) };
Projective p;
return p(P, X1, x);
}
// A version that takes a single vector.
template <typename A>
bool operator()(A const q_c_X[4 + 3 + 3], A x[2]) const {
return operator()(q_c_X, q_c_X + 4, q_c_X + 4 + 3, x);
}
};
// This test is similar in structure to the previous one.
TEST(AutoDiff, Metric) {
srand(5);
double const tol = 1e-10; // floating-point tolerance.
double const del = 1e-4; // finite-difference step.
double const err = 1e-5; // finite-difference tolerance.
Metric b;
// Make random parameter vector.
double qcX[4 + 3 + 3];
for (int i = 0; i < 4 + 3 + 3; ++i)
qcX[i] = RandDouble();
// Handy names.
double *q = qcX;
double *c = qcX + 4;
double *X = qcX + 4 + 3;
// Compute projection, b_x.
double b_x[2];
ASSERT_TRUE(b(q, c, X, b_x));
// Finite differencing estimate of Jacobian.
double fd_x[2];
double fd_J[2 * (4 + 3 + 3)];
ASSERT_TRUE((SymmetricDiff<Metric, double, 2, 4 + 3 + 3>(b, qcX, del,
fd_x, fd_J)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(fd_x[i], b_x[i], tol);
}
// Automatic differentiation.
double ad_x[2];
double J_q[2 * 4];
double J_c[2 * 3];
double J_X[2 * 3];
double *parameters[] = { q, c, X };
double *jacobians[] = { J_q, J_c, J_X };
ASSERT_TRUE((AutoDiff<Metric, double, 4, 3, 3>::Differentiate(
b, parameters, 2, ad_x, jacobians)));
for (int i = 0; i < 2; ++i) {
ASSERT_NEAR(ad_x[i], b_x[i], tol);
}
// Compare the pieces.
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 4; ++j) {
ASSERT_NEAR(J_q[4 * i + j], fd_J[(4 + 3 + 3) * i + j], err);
}
for (int j = 0; j < 3; ++j) {
ASSERT_NEAR(J_c[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4], err);
}
for (int j = 0; j < 3; ++j) {
ASSERT_NEAR(J_X[3 * i + j], fd_J[(4 + 3 + 3) * i + j + 4 + 3], err);
}
}
}
struct VaryingResidualFunctor {
template <typename T>
bool operator()(const T x[2], T* y) const {
for (int i = 0; i < num_residuals; ++i) {
y[i] = T(i) * x[0] * x[1] * x[1];
}
return true;
}
int num_residuals;
};
TEST(AutoDiff, VaryingNumberOfResidualsForOneCostFunctorType) {
double x[2] = { 1.0, 5.5 };
double *parameters[] = { x };
const int kMaxResiduals = 10;
double J_x[2 * kMaxResiduals];
double residuals[kMaxResiduals];
double *jacobians[] = { J_x };
// Use a single functor, but tweak it to produce different numbers of
// residuals.
VaryingResidualFunctor functor;
for (int num_residuals = 1; num_residuals < kMaxResiduals; ++num_residuals) {
// Tweak the number of residuals to produce.
functor.num_residuals = num_residuals;
// Run autodiff with the new number of residuals.
ASSERT_TRUE((AutoDiff<VaryingResidualFunctor, double, 2>::Differentiate(
functor, parameters, num_residuals, residuals, jacobians)));
const double kTolerance = 1e-14;
for (int i = 0; i < num_residuals; ++i) {
EXPECT_NEAR(J_x[2 * i + 0], i * x[1] * x[1], kTolerance) << "i: " << i;
EXPECT_NEAR(J_x[2 * i + 1], 2 * i * x[0] * x[1], kTolerance) << "i: " << i;
}
}
}
// This is fragile test that triggers the alignment bug on
// i686-apple-darwin10-llvm-g++-4.2 (GCC) 4.2.1. It is quite possible,
// that other combinations of operating system + compiler will
// re-arrange the operations in this test.
//
// But this is the best (and only) way we know of to trigger this
// problem for now. A more robust solution that guarantees the
// alignment of Eigen types used for automatic differentiation would
// be nice.
TEST(AutoDiff, AlignedAllocationTest) {
// This int is needed to allocate 16 bits on the stack, so that the
// next allocation is not aligned by default.
char y = 0;
// This is needed to prevent the compiler from optimizing y out of
// this function.
y += 1;
typedef Jet<double, 2> JetT;
FixedArray<JetT, (256 * 7) / sizeof(JetT)> x(3);
// Need this to makes sure that x does not get optimized out.
x[0] = x[0] + JetT(1.0);
}
} // namespace internal
} // namespace ceres