/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <androidfw/InputTransport.h> #include <utils/Timers.h> #include <utils/StopWatch.h> #include <utils/StrongPointer.h> #include <gtest/gtest.h> #include <unistd.h> #include <time.h> #include <errno.h> #include "TestHelpers.h" namespace android { class InputChannelTest : public testing::Test { protected: virtual void SetUp() { } virtual void TearDown() { } }; TEST_F(InputChannelTest, ConstructorAndDestructor_TakesOwnershipOfFileDescriptors) { // Our purpose here is to verify that the input channel destructor closes the // file descriptor provided to it. One easy way is to provide it with one end // of a pipe and to check for EPIPE on the other end after the channel is destroyed. Pipe pipe; sp<InputChannel> inputChannel = new InputChannel(String8("channel name"), pipe.sendFd); EXPECT_STREQ("channel name", inputChannel->getName().string()) << "channel should have provided name"; EXPECT_EQ(pipe.sendFd, inputChannel->getFd()) << "channel should have provided fd"; inputChannel.clear(); // destroys input channel EXPECT_EQ(-EPIPE, pipe.readSignal()) << "channel should have closed fd when destroyed"; // clean up fds of Pipe endpoints that were closed so we don't try to close them again pipe.sendFd = -1; } TEST_F(InputChannelTest, OpenInputChannelPair_ReturnsAPairOfConnectedChannels) { sp<InputChannel> serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair(String8("channel name"), serverChannel, clientChannel); ASSERT_EQ(OK, result) << "should have successfully opened a channel pair"; // Name EXPECT_STREQ("channel name (server)", serverChannel->getName().string()) << "server channel should have suffixed name"; EXPECT_STREQ("channel name (client)", clientChannel->getName().string()) << "client channel should have suffixed name"; // Server->Client communication InputMessage serverMsg; memset(&serverMsg, 0, sizeof(InputMessage)); serverMsg.header.type = InputMessage::TYPE_KEY; serverMsg.body.key.action = AKEY_EVENT_ACTION_DOWN; EXPECT_EQ(OK, serverChannel->sendMessage(&serverMsg)) << "server channel should be able to send message to client channel"; InputMessage clientMsg; EXPECT_EQ(OK, clientChannel->receiveMessage(&clientMsg)) << "client channel should be able to receive message from server channel"; EXPECT_EQ(serverMsg.header.type, clientMsg.header.type) << "client channel should receive the correct message from server channel"; EXPECT_EQ(serverMsg.body.key.action, clientMsg.body.key.action) << "client channel should receive the correct message from server channel"; // Client->Server communication InputMessage clientReply; memset(&clientReply, 0, sizeof(InputMessage)); clientReply.header.type = InputMessage::TYPE_FINISHED; clientReply.body.finished.seq = 0x11223344; clientReply.body.finished.handled = true; EXPECT_EQ(OK, clientChannel->sendMessage(&clientReply)) << "client channel should be able to send message to server channel"; InputMessage serverReply; EXPECT_EQ(OK, serverChannel->receiveMessage(&serverReply)) << "server channel should be able to receive message from client channel"; EXPECT_EQ(clientReply.header.type, serverReply.header.type) << "server channel should receive the correct message from client channel"; EXPECT_EQ(clientReply.body.finished.seq, serverReply.body.finished.seq) << "server channel should receive the correct message from client channel"; EXPECT_EQ(clientReply.body.finished.handled, serverReply.body.finished.handled) << "server channel should receive the correct message from client channel"; } TEST_F(InputChannelTest, ReceiveSignal_WhenNoSignalPresent_ReturnsAnError) { sp<InputChannel> serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair(String8("channel name"), serverChannel, clientChannel); ASSERT_EQ(OK, result) << "should have successfully opened a channel pair"; InputMessage msg; EXPECT_EQ(WOULD_BLOCK, clientChannel->receiveMessage(&msg)) << "receiveMessage should have returned WOULD_BLOCK"; } TEST_F(InputChannelTest, ReceiveSignal_WhenPeerClosed_ReturnsAnError) { sp<InputChannel> serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair(String8("channel name"), serverChannel, clientChannel); ASSERT_EQ(OK, result) << "should have successfully opened a channel pair"; serverChannel.clear(); // close server channel InputMessage msg; EXPECT_EQ(DEAD_OBJECT, clientChannel->receiveMessage(&msg)) << "receiveMessage should have returned DEAD_OBJECT"; } TEST_F(InputChannelTest, SendSignal_WhenPeerClosed_ReturnsAnError) { sp<InputChannel> serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair(String8("channel name"), serverChannel, clientChannel); ASSERT_EQ(OK, result) << "should have successfully opened a channel pair"; serverChannel.clear(); // close server channel InputMessage msg; msg.header.type = InputMessage::TYPE_KEY; EXPECT_EQ(DEAD_OBJECT, clientChannel->sendMessage(&msg)) << "sendMessage should have returned DEAD_OBJECT"; } } // namespace android