/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "MemoryDealer" #include <binder/MemoryDealer.h> #include <binder/IPCThreadState.h> #include <binder/MemoryBase.h> #include <utils/Log.h> #include <utils/SortedVector.h> #include <utils/String8.h> #include <utils/threads.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/mman.h> #include <sys/file.h> namespace android { // ---------------------------------------------------------------------------- /* * A simple templatized doubly linked-list implementation */ template <typename NODE> class LinkedList { NODE* mFirst; NODE* mLast; public: LinkedList() : mFirst(0), mLast(0) { } bool isEmpty() const { return mFirst == 0; } NODE const* head() const { return mFirst; } NODE* head() { return mFirst; } NODE const* tail() const { return mLast; } NODE* tail() { return mLast; } void insertAfter(NODE* node, NODE* newNode) { newNode->prev = node; newNode->next = node->next; if (node->next == 0) mLast = newNode; else node->next->prev = newNode; node->next = newNode; } void insertBefore(NODE* node, NODE* newNode) { newNode->prev = node->prev; newNode->next = node; if (node->prev == 0) mFirst = newNode; else node->prev->next = newNode; node->prev = newNode; } void insertHead(NODE* newNode) { if (mFirst == 0) { mFirst = mLast = newNode; newNode->prev = newNode->next = 0; } else { newNode->prev = 0; newNode->next = mFirst; mFirst->prev = newNode; mFirst = newNode; } } void insertTail(NODE* newNode) { if (mLast == 0) { insertHead(newNode); } else { newNode->prev = mLast; newNode->next = 0; mLast->next = newNode; mLast = newNode; } } NODE* remove(NODE* node) { if (node->prev == 0) mFirst = node->next; else node->prev->next = node->next; if (node->next == 0) mLast = node->prev; else node->next->prev = node->prev; return node; } }; // ---------------------------------------------------------------------------- class Allocation : public MemoryBase { public: Allocation(const sp<MemoryDealer>& dealer, const sp<IMemoryHeap>& heap, ssize_t offset, size_t size); virtual ~Allocation(); private: sp<MemoryDealer> mDealer; }; // ---------------------------------------------------------------------------- class SimpleBestFitAllocator { enum { PAGE_ALIGNED = 0x00000001 }; public: SimpleBestFitAllocator(size_t size); ~SimpleBestFitAllocator(); size_t allocate(size_t size, uint32_t flags = 0); status_t deallocate(size_t offset); size_t size() const; void dump(const char* what) const; void dump(String8& res, const char* what) const; private: struct chunk_t { chunk_t(size_t start, size_t size) : start(start), size(size), free(1), prev(0), next(0) { } size_t start; size_t size : 28; int free : 4; mutable chunk_t* prev; mutable chunk_t* next; }; ssize_t alloc(size_t size, uint32_t flags); chunk_t* dealloc(size_t start); void dump_l(const char* what) const; void dump_l(String8& res, const char* what) const; static const int kMemoryAlign; mutable Mutex mLock; LinkedList<chunk_t> mList; size_t mHeapSize; }; // ---------------------------------------------------------------------------- Allocation::Allocation( const sp<MemoryDealer>& dealer, const sp<IMemoryHeap>& heap, ssize_t offset, size_t size) : MemoryBase(heap, offset, size), mDealer(dealer) { #ifndef NDEBUG void* const start_ptr = (void*)(intptr_t(heap->base()) + offset); memset(start_ptr, 0xda, size); #endif } Allocation::~Allocation() { size_t freedOffset = getOffset(); size_t freedSize = getSize(); if (freedSize) { /* NOTE: it's VERY important to not free allocations of size 0 because * they're special as they don't have any record in the allocator * and could alias some real allocation (their offset is zero). */ // keep the size to unmap in excess size_t pagesize = getpagesize(); size_t start = freedOffset; size_t end = start + freedSize; start &= ~(pagesize-1); end = (end + pagesize-1) & ~(pagesize-1); // give back to the kernel the pages we don't need size_t free_start = freedOffset; size_t free_end = free_start + freedSize; if (start < free_start) start = free_start; if (end > free_end) end = free_end; start = (start + pagesize-1) & ~(pagesize-1); end &= ~(pagesize-1); if (start < end) { void* const start_ptr = (void*)(intptr_t(getHeap()->base()) + start); size_t size = end-start; #ifndef NDEBUG memset(start_ptr, 0xdf, size); #endif // MADV_REMOVE is not defined on Dapper based Goobuntu #ifdef MADV_REMOVE if (size) { int err = madvise(start_ptr, size, MADV_REMOVE); ALOGW_IF(err, "madvise(%p, %u, MADV_REMOVE) returned %s", start_ptr, size, err<0 ? strerror(errno) : "Ok"); } #endif } // This should be done after madvise(MADV_REMOVE), otherwise madvise() // might kick out the memory region that's allocated and/or written // right after the deallocation. mDealer->deallocate(freedOffset); } } // ---------------------------------------------------------------------------- MemoryDealer::MemoryDealer(size_t size, const char* name) : mHeap(new MemoryHeapBase(size, 0, name)), mAllocator(new SimpleBestFitAllocator(size)) { } MemoryDealer::~MemoryDealer() { delete mAllocator; } sp<IMemory> MemoryDealer::allocate(size_t size) { sp<IMemory> memory; const ssize_t offset = allocator()->allocate(size); if (offset >= 0) { memory = new Allocation(this, heap(), offset, size); } return memory; } void MemoryDealer::deallocate(size_t offset) { allocator()->deallocate(offset); } void MemoryDealer::dump(const char* what) const { allocator()->dump(what); } const sp<IMemoryHeap>& MemoryDealer::heap() const { return mHeap; } SimpleBestFitAllocator* MemoryDealer::allocator() const { return mAllocator; } // ---------------------------------------------------------------------------- // align all the memory blocks on a cache-line boundary const int SimpleBestFitAllocator::kMemoryAlign = 32; SimpleBestFitAllocator::SimpleBestFitAllocator(size_t size) { size_t pagesize = getpagesize(); mHeapSize = ((size + pagesize-1) & ~(pagesize-1)); chunk_t* node = new chunk_t(0, mHeapSize / kMemoryAlign); mList.insertHead(node); } SimpleBestFitAllocator::~SimpleBestFitAllocator() { while(!mList.isEmpty()) { delete mList.remove(mList.head()); } } size_t SimpleBestFitAllocator::size() const { return mHeapSize; } size_t SimpleBestFitAllocator::allocate(size_t size, uint32_t flags) { Mutex::Autolock _l(mLock); ssize_t offset = alloc(size, flags); return offset; } status_t SimpleBestFitAllocator::deallocate(size_t offset) { Mutex::Autolock _l(mLock); chunk_t const * const freed = dealloc(offset); if (freed) { return NO_ERROR; } return NAME_NOT_FOUND; } ssize_t SimpleBestFitAllocator::alloc(size_t size, uint32_t flags) { if (size == 0) { return 0; } size = (size + kMemoryAlign-1) / kMemoryAlign; chunk_t* free_chunk = 0; chunk_t* cur = mList.head(); size_t pagesize = getpagesize(); while (cur) { int extra = 0; if (flags & PAGE_ALIGNED) extra = ( -cur->start & ((pagesize/kMemoryAlign)-1) ) ; // best fit if (cur->free && (cur->size >= (size+extra))) { if ((!free_chunk) || (cur->size < free_chunk->size)) { free_chunk = cur; } if (cur->size == size) { break; } } cur = cur->next; } if (free_chunk) { const size_t free_size = free_chunk->size; free_chunk->free = 0; free_chunk->size = size; if (free_size > size) { int extra = 0; if (flags & PAGE_ALIGNED) extra = ( -free_chunk->start & ((pagesize/kMemoryAlign)-1) ) ; if (extra) { chunk_t* split = new chunk_t(free_chunk->start, extra); free_chunk->start += extra; mList.insertBefore(free_chunk, split); } ALOGE_IF((flags&PAGE_ALIGNED) && ((free_chunk->start*kMemoryAlign)&(pagesize-1)), "PAGE_ALIGNED requested, but page is not aligned!!!"); const ssize_t tail_free = free_size - (size+extra); if (tail_free > 0) { chunk_t* split = new chunk_t( free_chunk->start + free_chunk->size, tail_free); mList.insertAfter(free_chunk, split); } } return (free_chunk->start)*kMemoryAlign; } return NO_MEMORY; } SimpleBestFitAllocator::chunk_t* SimpleBestFitAllocator::dealloc(size_t start) { start = start / kMemoryAlign; chunk_t* cur = mList.head(); while (cur) { if (cur->start == start) { LOG_FATAL_IF(cur->free, "block at offset 0x%08lX of size 0x%08lX already freed", cur->start*kMemoryAlign, cur->size*kMemoryAlign); // merge freed blocks together chunk_t* freed = cur; cur->free = 1; do { chunk_t* const p = cur->prev; chunk_t* const n = cur->next; if (p && (p->free || !cur->size)) { freed = p; p->size += cur->size; mList.remove(cur); delete cur; } cur = n; } while (cur && cur->free); #ifndef NDEBUG if (!freed->free) { dump_l("dealloc (!freed->free)"); } #endif LOG_FATAL_IF(!freed->free, "freed block at offset 0x%08lX of size 0x%08lX is not free!", freed->start * kMemoryAlign, freed->size * kMemoryAlign); return freed; } cur = cur->next; } return 0; } void SimpleBestFitAllocator::dump(const char* what) const { Mutex::Autolock _l(mLock); dump_l(what); } void SimpleBestFitAllocator::dump_l(const char* what) const { String8 result; dump_l(result, what); ALOGD("%s", result.string()); } void SimpleBestFitAllocator::dump(String8& result, const char* what) const { Mutex::Autolock _l(mLock); dump_l(result, what); } void SimpleBestFitAllocator::dump_l(String8& result, const char* what) const { size_t size = 0; int32_t i = 0; chunk_t const* cur = mList.head(); const size_t SIZE = 256; char buffer[SIZE]; snprintf(buffer, SIZE, " %s (%p, size=%u)\n", what, this, (unsigned int)mHeapSize); result.append(buffer); while (cur) { const char* errs[] = {"", "| link bogus NP", "| link bogus PN", "| link bogus NP+PN" }; int np = ((cur->next) && cur->next->prev != cur) ? 1 : 0; int pn = ((cur->prev) && cur->prev->next != cur) ? 2 : 0; snprintf(buffer, SIZE, " %3u: %08x | 0x%08X | 0x%08X | %s %s\n", i, int(cur), int(cur->start*kMemoryAlign), int(cur->size*kMemoryAlign), int(cur->free) ? "F" : "A", errs[np|pn]); result.append(buffer); if (!cur->free) size += cur->size*kMemoryAlign; i++; cur = cur->next; } snprintf(buffer, SIZE, " size allocated: %u (%u KB)\n", int(size), int(size/1024)); result.append(buffer); } }; // namespace android