/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Contains implementation of a class EmulatedFakeCamera2 that encapsulates
* functionality of an advanced fake camera.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "EmulatedCamera_FakeCamera2"
#include <utils/Log.h>
#include "EmulatedFakeCamera2.h"
#include "EmulatedCameraFactory.h"
#include <ui/Rect.h>
#include <ui/GraphicBufferMapper.h>
#include "gralloc_cb.h"
#define ERROR_CAMERA_NOT_PRESENT -EPIPE
#define CAMERA2_EXT_TRIGGER_TESTING_DISCONNECT 0xFFFFFFFF
namespace android {
const int64_t USEC = 1000LL;
const int64_t MSEC = USEC * 1000LL;
const int64_t SEC = MSEC * 1000LL;
const uint32_t EmulatedFakeCamera2::kAvailableFormats[4] = {
HAL_PIXEL_FORMAT_RAW_SENSOR,
HAL_PIXEL_FORMAT_BLOB,
HAL_PIXEL_FORMAT_RGBA_8888,
// HAL_PIXEL_FORMAT_YV12,
HAL_PIXEL_FORMAT_YCrCb_420_SP
};
const uint32_t EmulatedFakeCamera2::kAvailableRawSizes[2] = {
640, 480
// Sensor::kResolution[0], Sensor::kResolution[1]
};
const uint64_t EmulatedFakeCamera2::kAvailableRawMinDurations[1] = {
Sensor::kFrameDurationRange[0]
};
const uint32_t EmulatedFakeCamera2::kAvailableProcessedSizesBack[4] = {
640, 480, 320, 240
// Sensor::kResolution[0], Sensor::kResolution[1]
};
const uint32_t EmulatedFakeCamera2::kAvailableProcessedSizesFront[4] = {
320, 240, 160, 120
// Sensor::kResolution[0], Sensor::kResolution[1]
};
const uint64_t EmulatedFakeCamera2::kAvailableProcessedMinDurations[1] = {
Sensor::kFrameDurationRange[0]
};
const uint32_t EmulatedFakeCamera2::kAvailableJpegSizesBack[2] = {
640, 480
// Sensor::kResolution[0], Sensor::kResolution[1]
};
const uint32_t EmulatedFakeCamera2::kAvailableJpegSizesFront[2] = {
320, 240
// Sensor::kResolution[0], Sensor::kResolution[1]
};
const uint64_t EmulatedFakeCamera2::kAvailableJpegMinDurations[1] = {
Sensor::kFrameDurationRange[0]
};
EmulatedFakeCamera2::EmulatedFakeCamera2(int cameraId,
bool facingBack,
struct hw_module_t* module)
: EmulatedCamera2(cameraId,module),
mFacingBack(facingBack),
mIsConnected(false)
{
ALOGD("Constructing emulated fake camera 2 facing %s",
facingBack ? "back" : "front");
}
EmulatedFakeCamera2::~EmulatedFakeCamera2() {
if (mCameraInfo != NULL) {
free_camera_metadata(mCameraInfo);
}
}
/****************************************************************************
* Public API overrides
***************************************************************************/
status_t EmulatedFakeCamera2::Initialize() {
status_t res;
set_camera_metadata_vendor_tag_ops(
static_cast<vendor_tag_query_ops_t*>(&mVendorTagOps));
res = constructStaticInfo(&mCameraInfo, true);
if (res != OK) {
ALOGE("%s: Unable to allocate static info: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
res = constructStaticInfo(&mCameraInfo, false);
if (res != OK) {
ALOGE("%s: Unable to fill in static info: %s (%d)",
__FUNCTION__, strerror(-res), res);
return res;
}
if (res != OK) return res;
mNextStreamId = 1;
mNextReprocessStreamId = 1;
mRawStreamCount = 0;
mProcessedStreamCount = 0;
mJpegStreamCount = 0;
mReprocessStreamCount = 0;
return NO_ERROR;
}
/****************************************************************************
* Camera module API overrides
***************************************************************************/
status_t EmulatedFakeCamera2::connectCamera(hw_device_t** device) {
status_t res;
ALOGV("%s", __FUNCTION__);
{
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGE("%s: Camera ID %d is unplugged", __FUNCTION__,
mCameraID);
return -ENODEV;
}
}
mConfigureThread = new ConfigureThread(this);
mReadoutThread = new ReadoutThread(this);
mControlThread = new ControlThread(this);
mSensor = new Sensor();
mJpegCompressor = new JpegCompressor();
mNextStreamId = 1;
mNextReprocessStreamId = 1;
res = mSensor->startUp();
if (res != NO_ERROR) return res;
res = mConfigureThread->run("EmulatedFakeCamera2::configureThread");
if (res != NO_ERROR) return res;
res = mReadoutThread->run("EmulatedFakeCamera2::readoutThread");
if (res != NO_ERROR) return res;
res = mControlThread->run("EmulatedFakeCamera2::controlThread");
if (res != NO_ERROR) return res;
status_t ret = EmulatedCamera2::connectCamera(device);
if (ret >= 0) {
mIsConnected = true;
}
return ret;
}
status_t EmulatedFakeCamera2::plugCamera() {
{
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGI("%s: Plugged back in", __FUNCTION__);
mStatusPresent = true;
}
}
return NO_ERROR;
}
status_t EmulatedFakeCamera2::unplugCamera() {
{
Mutex::Autolock l(mMutex);
if (mStatusPresent) {
ALOGI("%s: Unplugged camera", __FUNCTION__);
mStatusPresent = false;
}
}
return closeCamera();
}
camera_device_status_t EmulatedFakeCamera2::getHotplugStatus() {
Mutex::Autolock l(mMutex);
return mStatusPresent ?
CAMERA_DEVICE_STATUS_PRESENT :
CAMERA_DEVICE_STATUS_NOT_PRESENT;
}
status_t EmulatedFakeCamera2::closeCamera() {
{
Mutex::Autolock l(mMutex);
status_t res;
ALOGV("%s", __FUNCTION__);
if (!mIsConnected) {
return NO_ERROR;
}
res = mSensor->shutDown();
if (res != NO_ERROR) {
ALOGE("%s: Unable to shut down sensor: %d", __FUNCTION__, res);
return res;
}
mConfigureThread->requestExit();
mReadoutThread->requestExit();
mControlThread->requestExit();
mJpegCompressor->cancel();
}
// give up the lock since we will now block and the threads
// can call back into this object
mConfigureThread->join();
mReadoutThread->join();
mControlThread->join();
ALOGV("%s exit", __FUNCTION__);
{
Mutex::Autolock l(mMutex);
mIsConnected = false;
}
return NO_ERROR;
}
status_t EmulatedFakeCamera2::getCameraInfo(struct camera_info *info) {
info->facing = mFacingBack ? CAMERA_FACING_BACK : CAMERA_FACING_FRONT;
info->orientation = gEmulatedCameraFactory.getFakeCameraOrientation();
return EmulatedCamera2::getCameraInfo(info);
}
/****************************************************************************
* Camera device API overrides
***************************************************************************/
/** Request input queue */
int EmulatedFakeCamera2::requestQueueNotify() {
ALOGV("Request queue notification received");
ALOG_ASSERT(mRequestQueueSrc != NULL,
"%s: Request queue src not set, but received queue notification!",
__FUNCTION__);
ALOG_ASSERT(mFrameQueueDst != NULL,
"%s: Request queue src not set, but received queue notification!",
__FUNCTION__);
ALOG_ASSERT(mStreams.size() != 0,
"%s: No streams allocated, but received queue notification!",
__FUNCTION__);
return mConfigureThread->newRequestAvailable();
}
int EmulatedFakeCamera2::getInProgressCount() {
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
int requestCount = 0;
requestCount += mConfigureThread->getInProgressCount();
requestCount += mReadoutThread->getInProgressCount();
requestCount += mJpegCompressor->isBusy() ? 1 : 0;
return requestCount;
}
int EmulatedFakeCamera2::constructDefaultRequest(
int request_template,
camera_metadata_t **request) {
if (request == NULL) return BAD_VALUE;
if (request_template < 0 || request_template >= CAMERA2_TEMPLATE_COUNT) {
return BAD_VALUE;
}
{
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
}
status_t res;
// Pass 1, calculate size and allocate
res = constructDefaultRequest(request_template,
request,
true);
if (res != OK) {
return res;
}
// Pass 2, build request
res = constructDefaultRequest(request_template,
request,
false);
if (res != OK) {
ALOGE("Unable to populate new request for template %d",
request_template);
}
return res;
}
int EmulatedFakeCamera2::allocateStream(
uint32_t width,
uint32_t height,
int format,
const camera2_stream_ops_t *stream_ops,
uint32_t *stream_id,
uint32_t *format_actual,
uint32_t *usage,
uint32_t *max_buffers) {
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
// Temporary shim until FORMAT_ZSL is removed
if (format == CAMERA2_HAL_PIXEL_FORMAT_ZSL) {
format = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED;
}
if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
unsigned int numFormats = sizeof(kAvailableFormats) / sizeof(uint32_t);
unsigned int formatIdx = 0;
unsigned int sizeOffsetIdx = 0;
for (; formatIdx < numFormats; formatIdx++) {
if (format == (int)kAvailableFormats[formatIdx]) break;
}
if (formatIdx == numFormats) {
ALOGE("%s: Format 0x%x is not supported", __FUNCTION__, format);
return BAD_VALUE;
}
}
const uint32_t *availableSizes;
size_t availableSizeCount;
switch (format) {
case HAL_PIXEL_FORMAT_RAW_SENSOR:
availableSizes = kAvailableRawSizes;
availableSizeCount = sizeof(kAvailableRawSizes)/sizeof(uint32_t);
break;
case HAL_PIXEL_FORMAT_BLOB:
availableSizes = mFacingBack ?
kAvailableJpegSizesBack : kAvailableJpegSizesFront;
availableSizeCount = mFacingBack ?
sizeof(kAvailableJpegSizesBack)/sizeof(uint32_t) :
sizeof(kAvailableJpegSizesFront)/sizeof(uint32_t);
break;
case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED:
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_YV12:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
availableSizes = mFacingBack ?
kAvailableProcessedSizesBack : kAvailableProcessedSizesFront;
availableSizeCount = mFacingBack ?
sizeof(kAvailableProcessedSizesBack)/sizeof(uint32_t) :
sizeof(kAvailableProcessedSizesFront)/sizeof(uint32_t);
break;
default:
ALOGE("%s: Unknown format 0x%x", __FUNCTION__, format);
return BAD_VALUE;
}
unsigned int resIdx = 0;
for (; resIdx < availableSizeCount; resIdx++) {
if (availableSizes[resIdx * 2] == width &&
availableSizes[resIdx * 2 + 1] == height) break;
}
if (resIdx == availableSizeCount) {
ALOGE("%s: Format 0x%x does not support resolution %d, %d", __FUNCTION__,
format, width, height);
return BAD_VALUE;
}
switch (format) {
case HAL_PIXEL_FORMAT_RAW_SENSOR:
if (mRawStreamCount >= kMaxRawStreamCount) {
ALOGE("%s: Cannot allocate another raw stream (%d already allocated)",
__FUNCTION__, mRawStreamCount);
return INVALID_OPERATION;
}
mRawStreamCount++;
break;
case HAL_PIXEL_FORMAT_BLOB:
if (mJpegStreamCount >= kMaxJpegStreamCount) {
ALOGE("%s: Cannot allocate another JPEG stream (%d already allocated)",
__FUNCTION__, mJpegStreamCount);
return INVALID_OPERATION;
}
mJpegStreamCount++;
break;
default:
if (mProcessedStreamCount >= kMaxProcessedStreamCount) {
ALOGE("%s: Cannot allocate another processed stream (%d already allocated)",
__FUNCTION__, mProcessedStreamCount);
return INVALID_OPERATION;
}
mProcessedStreamCount++;
}
Stream newStream;
newStream.ops = stream_ops;
newStream.width = width;
newStream.height = height;
newStream.format = format;
// TODO: Query stride from gralloc
newStream.stride = width;
mStreams.add(mNextStreamId, newStream);
*stream_id = mNextStreamId;
if (format_actual) *format_actual = format;
*usage = GRALLOC_USAGE_HW_CAMERA_WRITE;
*max_buffers = kMaxBufferCount;
ALOGV("Stream allocated: %d, %d x %d, 0x%x. U: %x, B: %d",
*stream_id, width, height, format, *usage, *max_buffers);
mNextStreamId++;
return NO_ERROR;
}
int EmulatedFakeCamera2::registerStreamBuffers(
uint32_t stream_id,
int num_buffers,
buffer_handle_t *buffers) {
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
ALOGV("%s: Stream %d registering %d buffers", __FUNCTION__,
stream_id, num_buffers);
// Need to find out what the final concrete pixel format for our stream is
// Assumes that all buffers have the same format.
if (num_buffers < 1) {
ALOGE("%s: Stream %d only has %d buffers!",
__FUNCTION__, stream_id, num_buffers);
return BAD_VALUE;
}
const cb_handle_t *streamBuffer =
reinterpret_cast<const cb_handle_t*>(buffers[0]);
int finalFormat = streamBuffer->format;
if (finalFormat == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
ALOGE("%s: Stream %d: Bad final pixel format "
"HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; "
"concrete pixel format required!", __FUNCTION__, stream_id);
return BAD_VALUE;
}
ssize_t streamIndex = mStreams.indexOfKey(stream_id);
if (streamIndex < 0) {
ALOGE("%s: Unknown stream id %d!", __FUNCTION__, stream_id);
return BAD_VALUE;
}
Stream &stream = mStreams.editValueAt(streamIndex);
ALOGV("%s: Stream %d format set to %x, previously %x",
__FUNCTION__, stream_id, finalFormat, stream.format);
stream.format = finalFormat;
return NO_ERROR;
}
int EmulatedFakeCamera2::releaseStream(uint32_t stream_id) {
Mutex::Autolock l(mMutex);
ssize_t streamIndex = mStreams.indexOfKey(stream_id);
if (streamIndex < 0) {
ALOGE("%s: Unknown stream id %d!", __FUNCTION__, stream_id);
return BAD_VALUE;
}
if (isStreamInUse(stream_id)) {
ALOGE("%s: Cannot release stream %d; in use!", __FUNCTION__,
stream_id);
return BAD_VALUE;
}
switch(mStreams.valueAt(streamIndex).format) {
case HAL_PIXEL_FORMAT_RAW_SENSOR:
mRawStreamCount--;
break;
case HAL_PIXEL_FORMAT_BLOB:
mJpegStreamCount--;
break;
default:
mProcessedStreamCount--;
break;
}
mStreams.removeItemsAt(streamIndex);
return NO_ERROR;
}
int EmulatedFakeCamera2::allocateReprocessStreamFromStream(
uint32_t output_stream_id,
const camera2_stream_in_ops_t *stream_ops,
uint32_t *stream_id) {
Mutex::Autolock l(mMutex);
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
ssize_t baseStreamIndex = mStreams.indexOfKey(output_stream_id);
if (baseStreamIndex < 0) {
ALOGE("%s: Unknown output stream id %d!", __FUNCTION__, output_stream_id);
return BAD_VALUE;
}
const Stream &baseStream = mStreams[baseStreamIndex];
// We'll reprocess anything we produced
if (mReprocessStreamCount >= kMaxReprocessStreamCount) {
ALOGE("%s: Cannot allocate another reprocess stream (%d already allocated)",
__FUNCTION__, mReprocessStreamCount);
return INVALID_OPERATION;
}
mReprocessStreamCount++;
ReprocessStream newStream;
newStream.ops = stream_ops;
newStream.width = baseStream.width;
newStream.height = baseStream.height;
newStream.format = baseStream.format;
newStream.stride = baseStream.stride;
newStream.sourceStreamId = output_stream_id;
*stream_id = mNextReprocessStreamId;
mReprocessStreams.add(mNextReprocessStreamId, newStream);
ALOGV("Reprocess stream allocated: %d: %d, %d, 0x%x. Parent stream: %d",
*stream_id, newStream.width, newStream.height, newStream.format,
output_stream_id);
mNextReprocessStreamId++;
return NO_ERROR;
}
int EmulatedFakeCamera2::releaseReprocessStream(uint32_t stream_id) {
Mutex::Autolock l(mMutex);
ssize_t streamIndex = mReprocessStreams.indexOfKey(stream_id);
if (streamIndex < 0) {
ALOGE("%s: Unknown reprocess stream id %d!", __FUNCTION__, stream_id);
return BAD_VALUE;
}
if (isReprocessStreamInUse(stream_id)) {
ALOGE("%s: Cannot release reprocessing stream %d; in use!", __FUNCTION__,
stream_id);
return BAD_VALUE;
}
mReprocessStreamCount--;
mReprocessStreams.removeItemsAt(streamIndex);
return NO_ERROR;
}
int EmulatedFakeCamera2::triggerAction(uint32_t trigger_id,
int32_t ext1,
int32_t ext2) {
Mutex::Autolock l(mMutex);
if (trigger_id == CAMERA2_EXT_TRIGGER_TESTING_DISCONNECT) {
ALOGI("%s: Disconnect trigger - camera must be closed", __FUNCTION__);
mStatusPresent = false;
gEmulatedCameraFactory.onStatusChanged(
mCameraID,
CAMERA_DEVICE_STATUS_NOT_PRESENT);
}
if (!mStatusPresent) {
ALOGW("%s: Camera was physically disconnected", __FUNCTION__);
return ERROR_CAMERA_NOT_PRESENT;
}
return mControlThread->triggerAction(trigger_id,
ext1, ext2);
}
/** Custom tag definitions */
// Emulator camera metadata sections
enum {
EMULATOR_SCENE = VENDOR_SECTION,
END_EMULATOR_SECTIONS
};
enum {
EMULATOR_SCENE_START = EMULATOR_SCENE << 16,
};
// Emulator camera metadata tags
enum {
// Hour of day to use for lighting calculations (0-23). Default: 12
EMULATOR_SCENE_HOUROFDAY = EMULATOR_SCENE_START,
EMULATOR_SCENE_END
};
unsigned int emulator_metadata_section_bounds[END_EMULATOR_SECTIONS -
VENDOR_SECTION][2] = {
{ EMULATOR_SCENE_START, EMULATOR_SCENE_END }
};
const char *emulator_metadata_section_names[END_EMULATOR_SECTIONS -
VENDOR_SECTION] = {
"com.android.emulator.scene"
};
typedef struct emulator_tag_info {
const char *tag_name;
uint8_t tag_type;
} emulator_tag_info_t;
emulator_tag_info_t emulator_scene[EMULATOR_SCENE_END - EMULATOR_SCENE_START] = {
{ "hourOfDay", TYPE_INT32 }
};
emulator_tag_info_t *tag_info[END_EMULATOR_SECTIONS -
VENDOR_SECTION] = {
emulator_scene
};
const char* EmulatedFakeCamera2::getVendorSectionName(uint32_t tag) {
ALOGV("%s", __FUNCTION__);
uint32_t section = tag >> 16;
if (section < VENDOR_SECTION || section > END_EMULATOR_SECTIONS) return NULL;
return emulator_metadata_section_names[section - VENDOR_SECTION];
}
const char* EmulatedFakeCamera2::getVendorTagName(uint32_t tag) {
ALOGV("%s", __FUNCTION__);
uint32_t section = tag >> 16;
if (section < VENDOR_SECTION || section > END_EMULATOR_SECTIONS) return NULL;
uint32_t section_index = section - VENDOR_SECTION;
if (tag >= emulator_metadata_section_bounds[section_index][1]) {
return NULL;
}
uint32_t tag_index = tag & 0xFFFF;
return tag_info[section_index][tag_index].tag_name;
}
int EmulatedFakeCamera2::getVendorTagType(uint32_t tag) {
ALOGV("%s", __FUNCTION__);
uint32_t section = tag >> 16;
if (section < VENDOR_SECTION || section > END_EMULATOR_SECTIONS) return -1;
uint32_t section_index = section - VENDOR_SECTION;
if (tag >= emulator_metadata_section_bounds[section_index][1]) {
return -1;
}
uint32_t tag_index = tag & 0xFFFF;
return tag_info[section_index][tag_index].tag_type;
}
/** Shutdown and debug methods */
int EmulatedFakeCamera2::dump(int fd) {
String8 result;
result.appendFormat(" Camera HAL device: EmulatedFakeCamera2\n");
result.appendFormat(" Streams:\n");
for (size_t i = 0; i < mStreams.size(); i++) {
int id = mStreams.keyAt(i);
const Stream& s = mStreams.valueAt(i);
result.appendFormat(
" Stream %d: %d x %d, format 0x%x, stride %d\n",
id, s.width, s.height, s.format, s.stride);
}
write(fd, result.string(), result.size());
return NO_ERROR;
}
void EmulatedFakeCamera2::signalError() {
// TODO: Let parent know so we can shut down cleanly
ALOGE("Worker thread is signaling a serious error");
}
/** Pipeline control worker thread methods */
EmulatedFakeCamera2::ConfigureThread::ConfigureThread(EmulatedFakeCamera2 *parent):
Thread(false),
mParent(parent),
mRequestCount(0),
mNextBuffers(NULL) {
mRunning = false;
}
EmulatedFakeCamera2::ConfigureThread::~ConfigureThread() {
}
status_t EmulatedFakeCamera2::ConfigureThread::readyToRun() {
Mutex::Autolock lock(mInputMutex);
ALOGV("Starting up ConfigureThread");
mRequest = NULL;
mActive = false;
mRunning = true;
mInputSignal.signal();
return NO_ERROR;
}
status_t EmulatedFakeCamera2::ConfigureThread::waitUntilRunning() {
Mutex::Autolock lock(mInputMutex);
if (!mRunning) {
ALOGV("Waiting for configure thread to start");
mInputSignal.wait(mInputMutex);
}
return OK;
}
status_t EmulatedFakeCamera2::ConfigureThread::newRequestAvailable() {
waitUntilRunning();
Mutex::Autolock lock(mInputMutex);
mActive = true;
mInputSignal.signal();
return OK;
}
bool EmulatedFakeCamera2::ConfigureThread::isStreamInUse(uint32_t id) {
Mutex::Autolock lock(mInternalsMutex);
if (mNextBuffers == NULL) return false;
for (size_t i=0; i < mNextBuffers->size(); i++) {
if ((*mNextBuffers)[i].streamId == (int)id) return true;
}
return false;
}
int EmulatedFakeCamera2::ConfigureThread::getInProgressCount() {
Mutex::Autolock lock(mInputMutex);
return mRequestCount;
}
bool EmulatedFakeCamera2::ConfigureThread::threadLoop() {
status_t res;
// Check if we're currently processing or just waiting
{
Mutex::Autolock lock(mInputMutex);
if (!mActive) {
// Inactive, keep waiting until we've been signaled
status_t res;
res = mInputSignal.waitRelative(mInputMutex, kWaitPerLoop);
if (res != NO_ERROR && res != TIMED_OUT) {
ALOGE("%s: Error waiting for input requests: %d",
__FUNCTION__, res);
return false;
}
if (!mActive) return true;
ALOGV("New request available");
}
// Active
}
if (mRequest == NULL) {
Mutex::Autolock il(mInternalsMutex);
ALOGV("Configure: Getting next request");
res = mParent->mRequestQueueSrc->dequeue_request(
mParent->mRequestQueueSrc,
&mRequest);
if (res != NO_ERROR) {
ALOGE("%s: Error dequeuing next request: %d", __FUNCTION__, res);
mParent->signalError();
return false;
}
if (mRequest == NULL) {
ALOGV("Configure: Request queue empty, going inactive");
// No requests available, go into inactive mode
Mutex::Autolock lock(mInputMutex);
mActive = false;
return true;
} else {
Mutex::Autolock lock(mInputMutex);
mRequestCount++;
}
camera_metadata_entry_t type;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_TYPE,
&type);
if (res != NO_ERROR) {
ALOGE("%s: error reading request type", __FUNCTION__);
mParent->signalError();
return false;
}
bool success = false;;
switch (type.data.u8[0]) {
case ANDROID_REQUEST_TYPE_CAPTURE:
success = setupCapture();
break;
case ANDROID_REQUEST_TYPE_REPROCESS:
success = setupReprocess();
break;
default:
ALOGE("%s: Unexpected request type %d",
__FUNCTION__, type.data.u8[0]);
mParent->signalError();
break;
}
if (!success) return false;
}
if (mWaitingForReadout) {
bool readoutDone;
readoutDone = mParent->mReadoutThread->waitForReady(kWaitPerLoop);
if (!readoutDone) return true;
if (mNextNeedsJpeg) {
ALOGV("Configure: Waiting for JPEG compressor");
} else {
ALOGV("Configure: Waiting for sensor");
}
mWaitingForReadout = false;
}
if (mNextNeedsJpeg) {
bool jpegDone;
jpegDone = mParent->mJpegCompressor->waitForDone(kWaitPerLoop);
if (!jpegDone) return true;
ALOGV("Configure: Waiting for sensor");
mNextNeedsJpeg = false;
}
if (mNextIsCapture) {
return configureNextCapture();
} else {
return configureNextReprocess();
}
}
bool EmulatedFakeCamera2::ConfigureThread::setupCapture() {
status_t res;
mNextIsCapture = true;
// Get necessary parameters for sensor config
mParent->mControlThread->processRequest(mRequest);
camera_metadata_entry_t streams;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_OUTPUT_STREAMS,
&streams);
if (res != NO_ERROR) {
ALOGE("%s: error reading output stream tag", __FUNCTION__);
mParent->signalError();
return false;
}
mNextBuffers = new Buffers;
mNextNeedsJpeg = false;
ALOGV("Configure: Setting up buffers for capture");
for (size_t i = 0; i < streams.count; i++) {
int streamId = streams.data.u8[i];
const Stream &s = mParent->getStreamInfo(streamId);
if (s.format == HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) {
ALOGE("%s: Stream %d does not have a concrete pixel format, but "
"is included in a request!", __FUNCTION__, streamId);
mParent->signalError();
return false;
}
StreamBuffer b;
b.streamId = streams.data.u8[i];
b.width = s.width;
b.height = s.height;
b.format = s.format;
b.stride = s.stride;
mNextBuffers->push_back(b);
ALOGV("Configure: Buffer %d: Stream %d, %d x %d, format 0x%x, "
"stride %d",
i, b.streamId, b.width, b.height, b.format, b.stride);
if (b.format == HAL_PIXEL_FORMAT_BLOB) {
mNextNeedsJpeg = true;
}
}
camera_metadata_entry_t e;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_FRAME_COUNT,
&e);
if (res != NO_ERROR) {
ALOGE("%s: error reading frame count tag: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
mNextFrameNumber = *e.data.i32;
res = find_camera_metadata_entry(mRequest,
ANDROID_SENSOR_EXPOSURE_TIME,
&e);
if (res != NO_ERROR) {
ALOGE("%s: error reading exposure time tag: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
mNextExposureTime = *e.data.i64;
res = find_camera_metadata_entry(mRequest,
ANDROID_SENSOR_FRAME_DURATION,
&e);
if (res != NO_ERROR) {
ALOGE("%s: error reading frame duration tag", __FUNCTION__);
mParent->signalError();
return false;
}
mNextFrameDuration = *e.data.i64;
if (mNextFrameDuration <
mNextExposureTime + Sensor::kMinVerticalBlank) {
mNextFrameDuration = mNextExposureTime + Sensor::kMinVerticalBlank;
}
res = find_camera_metadata_entry(mRequest,
ANDROID_SENSOR_SENSITIVITY,
&e);
if (res != NO_ERROR) {
ALOGE("%s: error reading sensitivity tag", __FUNCTION__);
mParent->signalError();
return false;
}
mNextSensitivity = *e.data.i32;
res = find_camera_metadata_entry(mRequest,
EMULATOR_SCENE_HOUROFDAY,
&e);
if (res == NO_ERROR) {
ALOGV("Setting hour: %d", *e.data.i32);
mParent->mSensor->getScene().setHour(*e.data.i32);
}
// Start waiting on readout thread
mWaitingForReadout = true;
ALOGV("Configure: Waiting for readout thread");
return true;
}
bool EmulatedFakeCamera2::ConfigureThread::configureNextCapture() {
bool vsync = mParent->mSensor->waitForVSync(kWaitPerLoop);
if (!vsync) return true;
Mutex::Autolock il(mInternalsMutex);
ALOGV("Configure: Configuring sensor for capture %d", mNextFrameNumber);
mParent->mSensor->setExposureTime(mNextExposureTime);
mParent->mSensor->setFrameDuration(mNextFrameDuration);
mParent->mSensor->setSensitivity(mNextSensitivity);
getBuffers();
ALOGV("Configure: Done configure for capture %d", mNextFrameNumber);
mParent->mReadoutThread->setNextOperation(true, mRequest, mNextBuffers);
mParent->mSensor->setDestinationBuffers(mNextBuffers);
mRequest = NULL;
mNextBuffers = NULL;
Mutex::Autolock lock(mInputMutex);
mRequestCount--;
return true;
}
bool EmulatedFakeCamera2::ConfigureThread::setupReprocess() {
status_t res;
mNextNeedsJpeg = true;
mNextIsCapture = false;
camera_metadata_entry_t reprocessStreams;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_INPUT_STREAMS,
&reprocessStreams);
if (res != NO_ERROR) {
ALOGE("%s: error reading output stream tag", __FUNCTION__);
mParent->signalError();
return false;
}
mNextBuffers = new Buffers;
ALOGV("Configure: Setting up input buffers for reprocess");
for (size_t i = 0; i < reprocessStreams.count; i++) {
int streamId = reprocessStreams.data.u8[i];
const ReprocessStream &s = mParent->getReprocessStreamInfo(streamId);
if (s.format != HAL_PIXEL_FORMAT_RGB_888) {
ALOGE("%s: Only ZSL reprocessing supported!",
__FUNCTION__);
mParent->signalError();
return false;
}
StreamBuffer b;
b.streamId = -streamId;
b.width = s.width;
b.height = s.height;
b.format = s.format;
b.stride = s.stride;
mNextBuffers->push_back(b);
}
camera_metadata_entry_t streams;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_OUTPUT_STREAMS,
&streams);
if (res != NO_ERROR) {
ALOGE("%s: error reading output stream tag", __FUNCTION__);
mParent->signalError();
return false;
}
ALOGV("Configure: Setting up output buffers for reprocess");
for (size_t i = 0; i < streams.count; i++) {
int streamId = streams.data.u8[i];
const Stream &s = mParent->getStreamInfo(streamId);
if (s.format != HAL_PIXEL_FORMAT_BLOB) {
// TODO: Support reprocess to YUV
ALOGE("%s: Non-JPEG output stream %d for reprocess not supported",
__FUNCTION__, streamId);
mParent->signalError();
return false;
}
StreamBuffer b;
b.streamId = streams.data.u8[i];
b.width = s.width;
b.height = s.height;
b.format = s.format;
b.stride = s.stride;
mNextBuffers->push_back(b);
ALOGV("Configure: Buffer %d: Stream %d, %d x %d, format 0x%x, "
"stride %d",
i, b.streamId, b.width, b.height, b.format, b.stride);
}
camera_metadata_entry_t e;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_FRAME_COUNT,
&e);
if (res != NO_ERROR) {
ALOGE("%s: error reading frame count tag: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
mNextFrameNumber = *e.data.i32;
return true;
}
bool EmulatedFakeCamera2::ConfigureThread::configureNextReprocess() {
Mutex::Autolock il(mInternalsMutex);
getBuffers();
ALOGV("Configure: Done configure for reprocess %d", mNextFrameNumber);
mParent->mReadoutThread->setNextOperation(false, mRequest, mNextBuffers);
mRequest = NULL;
mNextBuffers = NULL;
Mutex::Autolock lock(mInputMutex);
mRequestCount--;
return true;
}
bool EmulatedFakeCamera2::ConfigureThread::getBuffers() {
status_t res;
/** Get buffers to fill for this frame */
for (size_t i = 0; i < mNextBuffers->size(); i++) {
StreamBuffer &b = mNextBuffers->editItemAt(i);
if (b.streamId > 0) {
Stream s = mParent->getStreamInfo(b.streamId);
ALOGV("Configure: Dequeing buffer from stream %d", b.streamId);
res = s.ops->dequeue_buffer(s.ops, &(b.buffer) );
if (res != NO_ERROR || b.buffer == NULL) {
ALOGE("%s: Unable to dequeue buffer from stream %d: %s (%d)",
__FUNCTION__, b.streamId, strerror(-res), res);
mParent->signalError();
return false;
}
/* Lock the buffer from the perspective of the graphics mapper */
const Rect rect(s.width, s.height);
res = GraphicBufferMapper::get().lock(*(b.buffer),
GRALLOC_USAGE_HW_CAMERA_WRITE,
rect, (void**)&(b.img) );
if (res != NO_ERROR) {
ALOGE("%s: grbuffer_mapper.lock failure: %s (%d)",
__FUNCTION__, strerror(-res), res);
s.ops->cancel_buffer(s.ops,
b.buffer);
mParent->signalError();
return false;
}
} else {
ReprocessStream s = mParent->getReprocessStreamInfo(-b.streamId);
ALOGV("Configure: Acquiring buffer from reprocess stream %d",
-b.streamId);
res = s.ops->acquire_buffer(s.ops, &(b.buffer) );
if (res != NO_ERROR || b.buffer == NULL) {
ALOGE("%s: Unable to acquire buffer from reprocess stream %d: "
"%s (%d)", __FUNCTION__, -b.streamId,
strerror(-res), res);
mParent->signalError();
return false;
}
/* Lock the buffer from the perspective of the graphics mapper */
const Rect rect(s.width, s.height);
res = GraphicBufferMapper::get().lock(*(b.buffer),
GRALLOC_USAGE_HW_CAMERA_READ,
rect, (void**)&(b.img) );
if (res != NO_ERROR) {
ALOGE("%s: grbuffer_mapper.lock failure: %s (%d)",
__FUNCTION__, strerror(-res), res);
s.ops->release_buffer(s.ops,
b.buffer);
mParent->signalError();
return false;
}
}
}
return true;
}
EmulatedFakeCamera2::ReadoutThread::ReadoutThread(EmulatedFakeCamera2 *parent):
Thread(false),
mParent(parent),
mRunning(false),
mActive(false),
mRequestCount(0),
mRequest(NULL),
mBuffers(NULL) {
mInFlightQueue = new InFlightQueue[kInFlightQueueSize];
mInFlightHead = 0;
mInFlightTail = 0;
}
EmulatedFakeCamera2::ReadoutThread::~ReadoutThread() {
delete mInFlightQueue;
}
status_t EmulatedFakeCamera2::ReadoutThread::readyToRun() {
Mutex::Autolock lock(mInputMutex);
ALOGV("Starting up ReadoutThread");
mRunning = true;
mInputSignal.signal();
return NO_ERROR;
}
status_t EmulatedFakeCamera2::ReadoutThread::waitUntilRunning() {
Mutex::Autolock lock(mInputMutex);
if (!mRunning) {
ALOGV("Waiting for readout thread to start");
mInputSignal.wait(mInputMutex);
}
return OK;
}
bool EmulatedFakeCamera2::ReadoutThread::waitForReady(nsecs_t timeout) {
status_t res;
Mutex::Autolock lock(mInputMutex);
while (!readyForNextCapture()) {
res = mReadySignal.waitRelative(mInputMutex, timeout);
if (res == TIMED_OUT) return false;
if (res != OK) {
ALOGE("%s: Error waiting for ready: %s (%d)", __FUNCTION__,
strerror(-res), res);
return false;
}
}
return true;
}
bool EmulatedFakeCamera2::ReadoutThread::readyForNextCapture() {
return (mInFlightTail + 1) % kInFlightQueueSize != mInFlightHead;
}
void EmulatedFakeCamera2::ReadoutThread::setNextOperation(
bool isCapture,
camera_metadata_t *request,
Buffers *buffers) {
Mutex::Autolock lock(mInputMutex);
if ( !readyForNextCapture() ) {
ALOGE("In flight queue full, dropping captures");
mParent->signalError();
return;
}
mInFlightQueue[mInFlightTail].isCapture = isCapture;
mInFlightQueue[mInFlightTail].request = request;
mInFlightQueue[mInFlightTail].buffers = buffers;
mInFlightTail = (mInFlightTail + 1) % kInFlightQueueSize;
mRequestCount++;
if (!mActive) {
mActive = true;
mInputSignal.signal();
}
}
bool EmulatedFakeCamera2::ReadoutThread::isStreamInUse(uint32_t id) {
// acquire in same order as threadLoop
Mutex::Autolock iLock(mInternalsMutex);
Mutex::Autolock lock(mInputMutex);
size_t i = mInFlightHead;
while (i != mInFlightTail) {
for (size_t j = 0; j < mInFlightQueue[i].buffers->size(); j++) {
if ( (*(mInFlightQueue[i].buffers))[j].streamId == (int)id )
return true;
}
i = (i + 1) % kInFlightQueueSize;
}
if (mBuffers != NULL) {
for (i = 0; i < mBuffers->size(); i++) {
if ( (*mBuffers)[i].streamId == (int)id) return true;
}
}
return false;
}
int EmulatedFakeCamera2::ReadoutThread::getInProgressCount() {
Mutex::Autolock lock(mInputMutex);
return mRequestCount;
}
bool EmulatedFakeCamera2::ReadoutThread::threadLoop() {
static const nsecs_t kWaitPerLoop = 10000000L; // 10 ms
status_t res;
int32_t frameNumber;
// Check if we're currently processing or just waiting
{
Mutex::Autolock lock(mInputMutex);
if (!mActive) {
// Inactive, keep waiting until we've been signaled
res = mInputSignal.waitRelative(mInputMutex, kWaitPerLoop);
if (res != NO_ERROR && res != TIMED_OUT) {
ALOGE("%s: Error waiting for capture requests: %d",
__FUNCTION__, res);
mParent->signalError();
return false;
}
if (!mActive) return true;
}
// Active, see if we need a new request
if (mRequest == NULL) {
if (mInFlightHead == mInFlightTail) {
// Go inactive
ALOGV("Waiting for sensor data");
mActive = false;
return true;
} else {
Mutex::Autolock iLock(mInternalsMutex);
mReadySignal.signal();
mIsCapture = mInFlightQueue[mInFlightHead].isCapture;
mRequest = mInFlightQueue[mInFlightHead].request;
mBuffers = mInFlightQueue[mInFlightHead].buffers;
mInFlightQueue[mInFlightHead].request = NULL;
mInFlightQueue[mInFlightHead].buffers = NULL;
mInFlightHead = (mInFlightHead + 1) % kInFlightQueueSize;
ALOGV("Ready to read out request %p, %d buffers",
mRequest, mBuffers->size());
}
}
}
// Active with request, wait on sensor to complete
nsecs_t captureTime;
if (mIsCapture) {
bool gotFrame;
gotFrame = mParent->mSensor->waitForNewFrame(kWaitPerLoop,
&captureTime);
if (!gotFrame) return true;
}
Mutex::Autolock iLock(mInternalsMutex);
camera_metadata_entry_t entry;
if (!mIsCapture) {
res = find_camera_metadata_entry(mRequest,
ANDROID_SENSOR_TIMESTAMP,
&entry);
if (res != NO_ERROR) {
ALOGE("%s: error reading reprocessing timestamp: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
captureTime = entry.data.i64[0];
}
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_FRAME_COUNT,
&entry);
if (res != NO_ERROR) {
ALOGE("%s: error reading frame count tag: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
frameNumber = *entry.data.i32;
res = find_camera_metadata_entry(mRequest,
ANDROID_REQUEST_METADATA_MODE,
&entry);
if (res != NO_ERROR) {
ALOGE("%s: error reading metadata mode tag: %s (%d)",
__FUNCTION__, strerror(-res), res);
mParent->signalError();
return false;
}
// Got sensor data and request, construct frame and send it out
ALOGV("Readout: Constructing metadata and frames for request %d",
frameNumber);
if (*entry.data.u8 == ANDROID_REQUEST_METADATA_MODE_FULL) {
ALOGV("Readout: Metadata requested, constructing");
camera_metadata_t *frame = NULL;
size_t frame_entries = get_camera_metadata_entry_count(mRequest);
size_t frame_data = get_camera_metadata_data_count(mRequest);
// TODO: Dynamically calculate based on enabled statistics, etc
frame_entries += 10;
frame_data += 100;
res = mParent->mFrameQueueDst->dequeue_frame(mParent->mFrameQueueDst,
frame_entries, frame_data, &frame);
if (res != NO_ERROR || frame == NULL) {
ALOGE("%s: Unable to dequeue frame metadata buffer", __FUNCTION__);
mParent->signalError();
return false;
}
res = append_camera_metadata(frame, mRequest);
if (res != NO_ERROR) {
ALOGE("Unable to append request metadata");
}
if (mIsCapture) {
add_camera_metadata_entry(frame,
ANDROID_SENSOR_TIMESTAMP,
&captureTime,
1);
int32_t hourOfDay = (int32_t)mParent->mSensor->getScene().getHour();
camera_metadata_entry_t requestedHour;
res = find_camera_metadata_entry(frame,
EMULATOR_SCENE_HOUROFDAY,
&requestedHour);
if (res == NAME_NOT_FOUND) {
res = add_camera_metadata_entry(frame,
EMULATOR_SCENE_HOUROFDAY,
&hourOfDay, 1);
if (res != NO_ERROR) {
ALOGE("Unable to add vendor tag");
}
} else if (res == OK) {
*requestedHour.data.i32 = hourOfDay;
} else {
ALOGE("%s: Error looking up vendor tag", __FUNCTION__);
}
collectStatisticsMetadata(frame);
// TODO: Collect all final values used from sensor in addition to timestamp
}
ALOGV("Readout: Enqueue frame %d", frameNumber);
mParent->mFrameQueueDst->enqueue_frame(mParent->mFrameQueueDst,
frame);
}
ALOGV("Readout: Free request");
res = mParent->mRequestQueueSrc->free_request(mParent->mRequestQueueSrc, mRequest);
if (res != NO_ERROR) {
ALOGE("%s: Unable to return request buffer to queue: %d",
__FUNCTION__, res);
mParent->signalError();
return false;
}
mRequest = NULL;
int compressedBufferIndex = -1;
ALOGV("Readout: Processing %d buffers", mBuffers->size());
for (size_t i = 0; i < mBuffers->size(); i++) {
const StreamBuffer &b = (*mBuffers)[i];
ALOGV("Readout: Buffer %d: Stream %d, %d x %d, format 0x%x, stride %d",
i, b.streamId, b.width, b.height, b.format, b.stride);
if (b.streamId > 0) {
if (b.format == HAL_PIXEL_FORMAT_BLOB) {
// Assumes only one BLOB buffer type per capture
compressedBufferIndex = i;
} else {
ALOGV("Readout: Sending image buffer %d (%p) to output stream %d",
i, (void*)*(b.buffer), b.streamId);
GraphicBufferMapper::get().unlock(*(b.buffer));
const Stream &s = mParent->getStreamInfo(b.streamId);
res = s.ops->enqueue_buffer(s.ops, captureTime, b.buffer);
if (res != OK) {
ALOGE("Error enqueuing image buffer %p: %s (%d)", b.buffer,
strerror(-res), res);
mParent->signalError();
}
}
}
}
if (compressedBufferIndex == -1) {
delete mBuffers;
} else {
ALOGV("Readout: Starting JPEG compression for buffer %d, stream %d",
compressedBufferIndex,
(*mBuffers)[compressedBufferIndex].streamId);
mJpegTimestamp = captureTime;
// Takes ownership of mBuffers
mParent->mJpegCompressor->start(mBuffers, this);
}
mBuffers = NULL;
Mutex::Autolock l(mInputMutex);
mRequestCount--;
ALOGV("Readout: Done with request %d", frameNumber);
return true;
}
void EmulatedFakeCamera2::ReadoutThread::onJpegDone(
const StreamBuffer &jpegBuffer, bool success) {
status_t res;
if (!success) {
ALOGE("%s: Error queueing compressed image buffer %p",
__FUNCTION__, jpegBuffer.buffer);
mParent->signalError();
return;
}
// Write to JPEG output stream
ALOGV("%s: Compression complete, pushing to stream %d", __FUNCTION__,
jpegBuffer.streamId);
GraphicBufferMapper::get().unlock(*(jpegBuffer.buffer));
const Stream &s = mParent->getStreamInfo(jpegBuffer.streamId);
res = s.ops->enqueue_buffer(s.ops, mJpegTimestamp, jpegBuffer.buffer);
}
void EmulatedFakeCamera2::ReadoutThread::onJpegInputDone(
const StreamBuffer &inputBuffer) {
status_t res;
GraphicBufferMapper::get().unlock(*(inputBuffer.buffer));
const ReprocessStream &s =
mParent->getReprocessStreamInfo(-inputBuffer.streamId);
res = s.ops->release_buffer(s.ops, inputBuffer.buffer);
if (res != OK) {
ALOGE("Error releasing reprocess buffer %p: %s (%d)",
inputBuffer.buffer, strerror(-res), res);
mParent->signalError();
}
}
status_t EmulatedFakeCamera2::ReadoutThread::collectStatisticsMetadata(
camera_metadata_t *frame) {
// Completely fake face rectangles, don't correspond to real faces in scene
ALOGV("Readout: Collecting statistics metadata");
status_t res;
camera_metadata_entry_t entry;
res = find_camera_metadata_entry(frame,
ANDROID_STATISTICS_FACE_DETECT_MODE,
&entry);
if (res != OK) {
ALOGE("%s: Unable to find face detect mode!", __FUNCTION__);
return BAD_VALUE;
}
if (entry.data.u8[0] == ANDROID_STATISTICS_FACE_DETECT_MODE_OFF) return OK;
// The coordinate system for the face regions is the raw sensor pixel
// coordinates. Here, we map from the scene coordinates (0-19 in both axis)
// to raw pixels, for the scene defined in fake-pipeline2/Scene.cpp. We
// approximately place two faces on top of the windows of the house. No
// actual faces exist there, but might one day. Note that this doesn't
// account for the offsets used to account for aspect ratio differences, so
// the rectangles don't line up quite right.
const size_t numFaces = 2;
int32_t rects[numFaces * 4] = {
Sensor::kResolution[0] * 10 / 20,
Sensor::kResolution[1] * 15 / 20,
Sensor::kResolution[0] * 12 / 20,
Sensor::kResolution[1] * 17 / 20,
Sensor::kResolution[0] * 16 / 20,
Sensor::kResolution[1] * 15 / 20,
Sensor::kResolution[0] * 18 / 20,
Sensor::kResolution[1] * 17 / 20
};
// To simulate some kind of real detection going on, we jitter the rectangles on
// each frame by a few pixels in each dimension.
for (size_t i = 0; i < numFaces * 4; i++) {
rects[i] += (int32_t)(((float)rand() / RAND_MAX) * 6 - 3);
}
// The confidence scores (0-100) are similarly jittered.
uint8_t scores[numFaces] = { 85, 95 };
for (size_t i = 0; i < numFaces; i++) {
scores[i] += (int32_t)(((float)rand() / RAND_MAX) * 10 - 5);
}
res = add_camera_metadata_entry(frame, ANDROID_STATISTICS_FACE_RECTANGLES,
rects, numFaces * 4);
if (res != OK) {
ALOGE("%s: Unable to add face rectangles!", __FUNCTION__);
return BAD_VALUE;
}
res = add_camera_metadata_entry(frame, ANDROID_STATISTICS_FACE_SCORES,
scores, numFaces);
if (res != OK) {
ALOGE("%s: Unable to add face scores!", __FUNCTION__);
return BAD_VALUE;
}
if (entry.data.u8[0] == ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE) return OK;
// Advanced face detection options - add eye/mouth coordinates. The
// coordinates in order are (leftEyeX, leftEyeY, rightEyeX, rightEyeY,
// mouthX, mouthY). The mapping is the same as the face rectangles.
int32_t features[numFaces * 6] = {
Sensor::kResolution[0] * 10.5 / 20,
Sensor::kResolution[1] * 16 / 20,
Sensor::kResolution[0] * 11.5 / 20,
Sensor::kResolution[1] * 16 / 20,
Sensor::kResolution[0] * 11 / 20,
Sensor::kResolution[1] * 16.5 / 20,
Sensor::kResolution[0] * 16.5 / 20,
Sensor::kResolution[1] * 16 / 20,
Sensor::kResolution[0] * 17.5 / 20,
Sensor::kResolution[1] * 16 / 20,
Sensor::kResolution[0] * 17 / 20,
Sensor::kResolution[1] * 16.5 / 20,
};
// Jitter these a bit less than the rects
for (size_t i = 0; i < numFaces * 6; i++) {
features[i] += (int32_t)(((float)rand() / RAND_MAX) * 4 - 2);
}
// These are unique IDs that are used to identify each face while it's
// visible to the detector (if a face went away and came back, it'd get a
// new ID).
int32_t ids[numFaces] = {
100, 200
};
res = add_camera_metadata_entry(frame, ANDROID_STATISTICS_FACE_LANDMARKS,
features, numFaces * 6);
if (res != OK) {
ALOGE("%s: Unable to add face landmarks!", __FUNCTION__);
return BAD_VALUE;
}
res = add_camera_metadata_entry(frame, ANDROID_STATISTICS_FACE_IDS,
ids, numFaces);
if (res != OK) {
ALOGE("%s: Unable to add face scores!", __FUNCTION__);
return BAD_VALUE;
}
return OK;
}
EmulatedFakeCamera2::ControlThread::ControlThread(EmulatedFakeCamera2 *parent):
Thread(false),
mParent(parent) {
mRunning = false;
}
EmulatedFakeCamera2::ControlThread::~ControlThread() {
}
status_t EmulatedFakeCamera2::ControlThread::readyToRun() {
Mutex::Autolock lock(mInputMutex);
ALOGV("Starting up ControlThread");
mRunning = true;
mStartAf = false;
mCancelAf = false;
mStartPrecapture = false;
mControlMode = ANDROID_CONTROL_MODE_AUTO;
mEffectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
mSceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY;
mAfMode = ANDROID_CONTROL_AF_MODE_AUTO;
mAfModeChange = false;
mAeMode = ANDROID_CONTROL_AE_MODE_ON;
mAwbMode = ANDROID_CONTROL_AWB_MODE_AUTO;
mAfTriggerId = 0;
mPrecaptureTriggerId = 0;
mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE;
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE;
mExposureTime = kNormalExposureTime;
mInputSignal.signal();
return NO_ERROR;
}
status_t EmulatedFakeCamera2::ControlThread::waitUntilRunning() {
Mutex::Autolock lock(mInputMutex);
if (!mRunning) {
ALOGV("Waiting for control thread to start");
mInputSignal.wait(mInputMutex);
}
return OK;
}
// Override android.control.* fields with 3A values before sending request to sensor
status_t EmulatedFakeCamera2::ControlThread::processRequest(camera_metadata_t *request) {
Mutex::Autolock lock(mInputMutex);
// TODO: Add handling for all android.control.* fields here
camera_metadata_entry_t mode;
status_t res;
#define READ_IF_OK(res, what, def) \
(((res) == OK) ? (what) : (uint8_t)(def))
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_MODE,
&mode);
mControlMode = READ_IF_OK(res, mode.data.u8[0], ANDROID_CONTROL_MODE_OFF);
// disable all 3A
if (mControlMode == ANDROID_CONTROL_MODE_OFF) {
mEffectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
mSceneMode = ANDROID_CONTROL_SCENE_MODE_UNSUPPORTED;
mAfMode = ANDROID_CONTROL_AF_MODE_OFF;
mAeLock = ANDROID_CONTROL_AE_LOCK_ON;
mAeMode = ANDROID_CONTROL_AE_MODE_OFF;
mAfModeChange = true;
mStartAf = false;
mCancelAf = true;
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
mAwbMode = ANDROID_CONTROL_AWB_MODE_OFF;
return res;
}
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_EFFECT_MODE,
&mode);
mEffectMode = READ_IF_OK(res, mode.data.u8[0],
ANDROID_CONTROL_EFFECT_MODE_OFF);
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_SCENE_MODE,
&mode);
mSceneMode = READ_IF_OK(res, mode.data.u8[0],
ANDROID_CONTROL_SCENE_MODE_UNSUPPORTED);
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_AF_MODE,
&mode);
if (mAfMode != mode.data.u8[0]) {
ALOGV("AF new mode: %d, old mode %d", mode.data.u8[0], mAfMode);
mAfMode = mode.data.u8[0];
mAfModeChange = true;
mStartAf = false;
mCancelAf = false;
}
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_AE_MODE,
&mode);
mAeMode = READ_IF_OK(res, mode.data.u8[0],
ANDROID_CONTROL_AE_MODE_OFF);
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_AE_LOCK,
&mode);
uint8_t aeLockVal = READ_IF_OK(res, mode.data.u8[0],
ANDROID_CONTROL_AE_LOCK_ON);
bool aeLock = (aeLockVal == ANDROID_CONTROL_AE_LOCK_ON);
if (mAeLock && !aeLock) {
mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE;
}
mAeLock = aeLock;
res = find_camera_metadata_entry(request,
ANDROID_CONTROL_AWB_MODE,
&mode);
mAwbMode = READ_IF_OK(res, mode.data.u8[0],
ANDROID_CONTROL_AWB_MODE_OFF);
// TODO: Override more control fields
if (mAeMode != ANDROID_CONTROL_AE_MODE_OFF) {
camera_metadata_entry_t exposureTime;
res = find_camera_metadata_entry(request,
ANDROID_SENSOR_EXPOSURE_TIME,
&exposureTime);
if (res == OK) {
exposureTime.data.i64[0] = mExposureTime;
}
}
#undef READ_IF_OK
return OK;
}
status_t EmulatedFakeCamera2::ControlThread::triggerAction(uint32_t msgType,
int32_t ext1, int32_t ext2) {
ALOGV("%s: Triggering %d (%d, %d)", __FUNCTION__, msgType, ext1, ext2);
Mutex::Autolock lock(mInputMutex);
switch (msgType) {
case CAMERA2_TRIGGER_AUTOFOCUS:
mAfTriggerId = ext1;
mStartAf = true;
mCancelAf = false;
break;
case CAMERA2_TRIGGER_CANCEL_AUTOFOCUS:
mAfTriggerId = ext1;
mStartAf = false;
mCancelAf = true;
break;
case CAMERA2_TRIGGER_PRECAPTURE_METERING:
mPrecaptureTriggerId = ext1;
mStartPrecapture = true;
break;
default:
ALOGE("%s: Unknown action triggered: %d (arguments %d %d)",
__FUNCTION__, msgType, ext1, ext2);
return BAD_VALUE;
}
return OK;
}
const nsecs_t EmulatedFakeCamera2::ControlThread::kControlCycleDelay = 100 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMinAfDuration = 500 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMaxAfDuration = 900 * MSEC;
const float EmulatedFakeCamera2::ControlThread::kAfSuccessRate = 0.9;
// Once every 5 seconds
const float EmulatedFakeCamera2::ControlThread::kContinuousAfStartRate =
kControlCycleDelay / 5.0 * SEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMinAeDuration = 500 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMaxAeDuration = 2 * SEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMinPrecaptureAeDuration = 100 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMaxPrecaptureAeDuration = 400 * MSEC;
// Once every 3 seconds
const float EmulatedFakeCamera2::ControlThread::kAeScanStartRate =
kControlCycleDelay / 3000000000.0;
const nsecs_t EmulatedFakeCamera2::ControlThread::kNormalExposureTime = 10 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kExposureJump = 2 * MSEC;
const nsecs_t EmulatedFakeCamera2::ControlThread::kMinExposureTime = 1 * MSEC;
bool EmulatedFakeCamera2::ControlThread::threadLoop() {
bool afModeChange = false;
bool afTriggered = false;
bool afCancelled = false;
uint8_t afState;
uint8_t afMode;
int32_t afTriggerId;
bool precaptureTriggered = false;
uint8_t aeState;
uint8_t aeMode;
bool aeLock;
int32_t precaptureTriggerId;
nsecs_t nextSleep = kControlCycleDelay;
{
Mutex::Autolock lock(mInputMutex);
if (mStartAf) {
ALOGD("Starting AF trigger processing");
afTriggered = true;
mStartAf = false;
} else if (mCancelAf) {
ALOGD("Starting cancel AF trigger processing");
afCancelled = true;
mCancelAf = false;
}
afState = mAfState;
afMode = mAfMode;
afModeChange = mAfModeChange;
mAfModeChange = false;
afTriggerId = mAfTriggerId;
if(mStartPrecapture) {
ALOGD("Starting precapture trigger processing");
precaptureTriggered = true;
mStartPrecapture = false;
}
aeState = mAeState;
aeMode = mAeMode;
aeLock = mAeLock;
precaptureTriggerId = mPrecaptureTriggerId;
}
if (afCancelled || afModeChange) {
ALOGV("Resetting AF state due to cancel/mode change");
afState = ANDROID_CONTROL_AF_STATE_INACTIVE;
updateAfState(afState, afTriggerId);
mAfScanDuration = 0;
mLockAfterPassiveScan = false;
}
uint8_t oldAfState = afState;
if (afTriggered) {
afState = processAfTrigger(afMode, afState);
}
afState = maybeStartAfScan(afMode, afState);
afState = updateAfScan(afMode, afState, &nextSleep);
updateAfState(afState, afTriggerId);
if (precaptureTriggered) {
aeState = processPrecaptureTrigger(aeMode, aeState);
}
aeState = maybeStartAeScan(aeMode, aeLock, aeState);
aeState = updateAeScan(aeMode, aeLock, aeState, &nextSleep);
updateAeState(aeState, precaptureTriggerId);
int ret;
timespec t;
t.tv_sec = 0;
t.tv_nsec = nextSleep;
do {
ret = nanosleep(&t, &t);
} while (ret != 0);
if (mAfScanDuration > 0) {
mAfScanDuration -= nextSleep;
}
if (mAeScanDuration > 0) {
mAeScanDuration -= nextSleep;
}
return true;
}
int EmulatedFakeCamera2::ControlThread::processAfTrigger(uint8_t afMode,
uint8_t afState) {
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_OFF:
case ANDROID_CONTROL_AF_MODE_EDOF:
// Do nothing
break;
case ANDROID_CONTROL_AF_MODE_MACRO:
case ANDROID_CONTROL_AF_MODE_AUTO:
switch (afState) {
case ANDROID_CONTROL_AF_STATE_INACTIVE:
case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
// Start new focusing cycle
mAfScanDuration = ((double)rand() / RAND_MAX) *
(kMaxAfDuration - kMinAfDuration) + kMinAfDuration;
afState = ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN;
ALOGV("%s: AF scan start, duration %lld ms",
__FUNCTION__, mAfScanDuration / 1000000);
break;
case ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN:
// Ignore new request, already scanning
break;
default:
ALOGE("Unexpected AF state in AUTO/MACRO AF mode: %d",
afState);
}
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
switch (afState) {
// Picture mode waits for passive scan to complete
case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
mLockAfterPassiveScan = true;
break;
case ANDROID_CONTROL_AF_STATE_INACTIVE:
afState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
break;
case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
break;
case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
// Must cancel to get out of these states
break;
default:
ALOGE("Unexpected AF state in CONTINUOUS_PICTURE AF mode: %d",
afState);
}
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
switch (afState) {
// Video mode does not wait for passive scan to complete
case ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN:
case ANDROID_CONTROL_AF_STATE_INACTIVE:
afState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
break;
case ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED:
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
break;
case ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED:
case ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED:
// Must cancel to get out of these states
break;
default:
ALOGE("Unexpected AF state in CONTINUOUS_VIDEO AF mode: %d",
afState);
}
break;
default:
break;
}
return afState;
}
int EmulatedFakeCamera2::ControlThread::maybeStartAfScan(uint8_t afMode,
uint8_t afState) {
if ((afMode == ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO ||
afMode == ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE) &&
(afState == ANDROID_CONTROL_AF_STATE_INACTIVE ||
afState == ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED)) {
bool startScan = ((double)rand() / RAND_MAX) < kContinuousAfStartRate;
if (startScan) {
// Start new passive focusing cycle
mAfScanDuration = ((double)rand() / RAND_MAX) *
(kMaxAfDuration - kMinAfDuration) + kMinAfDuration;
afState = ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN;
ALOGV("%s: AF passive scan start, duration %lld ms",
__FUNCTION__, mAfScanDuration / 1000000);
}
}
return afState;
}
int EmulatedFakeCamera2::ControlThread::updateAfScan(uint8_t afMode,
uint8_t afState, nsecs_t *maxSleep) {
if (! (afState == ANDROID_CONTROL_AF_STATE_ACTIVE_SCAN ||
afState == ANDROID_CONTROL_AF_STATE_PASSIVE_SCAN ) ) {
return afState;
}
if (mAfScanDuration <= 0) {
ALOGV("%s: AF scan done", __FUNCTION__);
switch (afMode) {
case ANDROID_CONTROL_AF_MODE_MACRO:
case ANDROID_CONTROL_AF_MODE_AUTO: {
bool success = ((double)rand() / RAND_MAX) < kAfSuccessRate;
if (success) {
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
} else {
afState = ANDROID_CONTROL_AF_STATE_NOT_FOCUSED_LOCKED;
}
break;
}
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE:
if (mLockAfterPassiveScan) {
afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED;
mLockAfterPassiveScan = false;
} else {
afState = ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED;
}
break;
case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO:
afState = ANDROID_CONTROL_AF_STATE_PASSIVE_FOCUSED;
break;
default:
ALOGE("Unexpected AF mode in scan state");
}
} else {
if (mAfScanDuration <= *maxSleep) {
*maxSleep = mAfScanDuration;
}
}
return afState;
}
void EmulatedFakeCamera2::ControlThread::updateAfState(uint8_t newState,
int32_t triggerId) {
Mutex::Autolock lock(mInputMutex);
if (mAfState != newState) {
ALOGV("%s: Autofocus state now %d, id %d", __FUNCTION__,
newState, triggerId);
mAfState = newState;
mParent->sendNotification(CAMERA2_MSG_AUTOFOCUS,
newState, triggerId, 0);
}
}
int EmulatedFakeCamera2::ControlThread::processPrecaptureTrigger(uint8_t aeMode,
uint8_t aeState) {
switch (aeMode) {
case ANDROID_CONTROL_AE_MODE_OFF:
// Don't do anything for these
return aeState;
case ANDROID_CONTROL_AE_MODE_ON:
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH:
case ANDROID_CONTROL_AE_MODE_ON_ALWAYS_FLASH:
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE:
// Trigger a precapture cycle
aeState = ANDROID_CONTROL_AE_STATE_PRECAPTURE;
mAeScanDuration = ((double)rand() / RAND_MAX) *
(kMaxPrecaptureAeDuration - kMinPrecaptureAeDuration) +
kMinPrecaptureAeDuration;
ALOGD("%s: AE precapture scan start, duration %lld ms",
__FUNCTION__, mAeScanDuration / 1000000);
}
return aeState;
}
int EmulatedFakeCamera2::ControlThread::maybeStartAeScan(uint8_t aeMode,
bool aeLocked,
uint8_t aeState) {
if (aeLocked) return aeState;
switch (aeMode) {
case ANDROID_CONTROL_AE_MODE_OFF:
break;
case ANDROID_CONTROL_AE_MODE_ON:
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH:
case ANDROID_CONTROL_AE_MODE_ON_ALWAYS_FLASH:
case ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH_REDEYE: {
if (aeState != ANDROID_CONTROL_AE_STATE_INACTIVE &&
aeState != ANDROID_CONTROL_AE_STATE_CONVERGED) break;
bool startScan = ((double)rand() / RAND_MAX) < kAeScanStartRate;
if (startScan) {
mAeScanDuration = ((double)rand() / RAND_MAX) *
(kMaxAeDuration - kMinAeDuration) + kMinAeDuration;
aeState = ANDROID_CONTROL_AE_STATE_SEARCHING;
ALOGV("%s: AE scan start, duration %lld ms",
__FUNCTION__, mAeScanDuration / 1000000);
}
}
}
return aeState;
}
int EmulatedFakeCamera2::ControlThread::updateAeScan(uint8_t aeMode,
bool aeLock, uint8_t aeState, nsecs_t *maxSleep) {
if (aeLock && aeState != ANDROID_CONTROL_AE_STATE_PRECAPTURE) {
mAeScanDuration = 0;
aeState = ANDROID_CONTROL_AE_STATE_LOCKED;
} else if ((aeState == ANDROID_CONTROL_AE_STATE_SEARCHING) ||
(aeState == ANDROID_CONTROL_AE_STATE_PRECAPTURE ) ) {
if (mAeScanDuration <= 0) {
ALOGV("%s: AE scan done", __FUNCTION__);
aeState = aeLock ?
ANDROID_CONTROL_AE_STATE_LOCKED :ANDROID_CONTROL_AE_STATE_CONVERGED;
Mutex::Autolock lock(mInputMutex);
mExposureTime = kNormalExposureTime;
} else {
if (mAeScanDuration <= *maxSleep) {
*maxSleep = mAeScanDuration;
}
int64_t exposureDelta =
((double)rand() / RAND_MAX) * 2 * kExposureJump -
kExposureJump;
Mutex::Autolock lock(mInputMutex);
mExposureTime = mExposureTime + exposureDelta;
if (mExposureTime < kMinExposureTime) mExposureTime = kMinExposureTime;
}
}
return aeState;
}
void EmulatedFakeCamera2::ControlThread::updateAeState(uint8_t newState,
int32_t triggerId) {
Mutex::Autolock lock(mInputMutex);
if (mAeState != newState) {
ALOGV("%s: Autoexposure state now %d, id %d", __FUNCTION__,
newState, triggerId);
mAeState = newState;
mParent->sendNotification(CAMERA2_MSG_AUTOEXPOSURE,
newState, triggerId, 0);
}
}
/** Private methods */
status_t EmulatedFakeCamera2::constructStaticInfo(
camera_metadata_t **info,
bool sizeRequest) const {
size_t entryCount = 0;
size_t dataCount = 0;
status_t ret;
#define ADD_OR_SIZE( tag, data, count ) \
if ( ( ret = addOrSize(*info, sizeRequest, &entryCount, &dataCount, \
tag, data, count) ) != OK ) return ret
// android.lens
// 5 cm min focus distance for back camera, infinity (fixed focus) for front
const float minFocusDistance = mFacingBack ? 1.0/0.05 : 0.0;
ADD_OR_SIZE(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE,
&minFocusDistance, 1);
// 5 m hyperfocal distance for back camera, infinity (fixed focus) for front
const float hyperFocalDistance = mFacingBack ? 1.0/5.0 : 0.0;
ADD_OR_SIZE(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE,
&minFocusDistance, 1);
static const float focalLength = 3.30f; // mm
ADD_OR_SIZE(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS,
&focalLength, 1);
static const float aperture = 2.8f;
ADD_OR_SIZE(ANDROID_LENS_INFO_AVAILABLE_APERTURES,
&aperture, 1);
static const float filterDensity = 0;
ADD_OR_SIZE(ANDROID_LENS_INFO_AVAILABLE_FILTER_DENSITIES,
&filterDensity, 1);
static const uint8_t availableOpticalStabilization =
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
ADD_OR_SIZE(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION,
&availableOpticalStabilization, 1);
static const int32_t lensShadingMapSize[] = {1, 1};
ADD_OR_SIZE(ANDROID_LENS_INFO_SHADING_MAP_SIZE, lensShadingMapSize,
sizeof(lensShadingMapSize)/sizeof(int32_t));
static const float lensShadingMap[3 * 1 * 1 ] =
{ 1.f, 1.f, 1.f };
ADD_OR_SIZE(ANDROID_LENS_INFO_SHADING_MAP, lensShadingMap,
sizeof(lensShadingMap)/sizeof(float));
// Identity transform
static const int32_t geometricCorrectionMapSize[] = {2, 2};
ADD_OR_SIZE(ANDROID_LENS_INFO_GEOMETRIC_CORRECTION_MAP_SIZE,
geometricCorrectionMapSize,
sizeof(geometricCorrectionMapSize)/sizeof(int32_t));
static const float geometricCorrectionMap[2 * 3 * 2 * 2] = {
0.f, 0.f, 0.f, 0.f, 0.f, 0.f,
1.f, 0.f, 1.f, 0.f, 1.f, 0.f,
0.f, 1.f, 0.f, 1.f, 0.f, 1.f,
1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
ADD_OR_SIZE(ANDROID_LENS_INFO_GEOMETRIC_CORRECTION_MAP,
geometricCorrectionMap,
sizeof(geometricCorrectionMap)/sizeof(float));
int32_t lensFacing = mFacingBack ?
ANDROID_LENS_FACING_BACK : ANDROID_LENS_FACING_FRONT;
ADD_OR_SIZE(ANDROID_LENS_FACING, &lensFacing, 1);
float lensPosition[3];
if (mFacingBack) {
// Back-facing camera is center-top on device
lensPosition[0] = 0;
lensPosition[1] = 20;
lensPosition[2] = -5;
} else {
// Front-facing camera is center-right on device
lensPosition[0] = 20;
lensPosition[1] = 20;
lensPosition[2] = 0;
}
ADD_OR_SIZE(ANDROID_LENS_POSITION, lensPosition, sizeof(lensPosition)/
sizeof(float));
// android.sensor
ADD_OR_SIZE(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE,
Sensor::kExposureTimeRange, 2);
ADD_OR_SIZE(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION,
&Sensor::kFrameDurationRange[1], 1);
ADD_OR_SIZE(ANDROID_SENSOR_INFO_AVAILABLE_SENSITIVITIES,
Sensor::kAvailableSensitivities,
sizeof(Sensor::kAvailableSensitivities)
/sizeof(uint32_t));
ADD_OR_SIZE(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT,
&Sensor::kColorFilterArrangement, 1);
static const float sensorPhysicalSize[2] = {3.20f, 2.40f}; // mm
ADD_OR_SIZE(ANDROID_SENSOR_INFO_PHYSICAL_SIZE,
sensorPhysicalSize, 2);
ADD_OR_SIZE(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE,
Sensor::kResolution, 2);
ADD_OR_SIZE(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE,
Sensor::kResolution, 2);
ADD_OR_SIZE(ANDROID_SENSOR_INFO_WHITE_LEVEL,
&Sensor::kMaxRawValue, 1);
static const int32_t blackLevelPattern[4] = {
Sensor::kBlackLevel, Sensor::kBlackLevel,
Sensor::kBlackLevel, Sensor::kBlackLevel
};
ADD_OR_SIZE(ANDROID_SENSOR_BLACK_LEVEL_PATTERN,
blackLevelPattern, sizeof(blackLevelPattern)/sizeof(int32_t));
//TODO: sensor color calibration fields
// android.flash
static const uint8_t flashAvailable = 0;
ADD_OR_SIZE(ANDROID_FLASH_INFO_AVAILABLE, &flashAvailable, 1);
static const int64_t flashChargeDuration = 0;
ADD_OR_SIZE(ANDROID_FLASH_INFO_CHARGE_DURATION, &flashChargeDuration, 1);
// android.tonemap
static const int32_t tonemapCurvePoints = 128;
ADD_OR_SIZE(ANDROID_TONEMAP_MAX_CURVE_POINTS, &tonemapCurvePoints, 1);
// android.scaler
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_FORMATS,
kAvailableFormats,
sizeof(kAvailableFormats)/sizeof(uint32_t));
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_RAW_SIZES,
kAvailableRawSizes,
sizeof(kAvailableRawSizes)/sizeof(uint32_t));
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_RAW_MIN_DURATIONS,
kAvailableRawMinDurations,
sizeof(kAvailableRawMinDurations)/sizeof(uint64_t));
if (mFacingBack) {
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_PROCESSED_SIZES,
kAvailableProcessedSizesBack,
sizeof(kAvailableProcessedSizesBack)/sizeof(uint32_t));
} else {
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_PROCESSED_SIZES,
kAvailableProcessedSizesFront,
sizeof(kAvailableProcessedSizesFront)/sizeof(uint32_t));
}
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_PROCESSED_MIN_DURATIONS,
kAvailableProcessedMinDurations,
sizeof(kAvailableProcessedMinDurations)/sizeof(uint64_t));
if (mFacingBack) {
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_JPEG_SIZES,
kAvailableJpegSizesBack,
sizeof(kAvailableJpegSizesBack)/sizeof(uint32_t));
} else {
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_JPEG_SIZES,
kAvailableJpegSizesFront,
sizeof(kAvailableJpegSizesFront)/sizeof(uint32_t));
}
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_JPEG_MIN_DURATIONS,
kAvailableJpegMinDurations,
sizeof(kAvailableJpegMinDurations)/sizeof(uint64_t));
static const float maxZoom = 10;
ADD_OR_SIZE(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM,
&maxZoom, 1);
// android.jpeg
static const int32_t jpegThumbnailSizes[] = {
0, 0,
160, 120,
320, 240
};
ADD_OR_SIZE(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES,
jpegThumbnailSizes, sizeof(jpegThumbnailSizes)/sizeof(int32_t));
static const int32_t jpegMaxSize = JpegCompressor::kMaxJpegSize;
ADD_OR_SIZE(ANDROID_JPEG_MAX_SIZE, &jpegMaxSize, 1);
// android.stats
static const uint8_t availableFaceDetectModes[] = {
ANDROID_STATISTICS_FACE_DETECT_MODE_OFF,
ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE,
ANDROID_STATISTICS_FACE_DETECT_MODE_FULL
};
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES,
availableFaceDetectModes,
sizeof(availableFaceDetectModes));
static const int32_t maxFaceCount = 8;
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT,
&maxFaceCount, 1);
static const int32_t histogramSize = 64;
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_HISTOGRAM_BUCKET_COUNT,
&histogramSize, 1);
static const int32_t maxHistogramCount = 1000;
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_MAX_HISTOGRAM_COUNT,
&maxHistogramCount, 1);
static const int32_t sharpnessMapSize[2] = {64, 64};
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_SHARPNESS_MAP_SIZE,
sharpnessMapSize, sizeof(sharpnessMapSize)/sizeof(int32_t));
static const int32_t maxSharpnessMapValue = 1000;
ADD_OR_SIZE(ANDROID_STATISTICS_INFO_MAX_SHARPNESS_MAP_VALUE,
&maxSharpnessMapValue, 1);
// android.control
static const uint8_t availableSceneModes[] = {
ANDROID_CONTROL_SCENE_MODE_UNSUPPORTED
};
ADD_OR_SIZE(ANDROID_CONTROL_AVAILABLE_SCENE_MODES,
availableSceneModes, sizeof(availableSceneModes));
static const uint8_t availableEffects[] = {
ANDROID_CONTROL_EFFECT_MODE_OFF
};
ADD_OR_SIZE(ANDROID_CONTROL_AVAILABLE_EFFECTS,
availableEffects, sizeof(availableEffects));
int32_t max3aRegions = 0;
ADD_OR_SIZE(ANDROID_CONTROL_MAX_REGIONS,
&max3aRegions, 1);
static const uint8_t availableAeModes[] = {
ANDROID_CONTROL_AE_MODE_OFF,
ANDROID_CONTROL_AE_MODE_ON
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_AVAILABLE_MODES,
availableAeModes, sizeof(availableAeModes));
static const camera_metadata_rational exposureCompensationStep = {
1, 3
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_COMPENSATION_STEP,
&exposureCompensationStep, 1);
int32_t exposureCompensationRange[] = {-9, 9};
ADD_OR_SIZE(ANDROID_CONTROL_AE_COMPENSATION_RANGE,
exposureCompensationRange,
sizeof(exposureCompensationRange)/sizeof(int32_t));
static const int32_t availableTargetFpsRanges[] = {
5, 30, 15, 30
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES,
availableTargetFpsRanges,
sizeof(availableTargetFpsRanges)/sizeof(int32_t));
static const uint8_t availableAntibandingModes[] = {
ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF,
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES,
availableAntibandingModes, sizeof(availableAntibandingModes));
static const uint8_t availableAwbModes[] = {
ANDROID_CONTROL_AWB_MODE_OFF,
ANDROID_CONTROL_AWB_MODE_AUTO,
ANDROID_CONTROL_AWB_MODE_INCANDESCENT,
ANDROID_CONTROL_AWB_MODE_FLUORESCENT,
ANDROID_CONTROL_AWB_MODE_DAYLIGHT,
ANDROID_CONTROL_AWB_MODE_SHADE
};
ADD_OR_SIZE(ANDROID_CONTROL_AWB_AVAILABLE_MODES,
availableAwbModes, sizeof(availableAwbModes));
static const uint8_t availableAfModesBack[] = {
ANDROID_CONTROL_AF_MODE_OFF,
ANDROID_CONTROL_AF_MODE_AUTO,
ANDROID_CONTROL_AF_MODE_MACRO,
ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO,
ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE
};
static const uint8_t availableAfModesFront[] = {
ANDROID_CONTROL_AF_MODE_OFF
};
if (mFacingBack) {
ADD_OR_SIZE(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModesBack, sizeof(availableAfModesBack));
} else {
ADD_OR_SIZE(ANDROID_CONTROL_AF_AVAILABLE_MODES,
availableAfModesFront, sizeof(availableAfModesFront));
}
static const uint8_t availableVstabModes[] = {
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF
};
ADD_OR_SIZE(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES,
availableVstabModes, sizeof(availableVstabModes));
#undef ADD_OR_SIZE
/** Allocate metadata if sizing */
if (sizeRequest) {
ALOGV("Allocating %d entries, %d extra bytes for "
"static camera info",
entryCount, dataCount);
*info = allocate_camera_metadata(entryCount, dataCount);
if (*info == NULL) {
ALOGE("Unable to allocate camera static info"
"(%d entries, %d bytes extra data)",
entryCount, dataCount);
return NO_MEMORY;
}
}
return OK;
}
status_t EmulatedFakeCamera2::constructDefaultRequest(
int request_template,
camera_metadata_t **request,
bool sizeRequest) const {
size_t entryCount = 0;
size_t dataCount = 0;
status_t ret;
#define ADD_OR_SIZE( tag, data, count ) \
if ( ( ret = addOrSize(*request, sizeRequest, &entryCount, &dataCount, \
tag, data, count) ) != OK ) return ret
/** android.request */
static const uint8_t requestType = ANDROID_REQUEST_TYPE_CAPTURE;
ADD_OR_SIZE(ANDROID_REQUEST_TYPE, &requestType, 1);
static const uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL;
ADD_OR_SIZE(ANDROID_REQUEST_METADATA_MODE, &metadataMode, 1);
static const int32_t id = 0;
ADD_OR_SIZE(ANDROID_REQUEST_ID, &id, 1);
static const int32_t frameCount = 0;
ADD_OR_SIZE(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1);
// OUTPUT_STREAMS set by user
entryCount += 1;
dataCount += 5; // TODO: Should be maximum stream number
/** android.lens */
static const float focusDistance = 0;
ADD_OR_SIZE(ANDROID_LENS_FOCUS_DISTANCE, &focusDistance, 1);
static const float aperture = 2.8f;
ADD_OR_SIZE(ANDROID_LENS_APERTURE, &aperture, 1);
static const float focalLength = 5.0f;
ADD_OR_SIZE(ANDROID_LENS_FOCAL_LENGTH, &focalLength, 1);
static const float filterDensity = 0;
ADD_OR_SIZE(ANDROID_LENS_FILTER_DENSITY, &filterDensity, 1);
static const uint8_t opticalStabilizationMode =
ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF;
ADD_OR_SIZE(ANDROID_LENS_OPTICAL_STABILIZATION_MODE,
&opticalStabilizationMode, 1);
// FOCUS_RANGE set only in frame
/** android.sensor */
static const int64_t exposureTime = 10 * MSEC;
ADD_OR_SIZE(ANDROID_SENSOR_EXPOSURE_TIME, &exposureTime, 1);
static const int64_t frameDuration = 33333333L; // 1/30 s
ADD_OR_SIZE(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1);
static const int32_t sensitivity = 100;
ADD_OR_SIZE(ANDROID_SENSOR_SENSITIVITY, &sensitivity, 1);
// TIMESTAMP set only in frame
/** android.flash */
static const uint8_t flashMode = ANDROID_FLASH_MODE_OFF;
ADD_OR_SIZE(ANDROID_FLASH_MODE, &flashMode, 1);
static const uint8_t flashPower = 10;
ADD_OR_SIZE(ANDROID_FLASH_FIRING_POWER, &flashPower, 1);
static const int64_t firingTime = 0;
ADD_OR_SIZE(ANDROID_FLASH_FIRING_TIME, &firingTime, 1);
/** Processing block modes */
uint8_t hotPixelMode = 0;
uint8_t demosaicMode = 0;
uint8_t noiseMode = 0;
uint8_t shadingMode = 0;
uint8_t geometricMode = 0;
uint8_t colorMode = 0;
uint8_t tonemapMode = 0;
uint8_t edgeMode = 0;
switch (request_template) {
case CAMERA2_TEMPLATE_STILL_CAPTURE:
// fall-through
case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT:
// fall-through
case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG:
hotPixelMode = ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY;
demosaicMode = ANDROID_DEMOSAIC_MODE_HIGH_QUALITY;
noiseMode = ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY;
shadingMode = ANDROID_SHADING_MODE_HIGH_QUALITY;
geometricMode = ANDROID_GEOMETRIC_MODE_HIGH_QUALITY;
colorMode = ANDROID_COLOR_CORRECTION_MODE_HIGH_QUALITY;
tonemapMode = ANDROID_TONEMAP_MODE_HIGH_QUALITY;
edgeMode = ANDROID_EDGE_MODE_HIGH_QUALITY;
break;
case CAMERA2_TEMPLATE_PREVIEW:
// fall-through
case CAMERA2_TEMPLATE_VIDEO_RECORD:
// fall-through
default:
hotPixelMode = ANDROID_HOT_PIXEL_MODE_FAST;
demosaicMode = ANDROID_DEMOSAIC_MODE_FAST;
noiseMode = ANDROID_NOISE_REDUCTION_MODE_FAST;
shadingMode = ANDROID_SHADING_MODE_FAST;
geometricMode = ANDROID_GEOMETRIC_MODE_FAST;
colorMode = ANDROID_COLOR_CORRECTION_MODE_FAST;
tonemapMode = ANDROID_TONEMAP_MODE_FAST;
edgeMode = ANDROID_EDGE_MODE_FAST;
break;
}
ADD_OR_SIZE(ANDROID_HOT_PIXEL_MODE, &hotPixelMode, 1);
ADD_OR_SIZE(ANDROID_DEMOSAIC_MODE, &demosaicMode, 1);
ADD_OR_SIZE(ANDROID_NOISE_REDUCTION_MODE, &noiseMode, 1);
ADD_OR_SIZE(ANDROID_SHADING_MODE, &shadingMode, 1);
ADD_OR_SIZE(ANDROID_GEOMETRIC_MODE, &geometricMode, 1);
ADD_OR_SIZE(ANDROID_COLOR_CORRECTION_MODE, &colorMode, 1);
ADD_OR_SIZE(ANDROID_TONEMAP_MODE, &tonemapMode, 1);
ADD_OR_SIZE(ANDROID_EDGE_MODE, &edgeMode, 1);
/** android.noise */
static const uint8_t noiseStrength = 5;
ADD_OR_SIZE(ANDROID_NOISE_REDUCTION_STRENGTH, &noiseStrength, 1);
/** android.color */
static const float colorTransform[9] = {
1.0f, 0.f, 0.f,
0.f, 1.f, 0.f,
0.f, 0.f, 1.f
};
ADD_OR_SIZE(ANDROID_COLOR_CORRECTION_TRANSFORM, colorTransform, 9);
/** android.tonemap */
static const float tonemapCurve[4] = {
0.f, 0.f,
1.f, 1.f
};
ADD_OR_SIZE(ANDROID_TONEMAP_CURVE_RED, tonemapCurve, 4);
ADD_OR_SIZE(ANDROID_TONEMAP_CURVE_GREEN, tonemapCurve, 4);
ADD_OR_SIZE(ANDROID_TONEMAP_CURVE_BLUE, tonemapCurve, 4);
/** android.edge */
static const uint8_t edgeStrength = 5;
ADD_OR_SIZE(ANDROID_EDGE_STRENGTH, &edgeStrength, 1);
/** android.scaler */
static const int32_t cropRegion[3] = {
0, 0, Sensor::kResolution[0]
};
ADD_OR_SIZE(ANDROID_SCALER_CROP_REGION, cropRegion, 3);
/** android.jpeg */
static const int32_t jpegQuality = 80;
ADD_OR_SIZE(ANDROID_JPEG_QUALITY, &jpegQuality, 1);
static const int32_t thumbnailSize[2] = {
640, 480
};
ADD_OR_SIZE(ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2);
static const int32_t thumbnailQuality = 80;
ADD_OR_SIZE(ANDROID_JPEG_THUMBNAIL_QUALITY, &thumbnailQuality, 1);
static const double gpsCoordinates[2] = {
0, 0
};
ADD_OR_SIZE(ANDROID_JPEG_GPS_COORDINATES, gpsCoordinates, 2);
static const uint8_t gpsProcessingMethod[32] = "None";
ADD_OR_SIZE(ANDROID_JPEG_GPS_PROCESSING_METHOD, gpsProcessingMethod, 32);
static const int64_t gpsTimestamp = 0;
ADD_OR_SIZE(ANDROID_JPEG_GPS_TIMESTAMP, &gpsTimestamp, 1);
static const int32_t jpegOrientation = 0;
ADD_OR_SIZE(ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1);
/** android.stats */
static const uint8_t faceDetectMode =
ANDROID_STATISTICS_FACE_DETECT_MODE_OFF;
ADD_OR_SIZE(ANDROID_STATISTICS_FACE_DETECT_MODE, &faceDetectMode, 1);
static const uint8_t histogramMode = ANDROID_STATISTICS_HISTOGRAM_MODE_OFF;
ADD_OR_SIZE(ANDROID_STATISTICS_HISTOGRAM_MODE, &histogramMode, 1);
static const uint8_t sharpnessMapMode =
ANDROID_STATISTICS_SHARPNESS_MAP_MODE_OFF;
ADD_OR_SIZE(ANDROID_STATISTICS_SHARPNESS_MAP_MODE, &sharpnessMapMode, 1);
// faceRectangles, faceScores, faceLandmarks, faceIds, histogram,
// sharpnessMap only in frames
/** android.control */
uint8_t controlIntent = 0;
switch (request_template) {
case CAMERA2_TEMPLATE_PREVIEW:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW;
break;
case CAMERA2_TEMPLATE_STILL_CAPTURE:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE;
break;
case CAMERA2_TEMPLATE_VIDEO_RECORD:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD;
break;
case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT;
break;
case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG;
break;
default:
controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_CUSTOM;
break;
}
ADD_OR_SIZE(ANDROID_CONTROL_CAPTURE_INTENT, &controlIntent, 1);
static const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO;
ADD_OR_SIZE(ANDROID_CONTROL_MODE, &controlMode, 1);
static const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF;
ADD_OR_SIZE(ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1);
static const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY;
ADD_OR_SIZE(ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1);
static const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH;
ADD_OR_SIZE(ANDROID_CONTROL_AE_MODE, &aeMode, 1);
static const uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF;
ADD_OR_SIZE(ANDROID_CONTROL_AE_LOCK, &aeLock, 1);
static const int32_t controlRegions[5] = {
0, 0, Sensor::kResolution[0], Sensor::kResolution[1], 1000
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_REGIONS, controlRegions, 5);
static const int32_t aeExpCompensation = 0;
ADD_OR_SIZE(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &aeExpCompensation, 1);
static const int32_t aeTargetFpsRange[2] = {
10, 30
};
ADD_OR_SIZE(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, aeTargetFpsRange, 2);
static const uint8_t aeAntibandingMode =
ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO;
ADD_OR_SIZE(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &aeAntibandingMode, 1);
static const uint8_t awbMode =
ANDROID_CONTROL_AWB_MODE_AUTO;
ADD_OR_SIZE(ANDROID_CONTROL_AWB_MODE, &awbMode, 1);
static const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF;
ADD_OR_SIZE(ANDROID_CONTROL_AWB_LOCK, &awbLock, 1);
ADD_OR_SIZE(ANDROID_CONTROL_AWB_REGIONS, controlRegions, 5);
uint8_t afMode = 0;
switch (request_template) {
case CAMERA2_TEMPLATE_PREVIEW:
afMode = ANDROID_CONTROL_AF_MODE_AUTO;
break;
case CAMERA2_TEMPLATE_STILL_CAPTURE:
afMode = ANDROID_CONTROL_AF_MODE_AUTO;
break;
case CAMERA2_TEMPLATE_VIDEO_RECORD:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
break;
case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO;
break;
case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG:
afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE;
break;
default:
afMode = ANDROID_CONTROL_AF_MODE_AUTO;
break;
}
ADD_OR_SIZE(ANDROID_CONTROL_AF_MODE, &afMode, 1);
ADD_OR_SIZE(ANDROID_CONTROL_AF_REGIONS, controlRegions, 5);
static const uint8_t vstabMode =
ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF;
ADD_OR_SIZE(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &vstabMode, 1);
// aeState, awbState, afState only in frame
/** Allocate metadata if sizing */
if (sizeRequest) {
ALOGV("Allocating %d entries, %d extra bytes for "
"request template type %d",
entryCount, dataCount, request_template);
*request = allocate_camera_metadata(entryCount, dataCount);
if (*request == NULL) {
ALOGE("Unable to allocate new request template type %d "
"(%d entries, %d bytes extra data)", request_template,
entryCount, dataCount);
return NO_MEMORY;
}
}
return OK;
#undef ADD_OR_SIZE
}
status_t EmulatedFakeCamera2::addOrSize(camera_metadata_t *request,
bool sizeRequest,
size_t *entryCount,
size_t *dataCount,
uint32_t tag,
const void *entryData,
size_t entryDataCount) {
status_t res;
if (!sizeRequest) {
return add_camera_metadata_entry(request, tag, entryData,
entryDataCount);
} else {
int type = get_camera_metadata_tag_type(tag);
if (type < 0 ) return BAD_VALUE;
(*entryCount)++;
(*dataCount) += calculate_camera_metadata_entry_data_size(type,
entryDataCount);
return OK;
}
}
bool EmulatedFakeCamera2::isStreamInUse(uint32_t id) {
// Assumes mMutex is locked; otherwise new requests could enter
// configureThread while readoutThread is being checked
// Order of isStreamInUse calls matters
if (mConfigureThread->isStreamInUse(id) ||
mReadoutThread->isStreamInUse(id) ||
mJpegCompressor->isStreamInUse(id) ) {
ALOGE("%s: Stream %d is in use in active requests!",
__FUNCTION__, id);
return true;
}
return false;
}
bool EmulatedFakeCamera2::isReprocessStreamInUse(uint32_t id) {
// TODO: implement
return false;
}
const Stream& EmulatedFakeCamera2::getStreamInfo(uint32_t streamId) {
Mutex::Autolock lock(mMutex);
return mStreams.valueFor(streamId);
}
const ReprocessStream& EmulatedFakeCamera2::getReprocessStreamInfo(uint32_t streamId) {
Mutex::Autolock lock(mMutex);
return mReprocessStreams.valueFor(streamId);
}
}; /* namespace android */