/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "libdex/DexOpcodes.h"
#include "../../CompilerInternals.h"
#include "MipsLIR.h"
#include "Codegen.h"
#include <unistd.h> /* for cacheflush */
#include <sys/mman.h> /* for protection change */
#define MAX_ASSEMBLER_RETRIES 10
/*
* opcode: MipsOpCode enum
* skeleton: pre-designated bit-pattern for this opcode
* k0: key to applying ds/de
* ds: dest start bit position
* de: dest end bit position
* k1: key to applying s1s/s1e
* s1s: src1 start bit position
* s1e: src1 end bit position
* k2: key to applying s2s/s2e
* s2s: src2 start bit position
* s2e: src2 end bit position
* operands: number of operands (for sanity check purposes)
* name: mnemonic name
* fmt: for pretty-printing
*/
#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
k3, k3s, k3e, flags, name, fmt, size) \
{skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
{k3, k3s, k3e}}, opcode, flags, name, fmt, size}
/* Instruction dump string format keys: !pf, where "!" is the start
* of the key, "p" is which numeric operand to use and "f" is the
* print format.
*
* [p]ositions:
* 0 -> operands[0] (dest)
* 1 -> operands[1] (src1)
* 2 -> operands[2] (src2)
* 3 -> operands[3] (extra)
*
* [f]ormats:
* h -> 4-digit hex
* d -> decimal
* E -> decimal*4
* F -> decimal*2
* c -> branch condition (beq, bne, etc.)
* t -> pc-relative target
* T -> pc-region target
* u -> 1st half of bl[x] target
* v -> 2nd half ob bl[x] target
* R -> register list
* s -> single precision floating point register
* S -> double precision floating point register
* m -> Thumb2 modified immediate
* n -> complimented Thumb2 modified immediate
* M -> Thumb2 16-bit zero-extended immediate
* b -> 4-digit binary
*
* [!] escape. To insert "!", use "!!"
*/
/* NOTE: must be kept in sync with enum MipsOpcode from MipsLIR.h */
MipsEncodingMap EncodingMap[kMipsLast] = {
ENCODING_MAP(kMips32BitData, 0x00000000,
kFmtBitBlt, 31, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP,
"data", "0x!0h(!0d)", 2),
ENCODING_MAP(kMipsAddiu, 0x24000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"addiu", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsAddu, 0x00000021,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"addu", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsAnd, 0x00000024,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"and", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsAndi, 0x30000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"andi", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsB, 0x10000000,
kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
"b", "!0t", 2),
ENCODING_MAP(kMipsBal, 0x04110000,
kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH | REG_DEF_LR,
"bal", "!0t", 2),
ENCODING_MAP(kMipsBeq, 0x10000000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01,
"beq", "!0r,!1r,!2t", 2),
ENCODING_MAP(kMipsBeqz, 0x10000000, /* same as beq above with t = $zero */
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"beqz", "!0r,!1t", 2),
ENCODING_MAP(kMipsBgez, 0x04010000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"bgez", "!0r,!1t", 2),
ENCODING_MAP(kMipsBgtz, 0x1C000000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"bgtz", "!0r,!1t", 2),
ENCODING_MAP(kMipsBlez, 0x18000000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"blez", "!0r,!1t", 2),
ENCODING_MAP(kMipsBltz, 0x04000000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"bltz", "!0r,!1t", 2),
ENCODING_MAP(kMipsBnez, 0x14000000, /* same as bne below with t = $zero */
kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"bnez", "!0r,!1t", 2),
ENCODING_MAP(kMipsBne, 0x14000000,
kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01,
"bne", "!0r,!1r,!2t", 2),
ENCODING_MAP(kMipsDiv, 0x0000001a,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtBitBlt, 25, 21,
kFmtBitBlt, 20, 16, IS_QUAD_OP | REG_DEF01 | REG_USE23,
"div", "!2r,!3r", 2),
#if __mips_isa_rev>=2
ENCODING_MAP(kMipsExt, 0x7c000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 10, 6,
kFmtBitBlt, 15, 11, IS_QUAD_OP | REG_DEF0 | REG_USE1,
"ext", "!0r,!1r,!2d,!3D", 2),
#endif
ENCODING_MAP(kMipsJal, 0x0c000000,
kFmtBitBlt, 25, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
"jal", "!0T(!0E)", 2),
ENCODING_MAP(kMipsJalr, 0x00000009,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF0_USE1,
"jalr", "!0r,!1r", 2),
ENCODING_MAP(kMipsJr, 0x00000008,
kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
"jr", "!0r", 2),
ENCODING_MAP(kMipsLahi, 0x3C000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"lahi/lui", "!0r,0x!1h(!1d)", 2),
ENCODING_MAP(kMipsLalo, 0x34000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"lalo/ori", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsLui, 0x3C000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
"lui", "!0r,0x!1h(!1d)", 2),
ENCODING_MAP(kMipsLb, 0x80000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lb", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsLbu, 0x90000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lbu", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsLh, 0x84000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lh", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsLhu, 0x94000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lhu", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsLw, 0x8C000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lw", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsMfhi, 0x00000010,
kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mfhi", "!0r", 2),
ENCODING_MAP(kMipsMflo, 0x00000012,
kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mflo", "!0r", 2),
ENCODING_MAP(kMipsMove, 0x00000025, /* or using zero reg */
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"move", "!0r,!1r", 2),
ENCODING_MAP(kMipsMovz, 0x0000000a,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"movz", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsMul, 0x70000002,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"mul", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsNop, 0x00000000,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND,
"nop", "", 2),
ENCODING_MAP(kMipsNor, 0x00000027, /* used for "not" too */
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"nor", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsOr, 0x00000025,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"or", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsOri, 0x34000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"ori", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsPref, 0xCC000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE2,
"pref", "!0d,!1d(!2r)", 2),
ENCODING_MAP(kMipsSb, 0xA0000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
"sb", "!0r,!1d(!2r)", 2),
#if __mips_isa_rev>=2
ENCODING_MAP(kMipsSeb, 0x7c000420,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"seb", "!0r,!1r", 2),
ENCODING_MAP(kMipsSeh, 0x7c000620,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"seh", "!0r,!1r", 2),
#endif
ENCODING_MAP(kMipsSh, 0xA4000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
"sh", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsSll, 0x00000000,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"sll", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsSllv, 0x00000004,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"sllv", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSlt, 0x0000002a,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"slt", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSlti, 0x28000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"slti", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsSltu, 0x0000002b,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"sltu", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSra, 0x00000003,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"sra", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsSrav, 0x00000007,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"srav", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSrl, 0x00000002,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"srl", "!0r,!1r,0x!2h(!2d)", 2),
ENCODING_MAP(kMipsSrlv, 0x00000006,
kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"srlv", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSubu, 0x00000023, /* used for "neg" too */
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"subu", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsSw, 0xAC000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
"sw", "!0r,!1d(!2r)", 2),
ENCODING_MAP(kMipsXor, 0x00000026,
kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"xor", "!0r,!1r,!2r", 2),
ENCODING_MAP(kMipsXori, 0x38000000,
kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
"xori", "!0r,!1r,0x!2h(!2d)", 2),
#ifdef __mips_hard_float
ENCODING_MAP(kMipsFadds, 0x46000000,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"add.s", "!0s,!1s,!2s", 2),
ENCODING_MAP(kMipsFsubs, 0x46000001,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"sub.s", "!0s,!1s,!2s", 2),
ENCODING_MAP(kMipsFmuls, 0x46000002,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"mul.s", "!0s,!1s,!2s", 2),
ENCODING_MAP(kMipsFdivs, 0x46000003,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"div.s", "!0s,!1s,!2s", 2),
ENCODING_MAP(kMipsFaddd, 0x46200000,
kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"add.d", "!0S,!1S,!2S", 2),
ENCODING_MAP(kMipsFsubd, 0x46200001,
kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"sub.d", "!0S,!1S,!2S", 2),
ENCODING_MAP(kMipsFmuld, 0x46200002,
kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"mul.d", "!0S,!1S,!2S", 2),
ENCODING_MAP(kMipsFdivd, 0x46200003,
kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
"div.d", "!0S,!1S,!2S", 2),
ENCODING_MAP(kMipsFcvtsd, 0x46200020,
kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.s.d", "!0s,!1S", 2),
ENCODING_MAP(kMipsFcvtsw, 0x46800020,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.s.w", "!0s,!1s", 2),
ENCODING_MAP(kMipsFcvtds, 0x46000021,
kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.d.s", "!0S,!1s", 2),
ENCODING_MAP(kMipsFcvtdw, 0x46800021,
kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.d.w", "!0S,!1s", 2),
ENCODING_MAP(kMipsFcvtws, 0x46000024,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.w.s", "!0s,!1s", 2),
ENCODING_MAP(kMipsFcvtwd, 0x46200024,
kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"cvt.w.d", "!0s,!1S", 2),
ENCODING_MAP(kMipsFmovs, 0x46000006,
kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov.s", "!0s,!1s", 2),
ENCODING_MAP(kMipsFmovd, 0x46200006,
kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mov.d", "!0S,!1S", 2),
ENCODING_MAP(kMipsFlwc1, 0xC4000000,
kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"lwc1", "!0s,!1d(!2r)", 2),
ENCODING_MAP(kMipsFldc1, 0xD4000000,
kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
"ldc1", "!0S,!1d(!2r)", 2),
ENCODING_MAP(kMipsFswc1, 0xE4000000,
kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
"swc1", "!0s,!1d(!2r)", 2),
ENCODING_MAP(kMipsFsdc1, 0xF4000000,
kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
"sdc1", "!0S,!1d(!2r)", 2),
ENCODING_MAP(kMipsMfc1, 0x44000000,
kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
"mfc1", "!0r,!1s", 2),
ENCODING_MAP(kMipsMtc1, 0x44800000,
kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | REG_DEF1,
"mtc1", "!0r,!1s", 2),
#endif
ENCODING_MAP(kMipsUndefined, 0x64000000,
kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
kFmtUnused, -1, -1, NO_OPERAND,
"undefined", "", 2),
};
/* Track the number of times that the code cache is patched */
#if defined(WITH_JIT_TUNING)
#define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++)
#else
#define UPDATE_CODE_CACHE_PATCHES()
#endif
/* Write the numbers in the constant and class pool to the output stream */
static void installLiteralPools(CompilationUnit *cUnit)
{
int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
/* Install number of class pointer literals */
*dataPtr++ = cUnit->numClassPointers;
MipsLIR *dataLIR = (MipsLIR *) cUnit->classPointerList;
while (dataLIR) {
/*
* Install the callsiteinfo pointers into the cells for now. They will
* be converted into real pointers in dvmJitInstallClassObjectPointers.
*/
*dataPtr++ = dataLIR->operands[0];
dataLIR = NEXT_LIR(dataLIR);
}
dataLIR = (MipsLIR *) cUnit->literalList;
while (dataLIR) {
*dataPtr++ = dataLIR->operands[0];
dataLIR = NEXT_LIR(dataLIR);
}
}
/*
* Assemble the LIR into binary instruction format. Note that we may
* discover that pc-relative displacements may not fit the selected
* instruction. In those cases we will try to substitute a new code
* sequence or request that the trace be shortened and retried.
*/
static AssemblerStatus assembleInstructions(CompilationUnit *cUnit,
intptr_t startAddr)
{
int *bufferAddr = (int *) cUnit->codeBuffer;
MipsLIR *lir;
for (lir = (MipsLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
if (lir->opcode < 0) {
continue;
}
if (lir->flags.isNop) {
continue;
}
if (lir->opcode == kMipsB || lir->opcode == kMipsBal) {
MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta & 0x3) {
ALOGE("PC-rel distance is not multiple of 4: %d", delta);
dvmAbort();
}
if (delta > 131068 || delta < -131069) {
ALOGE("Unconditional branch distance out of range: %d", delta);
dvmAbort();
}
lir->operands[0] = delta >> 2;
} else if (lir->opcode >= kMipsBeqz && lir->opcode <= kMipsBnez) {
MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta & 0x3) {
ALOGE("PC-rel distance is not multiple of 4: %d", delta);
dvmAbort();
}
if (delta > 131068 || delta < -131069) {
ALOGE("Conditional branch distance out of range: %d", delta);
dvmAbort();
}
lir->operands[1] = delta >> 2;
} else if (lir->opcode == kMipsBeq || lir->opcode == kMipsBne) {
MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta & 0x3) {
ALOGE("PC-rel distance is not multiple of 4: %d", delta);
dvmAbort();
}
if (delta > 131068 || delta < -131069) {
ALOGE("Conditional branch distance out of range: %d", delta);
dvmAbort();
}
lir->operands[2] = delta >> 2;
} else if (lir->opcode == kMipsJal) {
intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
intptr_t target = lir->operands[0];
/* ensure PC-region branch can be used */
assert((curPC & 0xF0000000) == (target & 0xF0000000));
if (target & 0x3) {
ALOGE("Jump target is not multiple of 4: %d", target);
dvmAbort();
}
lir->operands[0] = target >> 2;
} else if (lir->opcode == kMipsLahi) { /* load address hi (via lui) */
MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
intptr_t target = startAddr + targetLIR->generic.offset;
lir->operands[1] = target >> 16;
} else if (lir->opcode == kMipsLalo) { /* load address lo (via ori) */
MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
intptr_t target = startAddr + targetLIR->generic.offset;
lir->operands[2] = lir->operands[2] + target;
}
MipsEncodingMap *encoder = &EncodingMap[lir->opcode];
u4 bits = encoder->skeleton;
int i;
for (i = 0; i < 4; i++) {
u4 operand;
u4 value;
operand = lir->operands[i];
switch(encoder->fieldLoc[i].kind) {
case kFmtUnused:
break;
case kFmtBitBlt:
if (encoder->fieldLoc[i].start == 0 && encoder->fieldLoc[i].end == 31) {
value = operand;
} else {
value = (operand << encoder->fieldLoc[i].start) &
((1 << (encoder->fieldLoc[i].end + 1)) - 1);
}
bits |= value;
break;
case kFmtDfp: {
assert(DOUBLEREG(operand));
assert((operand & 0x1) == 0);
value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) &
((1 << (encoder->fieldLoc[i].end + 1)) - 1);
bits |= value;
break;
}
case kFmtSfp:
assert(SINGLEREG(operand));
value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) &
((1 << (encoder->fieldLoc[i].end + 1)) - 1);
bits |= value;
break;
default:
assert(0);
}
}
assert(encoder->size == 2);
*bufferAddr++ = bits;
}
return kSuccess;
}
static int assignLiteralOffsetCommon(LIR *lir, int offset)
{
for (;lir != NULL; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
return offset;
}
/* Determine the offset of each literal field */
static int assignLiteralOffset(CompilationUnit *cUnit, int offset)
{
/* Reserved for the size field of class pointer pool */
offset += 4;
offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset);
offset = assignLiteralOffsetCommon(cUnit->literalList, offset);
return offset;
}
/*
* Translation layout in the code cache. Note that the codeAddress pointer
* in JitTable will point directly to the code body (field codeAddress). The
* chain cell offset codeAddress - 4, and the address of the trace profile
* counter is at codeAddress - 8.
*
* +----------------------------+
* | Trace Profile Counter addr | -> 4 bytes (PROF_COUNTER_ADDR_SIZE)
* +----------------------------+
* +--| Offset to chain cell counts| -> 4 bytes (CHAIN_CELL_OFFSET_SIZE)
* | +----------------------------+
* | | Trace profile code | <- entry point when profiling
* | . - - - - - - - .
* | | Code body | <- entry point when not profiling
* | . .
* | | |
* | +----------------------------+
* | | Chaining Cells | -> 16/20 bytes, 4 byte aligned
* | . .
* | . .
* | | |
* | +----------------------------+
* | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES
* | +----------------------------+
* +->| Chaining cell counts | -> 8 bytes, chain cell counts by type
* +----------------------------+
* | Trace description | -> variable sized
* . .
* | |
* +----------------------------+
* | # Class pointer pool size | -> 4 bytes
* +----------------------------+
* | Class pointer pool | -> 4-byte aligned, variable size
* . .
* . .
* | |
* +----------------------------+
* | Literal pool | -> 4-byte aligned, variable size
* . .
* . .
* | |
* +----------------------------+
*
*/
#define PROF_COUNTER_ADDR_SIZE 4
#define CHAIN_CELL_OFFSET_SIZE 4
/*
* Utility functions to navigate various parts in a trace. If we change the
* layout/offset in the future, we just modify these functions and we don't need
* to propagate the changes to all the use cases.
*/
static inline char *getTraceBase(const JitEntry *p)
{
return (char*)p->codeAddress -
(PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE);
}
/* Handy function to retrieve the profile count */
static inline JitTraceCounter_t getProfileCount(const JitEntry *entry)
{
if (entry->dPC == 0 || entry->codeAddress == 0 ||
entry->codeAddress == dvmCompilerGetInterpretTemplate())
return 0;
JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
return **p;
}
/* Handy function to reset the profile count */
static inline void resetProfileCount(const JitEntry *entry)
{
if (entry->dPC == 0 || entry->codeAddress == 0 ||
entry->codeAddress == dvmCompilerGetInterpretTemplate())
return;
JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
**p = 0;
}
/* Get the pointer of the chain cell count */
static inline ChainCellCounts* getChainCellCountsPointer(const char *base)
{
/* 4 is the size of the profile count */
u4 *chainCellOffsetP = (u4 *) (base + PROF_COUNTER_ADDR_SIZE);
u4 chainCellOffset = *chainCellOffsetP;
return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset);
}
/* Get the size of all chaining cells */
static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts)
{
int cellSize = 0;
int i;
/* Get total count of chain cells */
for (i = 0; i < kChainingCellGap; i++) {
if (i != kChainingCellInvokePredicted) {
cellSize += pChainCellCounts->u.count[i] *
(CHAIN_CELL_NORMAL_SIZE >> 2);
} else {
cellSize += pChainCellCounts->u.count[i] *
(CHAIN_CELL_PREDICTED_SIZE >> 2);
}
}
return cellSize;
}
/* Get the starting pointer of the trace description section */
static JitTraceDescription* getTraceDescriptionPointer(const char *base)
{
ChainCellCounts* pCellCounts = getChainCellCountsPointer(base);
return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
}
/* Get the size of a trace description */
static int getTraceDescriptionSize(const JitTraceDescription *desc)
{
int runCount;
/* Trace end is always of non-meta type (ie isCode == true) */
for (runCount = 0; ; runCount++) {
if (desc->trace[runCount].isCode &&
desc->trace[runCount].info.frag.runEnd)
break;
}
return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun));
}
#if defined(SIGNATURE_BREAKPOINT)
/* Inspect the assembled instruction stream to find potential matches */
static void matchSignatureBreakpoint(const CompilationUnit *cUnit,
unsigned int size)
{
unsigned int i, j;
u4 *ptr = (u4 *) cUnit->codeBuffer;
for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) {
if (ptr[i] == gDvmJit.signatureBreakpoint[0]) {
for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) {
if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) {
break;
}
}
if (j == gDvmJit.signatureBreakpointSize) {
ALOGD("Signature match starting from offset %#x (%d words)",
i*4, gDvmJit.signatureBreakpointSize);
int descSize = getTraceDescriptionSize(cUnit->traceDesc);
JitTraceDescription *newCopy =
(JitTraceDescription *) malloc(descSize);
memcpy(newCopy, cUnit->traceDesc, descSize);
dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy);
break;
}
}
}
}
#endif
/*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
*/
void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
{
MipsLIR *mipsLIR;
int offset = 0;
int i;
ChainCellCounts chainCellCounts;
int descSize = (cUnit->jitMode == kJitMethod) ?
0 : getTraceDescriptionSize(cUnit->traceDesc);
int chainingCellGap = 0;
info->instructionSet = cUnit->instructionSet;
/* Beginning offset needs to allow space for chain cell offset */
for (mipsLIR = (MipsLIR *) cUnit->firstLIRInsn;
mipsLIR;
mipsLIR = NEXT_LIR(mipsLIR)) {
mipsLIR->generic.offset = offset;
if (mipsLIR->opcode >= 0 && !mipsLIR->flags.isNop) {
mipsLIR->flags.size = EncodingMap[mipsLIR->opcode].size * 2;
offset += mipsLIR->flags.size;
}
/* Pseudo opcodes don't consume space */
}
/* Const values have to be word aligned */
offset = (offset + 3) & ~3;
u4 chainCellOffset = offset;
MipsLIR *chainCellOffsetLIR = NULL;
if (cUnit->jitMode != kJitMethod) {
/*
* Get the gap (# of u4) between the offset of chaining cell count and
* the bottom of real chaining cells. If the translation has chaining
* cells, the gap is guaranteed to be multiples of 4.
*/
chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2;
/* Add space for chain cell counts & trace description */
chainCellOffsetLIR = (MipsLIR *) cUnit->chainCellOffsetLIR;
assert(chainCellOffsetLIR);
assert(chainCellOffset < 0x10000);
assert(chainCellOffsetLIR->opcode == kMips32BitData &&
chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
/*
* Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the
* space occupied by the pointer to the trace profiling counter.
*/
chainCellOffsetLIR->operands[0] = chainCellOffset - 4;
offset += sizeof(chainCellCounts) + descSize;
assert((offset & 0x3) == 0); /* Should still be word aligned */
}
/* Set up offsets for literals */
cUnit->dataOffset = offset;
/*
* Assign each class pointer/constant an offset from the beginning of the
* compilation unit.
*/
offset = assignLiteralOffset(cUnit, offset);
cUnit->totalSize = offset;
if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) {
gDvmJit.codeCacheFull = true;
info->discardResult = true;
return;
}
/* Allocate enough space for the code block */
cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true);
if (cUnit->codeBuffer == NULL) {
ALOGE("Code buffer allocation failure");
info->discardResult = true;
return;
}
/*
* Attempt to assemble the trace. Note that assembleInstructions
* may rewrite the code sequence and request a retry.
*/
cUnit->assemblerStatus = assembleInstructions(cUnit,
(intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
switch(cUnit->assemblerStatus) {
case kSuccess:
break;
case kRetryAll:
if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) {
if (cUnit->jitMode != kJitMethod) {
/* Restore pristine chain cell marker on retry */
chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG;
}
return;
}
/* Too many retries - reset and try cutting the trace in half */
cUnit->assemblerRetries = 0;
cUnit->assemblerStatus = kRetryHalve;
return;
case kRetryHalve:
return;
default:
ALOGE("Unexpected assembler status: %d", cUnit->assemblerStatus);
dvmAbort();
}
#if defined(SIGNATURE_BREAKPOINT)
if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL &&
chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) {
matchSignatureBreakpoint(cUnit, chainCellOffset/4);
}
#endif
/* Don't go all the way if the goal is just to get the verbose output */
if (info->discardResult) return;
/*
* The cache might disappear - acquire lock and check version
* Continue holding lock until translation cache update is complete.
* These actions are required here in the compiler thread because
* it is unaffected by suspend requests and doesn't know if a
* translation cache flush is in progress.
*/
dvmLockMutex(&gDvmJit.compilerLock);
if (info->cacheVersion != gDvmJit.cacheVersion) {
/* Cache changed - discard current translation */
info->discardResult = true;
info->codeAddress = NULL;
dvmUnlockMutex(&gDvmJit.compilerLock);
return;
}
cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
gDvmJit.codeCacheByteUsed += offset;
UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset);
/* Install the code block */
memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
gDvmJit.numCompilations++;
if (cUnit->jitMode != kJitMethod) {
/* Install the chaining cell counts */
for (i=0; i< kChainingCellGap; i++) {
chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
}
/* Set the gap number in the chaining cell count structure */
chainCellCounts.u.count[kChainingCellGap] = chainingCellGap;
memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
sizeof(chainCellCounts));
/* Install the trace description */
memcpy((char*) cUnit->baseAddr + chainCellOffset +
sizeof(chainCellCounts),
cUnit->traceDesc, descSize);
}
/* Write the literals directly into the code cache */
installLiteralPools(cUnit);
/* Flush dcache and invalidate the icache to maintain coherence */
dvmCompilerCacheFlush((long)cUnit->baseAddr,
(long)((char *) cUnit->baseAddr + offset), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cUnit->baseAddr, offset);
/* Translation cache update complete - release lock */
dvmUnlockMutex(&gDvmJit.compilerLock);
/* Record code entry point and instruction set */
info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
/* transfer the size of the profiling code */
info->profileCodeSize = cUnit->profileCodeSize;
}
/*
* Returns the skeleton bit pattern associated with an opcode. All
* variable fields are zeroed.
*/
static u4 getSkeleton(MipsOpCode op)
{
return EncodingMap[op].skeleton;
}
static u4 assembleChainingBranch(int branchOffset, bool thumbTarget)
{
return getSkeleton(kMipsJal) | ((branchOffset & 0x0FFFFFFF) >> 2);
}
/*
* Perform translation chain operation.
* For MIPS, we'll use a JAL instruction to generate an
* unconditional chaining branch of up to 256M. The JAL
* instruction also has a restriction that the jump target
* must be in the same 256M page as the JAL instruction's
* delay slot address.
* If the target is out of JAL's range, don't chain.
* If one or more threads is suspended, don't chain.
*/
void* dvmJitChain(void* tgtAddr, u4* branchAddr)
{
u4 newInst;
/*
* Only chain translations when there is no urge to ask all threads to
* suspend themselves via the interpreter.
*/
if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) &&
(gDvmJit.codeCacheFull == false) &&
((((int) tgtAddr) & 0xF0000000) == (((int) branchAddr+4) & 0xF0000000))) {
gDvmJit.translationChains++;
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: chaining 0x%x to 0x%x",
(int) branchAddr, (int) tgtAddr & -2));
newInst = assembleChainingBranch((int) tgtAddr & -2, 0);
UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
*branchAddr = newInst;
dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4, 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
gDvmJit.hasNewChain = true;
}
return tgtAddr;
}
#if !defined(WITH_SELF_VERIFICATION)
/*
* Attempt to enqueue a work order to patch an inline cache for a predicted
* chaining cell for virtual/interface calls.
*/
static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr,
PredictedChainingCell *newContent)
{
/*
* Make sure only one thread gets here since updating the cell (ie fast
* path and queueing the request (ie the queued path) have to be done
* in an atomic fashion.
*/
dvmLockMutex(&gDvmJit.compilerICPatchLock);
/* Fast path for uninitialized chaining cell */
if (cellAddr->clazz == NULL &&
cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) {
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->method = newContent->method;
cellAddr->branch = newContent->branch;
/*
* The update order matters - make sure clazz is updated last since it
* will bring the uninitialized chaining cell to life.
*/
android_atomic_release_store((int32_t)newContent->clazz,
(volatile int32_t *)(void*) &cellAddr->clazz);
dvmCompilerCacheFlush((long) cellAddr, (long) (cellAddr+1), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchInit++;
#endif
/* Check if this is a frequently missed clazz */
} else if (cellAddr->stagedClazz != newContent->clazz) {
/* Not proven to be frequent yet - build up the filter cache */
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->stagedClazz = newContent->clazz;
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchRejected++;
#endif
/*
* Different classes but same method implementation - it is safe to just
* patch the class value without the need to stop the world.
*/
} else if (cellAddr->method == newContent->method) {
UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
cellAddr->clazz = newContent->clazz;
/* No need to flush the cache here since the branch is not patched */
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchLockFree++;
#endif
/*
* Cannot patch the chaining cell inline - queue it until the next safe
* point.
*/
} else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) {
int index = gDvmJit.compilerICPatchIndex++;
const ClassObject *clazz = newContent->clazz;
gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr;
gDvmJit.compilerICPatchQueue[index].cellContent = *newContent;
gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor;
gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader;
/* For verification purpose only */
gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber;
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchQueued++;
#endif
} else {
/* Queue is full - just drop this patch request */
#if defined(WITH_JIT_TUNING)
gDvmJit.icPatchDropped++;
#endif
}
dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
}
#endif
/*
* This method is called from the invoke templates for virtual and interface
* methods to speculatively setup a chain to the callee. The templates are
* written in assembly and have setup method, cell, and clazz at r0, r2, and
* r3 respectively, so there is a unused argument in the list. Upon return one
* of the following three results may happen:
* 1) Chain is not setup because the callee is native. Reset the rechain
* count to a big number so that it will take a long time before the next
* rechain attempt to happen.
* 2) Chain is not setup because the callee has not been created yet. Reset
* the rechain count to a small number and retry in the near future.
* 3) Ask all other threads to stop before patching this chaining cell.
* This is required because another thread may have passed the class check
* but hasn't reached the chaining cell yet to follow the chain. If we
* patch the content before halting the other thread, there could be a
* small window for race conditions to happen that it may follow the new
* but wrong chain to invoke a different method.
*/
const Method *dvmJitToPatchPredictedChain(const Method *method,
Thread *self,
PredictedChainingCell *cell,
const ClassObject *clazz)
{
int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
#if defined(WITH_SELF_VERIFICATION)
newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID;
goto done;
#else
PredictedChainingCell newCell;
int baseAddr, tgtAddr;
if (dvmIsNativeMethod(method)) {
UNPROTECT_CODE_CACHE(cell, sizeof(*cell));
/*
* Put a non-zero/bogus value in the clazz field so that it won't
* trigger immediate patching and will continue to fail to match with
* a real clazz pointer.
*/
cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ;
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(cell, sizeof(*cell));
goto done;
}
tgtAddr = (int) dvmJitGetTraceAddr(method->insns);
baseAddr = (int) cell + 4; // PC is cur_addr + 4
if ((baseAddr & 0xF0000000) != (tgtAddr & 0xF0000000)) {
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: predicted chain %p to distant target %s ignored",
cell, method->name));
goto done;
}
/*
* Compilation not made yet for the callee. Reset the counter to a small
* value and come back to check soon.
*/
if ((tgtAddr == 0) ||
((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) {
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: predicted chain %p to method %s%s delayed",
cell, method->clazz->descriptor, method->name));
goto done;
}
if (cell->clazz == NULL) {
newRechainCount = self->icRechainCount;
}
newCell.branch = assembleChainingBranch(tgtAddr, true);
newCell.delay_slot = getSkeleton(kMipsNop);
newCell.clazz = clazz;
newCell.method = method;
newCell.stagedClazz = NULL;
/*
* Enter the work order to the queue and the chaining cell will be patched
* the next time a safe point is entered.
*
* If the enqueuing fails reset the rechain count to a normal value so that
* it won't get indefinitely delayed.
*/
inlineCachePatchEnqueue(cell, &newCell);
#endif
done:
self->icRechainCount = newRechainCount;
return method;
}
/*
* Patch the inline cache content based on the content passed from the work
* order.
*/
void dvmCompilerPatchInlineCache(void)
{
int i;
PredictedChainingCell *minAddr, *maxAddr;
/* Nothing to be done */
if (gDvmJit.compilerICPatchIndex == 0) return;
/*
* Since all threads are already stopped we don't really need to acquire
* the lock. But race condition can be easily introduced in the future w/o
* paying attention so we still acquire the lock here.
*/
dvmLockMutex(&gDvmJit.compilerICPatchLock);
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
//ALOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex);
/* Initialize the min/max address range */
minAddr = (PredictedChainingCell *)
((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize);
maxAddr = (PredictedChainingCell *) gDvmJit.codeCache;
for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) {
ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i];
PredictedChainingCell *cellAddr = workOrder->cellAddr;
PredictedChainingCell *cellContent = &workOrder->cellContent;
ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor,
workOrder->classLoader);
assert(clazz->serialNumber == workOrder->serialNumber);
/* Use the newly resolved clazz pointer */
cellContent->clazz = clazz;
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: predicted chain %p from %s to %s (%s) "
"patched",
cellAddr,
cellAddr->clazz->descriptor,
cellContent->clazz->descriptor,
cellContent->method->name));
/* Patch the chaining cell */
*cellAddr = *cellContent;
minAddr = (cellAddr < minAddr) ? cellAddr : minAddr;
maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr;
}
/* Then synchronize the I/D cache */
dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1), 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
gDvmJit.compilerICPatchIndex = 0;
dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
}
/*
* Unchain a trace given the starting address of the translation
* in the code cache. Refer to the diagram in dvmCompilerAssembleLIR.
* Returns the address following the last cell unchained. Note that
* the incoming codeAddr is a thumb code address, and therefore has
* the low bit set.
*/
static u4* unchainSingle(JitEntry *trace)
{
const char *base = getTraceBase(trace);
ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
int cellSize = getChainCellSize(pChainCellCounts);
u4* pChainCells;
int i,j;
PredictedChainingCell *predChainCell;
if (cellSize == 0)
return (u4 *) pChainCellCounts;
/* Locate the beginning of the chain cell region */
pChainCells = ((u4 *) pChainCellCounts) - cellSize -
pChainCellCounts->u.count[kChainingCellGap];
/* The cells are sorted in order - walk through them and reset */
for (i = 0; i < kChainingCellGap; i++) {
int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */
if (i == kChainingCellInvokePredicted) {
elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2;
}
for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
int targetOffset;
switch(i) {
case kChainingCellNormal:
targetOffset = offsetof(Thread,
jitToInterpEntries.dvmJitToInterpNormal);
break;
case kChainingCellHot:
case kChainingCellInvokeSingleton:
targetOffset = offsetof(Thread,
jitToInterpEntries.dvmJitToInterpTraceSelect);
break;
case kChainingCellInvokePredicted:
targetOffset = 0;
predChainCell = (PredictedChainingCell *) pChainCells;
/*
* There could be a race on another mutator thread to use
* this particular predicted cell and the check has passed
* the clazz comparison. So we cannot safely wipe the
* method and branch but it is safe to clear the clazz,
* which serves as the key.
*/
predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
break;
#if defined(WITH_SELF_VERIFICATION)
case kChainingCellBackwardBranch:
targetOffset = offsetof(Thread,
jitToInterpEntries.dvmJitToInterpBackwardBranch);
break;
#else
case kChainingCellBackwardBranch:
targetOffset = offsetof(Thread,
jitToInterpEntries.dvmJitToInterpNormal);
break;
#endif
default:
targetOffset = 0; // make gcc happy
ALOGE("Unexpected chaining type: %d", i);
dvmAbort(); // dvmAbort OK here - can't safely recover
}
COMPILER_TRACE_CHAINING(
ALOGD("Jit Runtime: unchaining %#x", (int)pChainCells));
/*
* Code sequence for a chaining cell is:
* lw a0, offset(rSELF)
* jalr ra, a0
*/
if (i != kChainingCellInvokePredicted) {
*pChainCells = getSkeleton(kMipsLw) | (r_A0 << 16) |
targetOffset | (rSELF << 21);
*(pChainCells+1) = getSkeleton(kMipsJalr) | (r_RA << 11) |
(r_A0 << 21);
}
pChainCells += elemSize; /* Advance by a fixed number of words */
}
}
return pChainCells;
}
/* Unchain all translation in the cache. */
void dvmJitUnchainAll()
{
u4* lowAddress = NULL;
u4* highAddress = NULL;
unsigned int i;
if (gDvmJit.pJitEntryTable != NULL) {
COMPILER_TRACE_CHAINING(ALOGD("Jit Runtime: unchaining all"));
dvmLockMutex(&gDvmJit.tableLock);
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
for (i = 0; i < gDvmJit.jitTableSize; i++) {
if (gDvmJit.pJitEntryTable[i].dPC &&
!gDvmJit.pJitEntryTable[i].u.info.isMethodEntry &&
gDvmJit.pJitEntryTable[i].codeAddress &&
(gDvmJit.pJitEntryTable[i].codeAddress !=
dvmCompilerGetInterpretTemplate())) {
u4* lastAddress;
lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]);
if (lowAddress == NULL ||
(u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress)
lowAddress = (u4*)gDvmJit.pJitEntryTable[i].codeAddress;
if (lastAddress > highAddress)
highAddress = lastAddress;
}
}
if (lowAddress && highAddress)
dvmCompilerCacheFlush((long)lowAddress, (long)highAddress, 0);
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
dvmUnlockMutex(&gDvmJit.tableLock);
gDvmJit.translationChains = 0;
}
gDvmJit.hasNewChain = false;
}
typedef struct jitProfileAddrToLine {
u4 lineNum;
u4 bytecodeOffset;
} jitProfileAddrToLine;
/* Callback function to track the bytecode offset/line number relationiship */
static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
{
jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
/* Best match so far for this offset */
if (addrToLine->bytecodeOffset >= bytecodeOffset) {
addrToLine->lineNum = lineNum;
}
return 0;
}
/* Dumps profile info for a single trace */
static int dumpTraceProfile(JitEntry *p, bool silent, bool reset,
unsigned long sum)
{
int idx;
if (p->codeAddress == NULL) {
if (!silent)
ALOGD("TRACEPROFILE NULL");
return 0;
}
if (p->codeAddress == dvmCompilerGetInterpretTemplate()) {
if (!silent)
ALOGD("TRACEPROFILE INTERPRET_ONLY");
return 0;
}
JitTraceCounter_t count = getProfileCount(p);
if (reset) {
resetProfileCount(p);
}
if (silent) {
return count;
}
JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p));
const Method *method = desc->method;
char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset};
/*
* We may end up decoding the debug information for the same method
* multiple times, but the tradeoff is we don't need to allocate extra
* space to store the addr/line mapping. Since this is a debugging feature
* and done infrequently so the slower but simpler mechanism should work
* just fine.
*/
dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
dvmGetMethodCode(method),
method->clazz->descriptor,
method->prototype.protoIdx,
method->accessFlags,
addrToLineCb, NULL, &addrToLine);
ALOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s",
(int) getTraceBase(p),
count,
((float ) count) / sum * 100.0,
desc->trace[0].info.frag.startOffset,
desc->trace[0].info.frag.numInsts,
addrToLine.lineNum,
method->clazz->descriptor, method->name, methodDesc);
free(methodDesc);
/* Find the last fragment (ie runEnd is set) */
for (idx = 0;
desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd;
idx++) {
}
/*
* runEnd must comes with a JitCodeDesc frag. If isCode is false it must
* be a meta info field (only used by callsite info for now).
*/
if (!desc->trace[idx].isCode) {
const Method *method = (const Method *)
desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta;
char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
/* Print the callee info in the trace */
ALOGD(" -> %s%s;%s", method->clazz->descriptor, method->name,
methodDesc);
}
return count;
}
/* Create a copy of the trace descriptor of an existing compilation */
JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc,
const JitEntry *knownEntry)
{
const JitEntry *jitEntry = knownEntry ? knownEntry
: dvmJitFindEntry(pc, false);
if ((jitEntry == NULL) || (jitEntry->codeAddress == 0))
return NULL;
JitTraceDescription *desc =
getTraceDescriptionPointer(getTraceBase(jitEntry));
/* Now make a copy and return */
int descSize = getTraceDescriptionSize(desc);
JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize);
memcpy(newCopy, desc, descSize);
return newCopy;
}
/* qsort callback function */
static int sortTraceProfileCount(const void *entry1, const void *entry2)
{
const JitEntry *jitEntry1 = (const JitEntry *)entry1;
const JitEntry *jitEntry2 = (const JitEntry *)entry2;
JitTraceCounter_t count1 = getProfileCount(jitEntry1);
JitTraceCounter_t count2 = getProfileCount(jitEntry2);
return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
}
/* Sort the trace profile counts and dump them */
void dvmCompilerSortAndPrintTraceProfiles()
{
JitEntry *sortedEntries;
int numTraces = 0;
unsigned long sum = 0;
unsigned int i;
/* Make sure that the table is not changing */
dvmLockMutex(&gDvmJit.tableLock);
/* Sort the entries by descending order */
sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
if (sortedEntries == NULL)
goto done;
memcpy(sortedEntries, gDvmJit.pJitEntryTable,
sizeof(JitEntry) * gDvmJit.jitTableSize);
qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
sortTraceProfileCount);
/* Analyze the sorted entries */
for (i=0; i < gDvmJit.jitTableSize; i++) {
if (sortedEntries[i].dPC != 0) {
sum += dumpTraceProfile(&sortedEntries[i],
true /* silent */,
false /* reset */,
0);
numTraces++;
}
}
if (numTraces == 0)
numTraces = 1;
if (sum == 0) {
sum = 1;
}
ALOGD("JIT: Average execution count -> %d",(int)(sum / numTraces));
/* Dump the sorted entries. The count of each trace will be reset to 0. */
for (i=0; i < gDvmJit.jitTableSize; i++) {
if (sortedEntries[i].dPC != 0) {
dumpTraceProfile(&sortedEntries[i],
false /* silent */,
true /* reset */,
sum);
}
}
for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) {
/* Stip interpreter stubs */
if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) {
continue;
}
JitTraceDescription* desc =
dvmCopyTraceDescriptor(NULL, &sortedEntries[i]);
if (desc) {
dvmCompilerWorkEnqueue(sortedEntries[i].dPC,
kWorkOrderTraceDebug, desc);
}
}
free(sortedEntries);
done:
dvmUnlockMutex(&gDvmJit.tableLock);
return;
}
static void findClassPointersSingleTrace(char *base, void (*callback)(void *))
{
unsigned int chainTypeIdx, chainIdx;
ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
int cellSize = getChainCellSize(pChainCellCounts);
/* Scan the chaining cells */
if (cellSize) {
/* Locate the beginning of the chain cell region */
u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize -
pChainCellCounts->u.count[kChainingCellGap];
/* The cells are sorted in order - walk through them */
for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap;
chainTypeIdx++) {
if (chainTypeIdx != kChainingCellInvokePredicted) {
/* In 32-bit words */
pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) *
pChainCellCounts->u.count[chainTypeIdx];
continue;
}
for (chainIdx = 0;
chainIdx < pChainCellCounts->u.count[chainTypeIdx];
chainIdx++) {
PredictedChainingCell *cell =
(PredictedChainingCell *) pChainCells;
/*
* Report the cell if it contains a sane class
* pointer.
*/
if (cell->clazz != NULL &&
cell->clazz !=
(ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) {
callback(&cell->clazz);
}
pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2;
}
}
}
/* Scan the class pointer pool */
JitTraceDescription *desc = getTraceDescriptionPointer(base);
int descSize = getTraceDescriptionSize(desc);
int *classPointerP = (int *) ((char *) desc + descSize);
int numClassPointers = *classPointerP++;
for (; numClassPointers; numClassPointers--, classPointerP++) {
callback(classPointerP);
}
}
/*
* Scan class pointers in each translation and pass its address to the callback
* function. Currently such a pointers can be found in the pointer pool and the
* clazz field in the predicted chaining cells.
*/
void dvmJitScanAllClassPointers(void (*callback)(void *))
{
UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
/* Handle the inflight compilation first */
if (gDvmJit.inflightBaseAddr)
findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr,
callback);
if (gDvmJit.pJitEntryTable != NULL) {
unsigned int traceIdx;
dvmLockMutex(&gDvmJit.tableLock);
for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) {
const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx];
if (entry->dPC &&
!entry->u.info.isMethodEntry &&
entry->codeAddress &&
(entry->codeAddress != dvmCompilerGetInterpretTemplate())) {
char *base = getTraceBase(entry);
findClassPointersSingleTrace(base, callback);
}
}
dvmUnlockMutex(&gDvmJit.tableLock);
}
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
}
/*
* Provide the final touch on the class object pointer pool to install the
* actual pointers. The thread has to be in the running state.
*/
void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress)
{
char *base = codeAddress - cUnit->headerSize;
/* Scan the class pointer pool */
JitTraceDescription *desc = getTraceDescriptionPointer(base);
int descSize = getTraceDescriptionSize(desc);
intptr_t *classPointerP = (int *) ((char *) desc + descSize);
int numClassPointers = *(int *)classPointerP++;
intptr_t *startClassPointerP = classPointerP;
/*
* Change the thread state to VM_RUNNING so that GC won't be happening
* when the assembler looks up the class pointers. May suspend the current
* thread if there is a pending request before the state is actually
* changed to RUNNING.
*/
dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING);
/*
* Unprotecting the code cache will need to acquire the code cache
* protection lock first. Doing so after the state change may increase the
* time spent in the RUNNING state (which may delay the next GC request
* should there be contention on codeCacheProtectionLock). In practice
* this is probably not going to happen often since a GC is just served.
* More importantly, acquiring the lock before the state change will
* cause deadlock (b/4192964).
*/
UNPROTECT_CODE_CACHE(startClassPointerP,
numClassPointers * sizeof(intptr_t));
#if defined(WITH_JIT_TUNING)
u8 startTime = dvmGetRelativeTimeUsec();
#endif
for (;numClassPointers; numClassPointers--) {
CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP;
ClassObject *clazz = dvmFindClassNoInit(
callsiteInfo->classDescriptor, callsiteInfo->classLoader);
assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor));
*classPointerP++ = (intptr_t) clazz;
}
/*
* Register the base address so that if GC kicks in after the thread state
* has been changed to VMWAIT and before the compiled code is registered
* in the JIT table, its content can be patched if class objects are
* moved.
*/
gDvmJit.inflightBaseAddr = base;
#if defined(WITH_JIT_TUNING)
u8 blockTime = dvmGetRelativeTimeUsec() - startTime;
gDvmJit.compilerThreadBlockGCTime += blockTime;
if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime)
gDvmJit.maxCompilerThreadBlockGCTime = blockTime;
gDvmJit.numCompilerThreadBlockGC++;
#endif
UPDATE_CODE_CACHE_PATCHES();
PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t));
/* Change the thread state back to VMWAIT */
dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT);
}
#if defined(WITH_SELF_VERIFICATION)
/*
* The following are used to keep compiled loads and stores from modifying
* memory during self verification mode.
*
* Stores do not modify memory. Instead, the address and value pair are stored
* into heapSpace. Addresses within heapSpace are unique. For accesses smaller
* than a word, the word containing the address is loaded first before being
* updated.
*
* Loads check heapSpace first and return data from there if an entry exists.
* Otherwise, data is loaded from memory as usual.
*/
/* Used to specify sizes of memory operations */
enum {
kSVByte,
kSVSignedByte,
kSVHalfword,
kSVSignedHalfword,
kSVWord,
kSVDoubleword,
kSVVariable,
};
/* Load the value of a decoded register from the stack */
static int selfVerificationMemRegLoad(int* sp, int reg)
{
assert(0); /* MIPSTODO retarg func */
return *(sp + reg);
}
/* Load the value of a decoded doubleword register from the stack */
static s8 selfVerificationMemRegLoadDouble(int* sp, int reg)
{
assert(0); /* MIPSTODO retarg func */
return *((s8*)(sp + reg));
}
/* Store the value of a decoded register out to the stack */
static void selfVerificationMemRegStore(int* sp, int data, int reg)
{
assert(0); /* MIPSTODO retarg func */
*(sp + reg) = data;
}
/* Store the value of a decoded doubleword register out to the stack */
static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg)
{
assert(0); /* MIPSTODO retarg func */
*((s8*)(sp + reg)) = data;
}
/*
* Load the specified size of data from the specified address, checking
* heapSpace first if Self Verification mode wrote to it previously, and
* falling back to actual memory otherwise.
*/
static int selfVerificationLoad(int addr, int size)
{
assert(0); /* MIPSTODO retarg func */
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int data;
int maskedAddr = addr & 0xFFFFFFFC;
int alignment = addr & 0x3;
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == maskedAddr) {
addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
break;
}
}
switch (size) {
case kSVByte:
data = *((u1*) addr);
break;
case kSVSignedByte:
data = *((s1*) addr);
break;
case kSVHalfword:
data = *((u2*) addr);
break;
case kSVSignedHalfword:
data = *((s2*) addr);
break;
case kSVWord:
data = *((u4*) addr);
break;
default:
ALOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size);
data = 0;
dvmAbort();
}
//ALOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size);
return data;
}
/* Like selfVerificationLoad, but specifically for doublewords */
static s8 selfVerificationLoadDoubleword(int addr)
{
assert(0); /* MIPSTODO retarg func */
Thread *self = dvmThreadSelf();
ShadowSpace* shadowSpace = self->shadowSpace;
ShadowHeap* heapSpacePtr;
int addr2 = addr+4;
unsigned int data = *((unsigned int*) addr);
unsigned int data2 = *((unsigned int*) addr2);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == addr) {
data = heapSpacePtr->data;
} else if (heapSpacePtr->addr == addr2) {
data2 = heapSpacePtr->data;
}
}
//ALOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x",
// addr, data, data2);
return (((s8) data2) << 32) | data;
}
/*
* Handles a store of a specified size of data to a specified address.
* This gets logged as an addr/data pair in heapSpace instead of modifying
* memory. Addresses in heapSpace are unique, and accesses smaller than a
* word pull the entire word from memory first before updating.
*/
static void selfVerificationStore(int addr, int data, int size)
{
assert(0); /* MIPSTODO retarg func */
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int maskedAddr = addr & 0xFFFFFFFC;
int alignment = addr & 0x3;
//ALOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == maskedAddr) break;
}
if (heapSpacePtr == shadowSpace->heapSpaceTail) {
heapSpacePtr->addr = maskedAddr;
heapSpacePtr->data = *((unsigned int*) maskedAddr);
shadowSpace->heapSpaceTail++;
}
addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
switch (size) {
case kSVByte:
*((u1*) addr) = data;
break;
case kSVSignedByte:
*((s1*) addr) = data;
break;
case kSVHalfword:
*((u2*) addr) = data;
break;
case kSVSignedHalfword:
*((s2*) addr) = data;
break;
case kSVWord:
*((u4*) addr) = data;
break;
default:
ALOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size);
dvmAbort();
}
}
/* Like selfVerificationStore, but specifically for doublewords */
static void selfVerificationStoreDoubleword(int addr, s8 double_data)
{
assert(0); /* MIPSTODO retarg func */
Thread *self = dvmThreadSelf();
ShadowSpace *shadowSpace = self->shadowSpace;
ShadowHeap *heapSpacePtr;
int addr2 = addr+4;
int data = double_data;
int data2 = double_data >> 32;
bool store1 = false, store2 = false;
//ALOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x",
// addr, data, data2);
for (heapSpacePtr = shadowSpace->heapSpace;
heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
if (heapSpacePtr->addr == addr) {
heapSpacePtr->data = data;
store1 = true;
} else if (heapSpacePtr->addr == addr2) {
heapSpacePtr->data = data2;
store2 = true;
}
}
if (!store1) {
shadowSpace->heapSpaceTail->addr = addr;
shadowSpace->heapSpaceTail->data = data;
shadowSpace->heapSpaceTail++;
}
if (!store2) {
shadowSpace->heapSpaceTail->addr = addr2;
shadowSpace->heapSpaceTail->data = data2;
shadowSpace->heapSpaceTail++;
}
}
/*
* Decodes the memory instruction at the address specified in the link
* register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored
* consecutively on the stack beginning at the specified stack pointer.
* Calls the proper Self Verification handler for the memory instruction and
* updates the link register to point past the decoded memory instruction.
*/
void dvmSelfVerificationMemOpDecode(int lr, int* sp)
{
assert(0); /* MIPSTODO retarg func */
enum {
kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0]
kMemOpRRR = 0x0A, // Full opcode is 7 bits
kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs
kMemOpRRR2 = 0x0B, // Full opcode is 7 bits
kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd
kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0]
kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0]
kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0]
kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0]
kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0]
kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0]
kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0]
kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0]
kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0]
kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0]
kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0]
kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0]
kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd
kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd
kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd
kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd
kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100]
rn[19..16] rt[15..12] imm12[11..0] */
kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101]
rn[19..16] rt[15..12] imm12[11..0] */
kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011]
rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011]
rt[15..12] rn[19..16] imm12[11..0] */
kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2
};
int addr, offset, data;
long long double_data;
int size = kSVWord;
bool store = false;
unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE);
unsigned int insn = *lr_masked;
int old_lr;
old_lr = selfVerificationMemRegLoad(sp, 13);
if ((insn & kMemOp2) == kMemOp2) {
insn = (insn << 16) | (insn >> 16);
//ALOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn);
int opcode12 = (insn >> 20) & 0xFFF;
int opcode6 = (insn >> 6) & 0x3F;
int opcode4 = (insn >> 8) & 0xF;
int imm2 = (insn >> 4) & 0x3;
int imm8 = insn & 0xFF;
int imm12 = insn & 0xFFF;
int rd = (insn >> 12) & 0xF;
int rm = insn & 0xF;
int rn = (insn >> 16) & 0xF;
int rt = (insn >> 12) & 0xF;
bool wBack = true;
// Update the link register
selfVerificationMemRegStore(sp, old_lr+4, 13);
// Determine whether the mem op is a store or load
switch (opcode12) {
case kMemOp2Stmia:
case kMemOp2Stmia2:
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2StrbRRR:
case kMemOp2StrhRRR:
case kMemOp2StrRRR:
case kMemOp2StrbRRI12:
case kMemOp2StrhRRI12:
case kMemOp2StrRRI12:
store = true;
}
// Determine the size of the mem access
switch (opcode12) {
case kMemOp2StrbRRR:
case kMemOp2LdrbRRR:
case kMemOp2StrbRRI12:
case kMemOp2LdrbRRI12:
size = kSVByte;
break;
case kMemOp2LdrsbRRR:
case kMemOp2LdrsbRRI12:
size = kSVSignedByte;
break;
case kMemOp2StrhRRR:
case kMemOp2LdrhRRR:
case kMemOp2StrhRRI12:
case kMemOp2LdrhRRI12:
size = kSVHalfword;
break;
case kMemOp2LdrshRRR:
case kMemOp2LdrshRRI12:
size = kSVSignedHalfword;
break;
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2Vldr:
case kMemOp2Vldr2:
if (opcode4 == kMemOp2Double) size = kSVDoubleword;
break;
case kMemOp2Stmia:
case kMemOp2Ldmia:
case kMemOp2Stmia2:
case kMemOp2Ldmia2:
size = kSVVariable;
break;
}
// Load the value of the address
addr = selfVerificationMemRegLoad(sp, rn);
// Figure out the offset
switch (opcode12) {
case kMemOp2Vstr:
case kMemOp2Vstr2:
case kMemOp2Vldr:
case kMemOp2Vldr2:
offset = imm8 << 2;
if (opcode4 == kMemOp2Single) {
rt = rd << 1;
if (insn & 0x400000) rt |= 0x1;
} else if (opcode4 == kMemOp2Double) {
if (insn & 0x400000) rt |= 0x10;
rt = rt << 1;
} else {
ALOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4);
dvmAbort();
}
rt += 14;
break;
case kMemOp2StrbRRR:
case kMemOp2LdrbRRR:
case kMemOp2StrhRRR:
case kMemOp2LdrhRRR:
case kMemOp2StrRRR:
case kMemOp2LdrRRR:
case kMemOp2LdrsbRRR:
case kMemOp2LdrshRRR:
offset = selfVerificationMemRegLoad(sp, rm) << imm2;
break;
case kMemOp2StrbRRI12:
case kMemOp2LdrbRRI12:
case kMemOp2StrhRRI12:
case kMemOp2LdrhRRI12:
case kMemOp2StrRRI12:
case kMemOp2LdrRRI12:
case kMemOp2LdrsbRRI12:
case kMemOp2LdrshRRI12:
offset = imm12;
break;
case kMemOp2Stmia:
case kMemOp2Ldmia:
wBack = false;
case kMemOp2Stmia2:
case kMemOp2Ldmia2:
offset = 0;
break;
default:
ALOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12);
offset = 0;
dvmAbort();
}
// Handle the decoded mem op accordingly
if (store) {
if (size == kSVVariable) {
ALOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)");
int i;
int regList = insn & 0xFFFF;
for (i = 0; i < 16; i++) {
if (regList & 0x1) {
data = selfVerificationMemRegLoad(sp, i);
selfVerificationStore(addr, data, kSVWord);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rn);
} else if (size == kSVDoubleword) {
double_data = selfVerificationMemRegLoadDouble(sp, rt);
selfVerificationStoreDoubleword(addr+offset, double_data);
} else {
data = selfVerificationMemRegLoad(sp, rt);
selfVerificationStore(addr+offset, data, size);
}
} else {
if (size == kSVVariable) {
ALOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)");
int i;
int regList = insn & 0xFFFF;
for (i = 0; i < 16; i++) {
if (regList & 0x1) {
data = selfVerificationLoad(addr, kSVWord);
selfVerificationMemRegStore(sp, data, i);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rn);
} else if (size == kSVDoubleword) {
double_data = selfVerificationLoadDoubleword(addr+offset);
selfVerificationMemRegStoreDouble(sp, double_data, rt);
} else {
data = selfVerificationLoad(addr+offset, size);
selfVerificationMemRegStore(sp, data, rt);
}
}
} else {
//ALOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn);
// Update the link register
selfVerificationMemRegStore(sp, old_lr+2, 13);
int opcode5 = (insn >> 11) & 0x1F;
int opcode7 = (insn >> 9) & 0x7F;
int imm = (insn >> 6) & 0x1F;
int rd = (insn >> 8) & 0x7;
int rm = (insn >> 6) & 0x7;
int rn = (insn >> 3) & 0x7;
int rt = insn & 0x7;
// Determine whether the mem op is a store or load
switch (opcode5) {
case kMemOpRRR:
switch (opcode7) {
case kMemOpStrRRR:
case kMemOpStrhRRR:
case kMemOpStrbRRR:
store = true;
}
break;
case kMemOpStrRRI5:
case kMemOpStrbRRI5:
case kMemOpStrhRRI5:
case kMemOpStmia:
store = true;
}
// Determine the size of the mem access
switch (opcode5) {
case kMemOpRRR:
case kMemOpRRR2:
switch (opcode7) {
case kMemOpStrbRRR:
case kMemOpLdrbRRR:
size = kSVByte;
break;
case kMemOpLdrsbRRR:
size = kSVSignedByte;
break;
case kMemOpStrhRRR:
case kMemOpLdrhRRR:
size = kSVHalfword;
break;
case kMemOpLdrshRRR:
size = kSVSignedHalfword;
break;
}
break;
case kMemOpStrbRRI5:
case kMemOpLdrbRRI5:
size = kSVByte;
break;
case kMemOpStrhRRI5:
case kMemOpLdrhRRI5:
size = kSVHalfword;
break;
case kMemOpStmia:
case kMemOpLdmia:
size = kSVVariable;
break;
}
// Load the value of the address
if (opcode5 == kMemOpLdrPcRel)
addr = selfVerificationMemRegLoad(sp, 4);
else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia)
addr = selfVerificationMemRegLoad(sp, rd);
else
addr = selfVerificationMemRegLoad(sp, rn);
// Figure out the offset
switch (opcode5) {
case kMemOpLdrPcRel:
offset = (insn & 0xFF) << 2;
rt = rd;
break;
case kMemOpRRR:
case kMemOpRRR2:
offset = selfVerificationMemRegLoad(sp, rm);
break;
case kMemOpStrRRI5:
case kMemOpLdrRRI5:
offset = imm << 2;
break;
case kMemOpStrhRRI5:
case kMemOpLdrhRRI5:
offset = imm << 1;
break;
case kMemOpStrbRRI5:
case kMemOpLdrbRRI5:
offset = imm;
break;
case kMemOpStmia:
case kMemOpLdmia:
offset = 0;
break;
default:
ALOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5);
offset = 0;
dvmAbort();
}
// Handle the decoded mem op accordingly
if (store) {
if (size == kSVVariable) {
int i;
int regList = insn & 0xFF;
for (i = 0; i < 8; i++) {
if (regList & 0x1) {
data = selfVerificationMemRegLoad(sp, i);
selfVerificationStore(addr, data, kSVWord);
addr += 4;
}
regList = regList >> 1;
}
selfVerificationMemRegStore(sp, addr, rd);
} else {
data = selfVerificationMemRegLoad(sp, rt);
selfVerificationStore(addr+offset, data, size);
}
} else {
if (size == kSVVariable) {
bool wBack = true;
int i;
int regList = insn & 0xFF;
for (i = 0; i < 8; i++) {
if (regList & 0x1) {
if (i == rd) wBack = false;
data = selfVerificationLoad(addr, kSVWord);
selfVerificationMemRegStore(sp, data, i);
addr += 4;
}
regList = regList >> 1;
}
if (wBack) selfVerificationMemRegStore(sp, addr, rd);
} else {
data = selfVerificationLoad(addr+offset, size);
selfVerificationMemRegStore(sp, data, rt);
}
}
}
}
#endif