/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim:set ts=2 sw=2 sts=2 et cindent: */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Mozilla code. * * The Initial Developer of the Original Code is the Mozilla Corporation. * Portions created by the Initial Developer are Copyright (C) 2009 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Benoit Jacob <bjacob@mozilla.com> * Jeff Muizelaar <jmuizelaar@mozilla.com> * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ // Necessary modifications are made to the original CheckedInt.h file to remove // dependencies on prtypes. // Also, change define Mozilla_CheckedInt_h to CheckedInt_h, change namespace // from mozilla to WebCore for easier usage. #ifndef CheckedInt_h #define CheckedInt_h #include <climits> namespace WebCore { namespace CheckedInt_internal { /* we don't want to use std::numeric_limits here because int... types may not support it, * depending on the platform, e.g. on certain platform they use nonstandard built-in types */ /*** Step 1: manually record information for all the types that we want to support ***/ struct unsupported_type {}; template<typename T> struct integer_type_manually_recorded_info; #define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type,_unsigned_type) \ template<> struct integer_type_manually_recorded_info<T> \ { \ enum { is_supported = 1 }; \ typedef _twice_bigger_type twice_bigger_type; \ typedef _unsigned_type unsigned_type; \ }; // Type Twice Bigger Type Unsigned Type CHECKEDINT_REGISTER_SUPPORTED_TYPE(int8_t, int16_t, uint8_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint8_t, uint16_t, uint8_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(int16_t, int32_t, uint16_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint16_t, uint32_t, uint16_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(int32_t, int64_t, uint32_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint32_t, uint64_t, uint32_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(int64_t, unsupported_type, uint64_t) CHECKEDINT_REGISTER_SUPPORTED_TYPE(uint64_t, unsupported_type, uint64_t) // now implement the fallback for standard types like int, long, ... // the difficulty is that they may or may not be equal to one of the above types, and/or // to each other. This is why any attempt to handle at once PRInt8... types and standard types // is bound to fail. template<typename T> struct is_standard_integer_type { enum { value = 0 }; }; template<> struct is_standard_integer_type<char> { enum { value = 1 }; }; template<> struct is_standard_integer_type<unsigned char> { enum { value = 1 }; }; template<> struct is_standard_integer_type<short> { enum { value = 1 }; }; template<> struct is_standard_integer_type<unsigned short> { enum { value = 1 }; }; template<> struct is_standard_integer_type<int> { enum { value = 1 }; }; template<> struct is_standard_integer_type<unsigned int> { enum { value = 1 }; }; template<> struct is_standard_integer_type<long> { enum { value = 1 }; }; template<> struct is_standard_integer_type<unsigned long> { enum { value = 1 }; }; template<> struct is_standard_integer_type<long long> { enum { value = 1 }; }; template<> struct is_standard_integer_type<unsigned long long> { enum { value = 1 }; }; template<int size, bool is_signed> struct explicitly_sized_integer_type {}; template<> struct explicitly_sized_integer_type<1, true> { typedef int8_t type; }; template<> struct explicitly_sized_integer_type<1, false> { typedef uint8_t type; }; template<> struct explicitly_sized_integer_type<2, true> { typedef int16_t type; }; template<> struct explicitly_sized_integer_type<2, false> { typedef uint16_t type; }; template<> struct explicitly_sized_integer_type<4, true> { typedef int32_t type; }; template<> struct explicitly_sized_integer_type<4, false> { typedef uint32_t type; }; template<> struct explicitly_sized_integer_type<8, true> { typedef int64_t type; }; template<> struct explicitly_sized_integer_type<8, false> { typedef uint64_t type; }; template<typename T> struct integer_type_manually_recorded_info { enum { is_supported = is_standard_integer_type<T>::value, size = sizeof(T), is_signed = (T(-1) > T(0)) ? 0 : 1 }; typedef typename explicitly_sized_integer_type<size, is_signed>::type explicit_sized_type; typedef integer_type_manually_recorded_info<explicit_sized_type> base; typedef typename base::twice_bigger_type twice_bigger_type; typedef typename base::unsigned_type unsigned_type; }; template<typename T, bool is_supported = integer_type_manually_recorded_info<T>::is_supported> struct TYPE_NOT_SUPPORTED_BY_CheckedInt {}; template<typename T> struct TYPE_NOT_SUPPORTED_BY_CheckedInt<T, true> { static void run() {} }; /*** Step 2: record some info about a given integer type, *** including whether it is supported, whether a twice bigger integer type *** is supported, what that twice bigger type is, and some stuff as found *** in std::numeric_limits (which we don't use because int.. types may *** not support it, if they are defined directly from compiler built-in types). ***/ template<typename T> struct is_unsupported_type { enum { answer = 0 }; }; template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; }; template<typename T> struct integer_traits { typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type; enum { is_supported = integer_type_manually_recorded_info<T>::is_supported, twice_bigger_type_is_supported = is_unsupported_type< typename integer_type_manually_recorded_info<T>::twice_bigger_type >::answer ? 0 : 1, size = sizeof(T), position_of_sign_bit = CHAR_BIT * size - 1, is_signed = (T(-1) > T(0)) ? 0 : 1 }; static T min() { // bitwise ops may return a larger type, that's why we cast explicitly to T return is_signed ? T(T(1) << position_of_sign_bit) : T(0); } static T max() { return ~min(); } }; /*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different. ***/ // bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that // the result is really of type T template<typename T> inline T has_sign_bit(T x) { return x >> integer_traits<T>::position_of_sign_bit; } template<typename T> inline T binary_complement(T x) { return ~x; } template<typename T, typename U, bool is_T_signed = integer_traits<T>::is_signed, bool is_U_signed = integer_traits<U>::is_signed> struct is_in_range_impl {}; template<typename T, typename U> struct is_in_range_impl<T, U, true, true> { static T run(U x) { return (x <= integer_traits<T>::max()) & (x >= integer_traits<T>::min()); } }; template<typename T, typename U> struct is_in_range_impl<T, U, false, false> { static T run(U x) { return x <= integer_traits<T>::max(); } }; template<typename T, typename U> struct is_in_range_impl<T, U, true, false> { static T run(U x) { if (sizeof(T) > sizeof(U)) return 1; else return x <= U(integer_traits<T>::max()); } }; template<typename T, typename U> struct is_in_range_impl<T, U, false, true> { static T run(U x) { if (sizeof(T) >= sizeof(U)) return x >= 0; else return x >= 0 && x <= U(integer_traits<T>::max()); } }; template<typename T, typename U> inline T is_in_range(U x) { return is_in_range_impl<T, U>::run(x); } template<typename T> inline T is_add_valid(T x, T y, T result) { return integer_traits<T>::is_signed ? // addition is valid if the sign of x+y is equal to either that of x or that of y. // Beware! These bitwise operations can return a larger integer type, if T was a // small type like int8, so we explicitly cast to T. has_sign_bit(binary_complement(T((result^x) & (result^y)))) : binary_complement(x) >= y; } template<typename T> inline T is_sub_valid(T x, T y, T result) { return integer_traits<T>::is_signed ? // substraction is valid if either x and y have same sign, or x-y and x have same sign has_sign_bit(binary_complement(T((result^x) & (x^y)))) : x >= y; } template<typename T, bool is_signed = integer_traits<T>::is_signed, bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported> struct is_mul_valid_impl {}; template<typename T> struct is_mul_valid_impl<T, true, true> { static T run(T x, T y) { typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type; twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y); return is_in_range<T>(product); } }; template<typename T> struct is_mul_valid_impl<T, false, true> { static T run(T x, T y) { typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type; twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y); return is_in_range<T>(product); } }; template<typename T> struct is_mul_valid_impl<T, true, false> { static T run(T x, T y) { const T max_value = integer_traits<T>::max(); const T min_value = integer_traits<T>::min(); if (x == 0 || y == 0) return true; if (x > 0) { if (y > 0) return x <= max_value / y; else return y >= min_value / x; } else { if (y > 0) return x >= min_value / y; else return y >= max_value / x; } } }; template<typename T> struct is_mul_valid_impl<T, false, false> { static T run(T x, T y) { const T max_value = integer_traits<T>::max(); if (x == 0 || y == 0) return true; return x <= max_value / y; } }; template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/) { return is_mul_valid_impl<T>::run(x, y); } template<typename T> inline T is_div_valid(T x, T y) { return integer_traits<T>::is_signed ? // keep in mind that min/-1 is invalid because abs(min)>max y != 0 && (x != integer_traits<T>::min() || y != T(-1)) : y != 0; } } // end namespace CheckedInt_internal /*** Step 4: Now define the CheckedInt class. ***/ /** \class CheckedInt * \brief Integer wrapper class checking for integer overflow and other errors * \param T the integer type to wrap. Can be any of int8_t, uint8_t, int16_t, uint16_t, * int32_t, uint32_t, int64_t, uint64_t. * * This class implements guarded integer arithmetic. Do a computation, then check that * valid() returns true, you then have a guarantee that no problem, such as integer overflow, * happened during this computation. * * The arithmetic operators in this class are guaranteed not to crash your app * in case of a division by zero. * * For example, suppose that you want to implement a function that computes (x+y)/z, * that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow). * You could code it as follows: \code bool compute_x_plus_y_over_z(int32_t x, int32_t y, int32_t z, int32_t *result) { CheckedInt<int32_t> checked_result = (CheckedInt<int32_t>(x) + y) / z; *result = checked_result.value(); return checked_result.valid(); } \endcode * * Implicit conversion from plain integers to checked integers is allowed. The plain integer * is checked to be in range before being casted to the destination type. This means that the following * lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid: * \code CheckedInt<uint8_t> x(1); // 1 is of type int, is found to be in range for uint8_t, x is valid CheckedInt<uint8_t> x(-1); // -1 is of type int, is found not to be in range for uint8_t, x is invalid CheckedInt<int8_t> x(-1); // -1 is of type int, is found to be in range for int8_t, x is valid CheckedInt<int8_t> x(int16_t(1000)); // 1000 is of type int16_t, is found not to be in range for int8_t, x is invalid CheckedInt<int32_t> x(uint32_t(123456789)); // 3123456789 is of type uint32_t, is found not to be in range // for int32_t, x is invalid * \endcode * Implicit conversion from * checked integers to plain integers is not allowed. As shown in the * above example, to get the value of a checked integer as a normal integer, call value(). * * Arithmetic operations between checked and plain integers is allowed; the result type * is the type of the checked integer. * * Safe integers of different types cannot be used in the same arithmetic expression. */ template<typename T> class CheckedInt { protected: T mValue; T mIsValid; // stored as a T to limit the number of integer conversions when // evaluating nested arithmetic expressions. template<typename U> CheckedInt(const U& value, bool isValid) : mValue(value), mIsValid(isValid) { CheckedInt_internal::TYPE_NOT_SUPPORTED_BY_CheckedInt<T>::run(); } public: /** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid * depending on whether the \a value is in range. * * This constructor is not explicit. Instead, the type of its argument is a separate template parameter, * ensuring that no conversion is performed before this constructor is actually called. * As explained in the above documentation for class CheckedInt, this constructor checks that its argument is * valid. */ template<typename U> CheckedInt(const U& value) : mValue(value), mIsValid(CheckedInt_internal::is_in_range<T>(value)) { CheckedInt_internal::TYPE_NOT_SUPPORTED_BY_CheckedInt<T>::run(); } /** Constructs a valid checked integer with uninitialized value */ CheckedInt() : mIsValid(1) { CheckedInt_internal::TYPE_NOT_SUPPORTED_BY_CheckedInt<T>::run(); } /** \returns the actual value */ T value() const { return mValue; } /** \returns true if the checked integer is valid, i.e. is not the result * of an invalid operation or of an operation involving an invalid checked integer */ bool valid() const { return mIsValid; } /** \returns the sum. Checks for overflow. */ template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs); /** Adds. Checks for overflow. \returns self reference */ template<typename U> CheckedInt& operator +=(const U &rhs); /** \returns the difference. Checks for overflow. */ template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs); /** Substracts. Checks for overflow. \returns self reference */ template<typename U> CheckedInt& operator -=(const U &rhs); /** \returns the product. Checks for overflow. */ template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs); /** Multiplies. Checks for overflow. \returns self reference */ template<typename U> CheckedInt& operator *=(const U &rhs); /** \returns the quotient. Checks for overflow and for divide-by-zero. */ template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs); /** Divides. Checks for overflow and for divide-by-zero. \returns self reference */ template<typename U> CheckedInt& operator /=(const U &rhs); /** \returns the opposite value. Checks for overflow. */ CheckedInt operator -() const { T result = -value(); /* give the compiler a good chance to perform RVO */ return CheckedInt(result, mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result)); } /** \returns true if the left and right hand sides are valid and have the same value. */ bool operator ==(const CheckedInt& other) const { return bool(mIsValid & other.mIsValid & T(value() == other.value())); } private: /** operator!= is disabled. Indeed: (a!=b) should be the same as !(a==b) but that * would mean that if a or b is invalid, (a!=b) is always true, which is very tricky. */ template<typename U> bool operator !=(const U& other) const { return !(*this == other); } }; #define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \ template<typename T> \ inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \ { \ T x = lhs.value(); \ T y = rhs.value(); \ T result = x OP y; \ T is_op_valid \ = CheckedInt_internal::is_##NAME##_valid(x, y, result); \ /* give the compiler a good chance to perform RVO */ \ return CheckedInt<T>(result, \ lhs.mIsValid & \ rhs.mIsValid & \ is_op_valid); \ } CHECKEDINT_BASIC_BINARY_OPERATOR(add, +) CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -) CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *) // division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR // because if rhs == 0, we are not allowed to even try to compute the quotient. template<typename T> inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) { T x = lhs.value(); T y = rhs.value(); T is_op_valid = CheckedInt_internal::is_div_valid(x, y); T result = is_op_valid ? (x / y) : 0; /* give the compiler a good chance to perform RVO */ return CheckedInt<T>(result, lhs.mIsValid & rhs.mIsValid & is_op_valid); } // implement cast_to_CheckedInt<T>(x), making sure that // - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T // - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization) template<typename T, typename U> struct cast_to_CheckedInt_impl { typedef CheckedInt<T> return_type; static CheckedInt<T> run(const U& u) { return u; } }; template<typename T> struct cast_to_CheckedInt_impl<T, CheckedInt<T> > { typedef const CheckedInt<T>& return_type; static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; } }; template<typename T, typename U> inline typename cast_to_CheckedInt_impl<T, U>::return_type cast_to_CheckedInt(const U& u) { return cast_to_CheckedInt_impl<T, U>::run(u); } #define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \ template<typename T> \ template<typename U> \ CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(const U &rhs) \ { \ *this = *this OP cast_to_CheckedInt<T>(rhs); \ return *this; \ } \ template<typename T, typename U> \ inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const U &rhs) \ { \ return lhs OP cast_to_CheckedInt<T>(rhs); \ } \ template<typename T, typename U> \ inline CheckedInt<T> operator OP(const U & lhs, const CheckedInt<T> &rhs) \ { \ return cast_to_CheckedInt<T>(lhs) OP rhs; \ } CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=) CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=) CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=) CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=) template<typename T, typename U> inline bool operator ==(const CheckedInt<T> &lhs, const U &rhs) { return lhs == cast_to_CheckedInt<T>(rhs); } template<typename T, typename U> inline bool operator ==(const U & lhs, const CheckedInt<T> &rhs) { return cast_to_CheckedInt<T>(lhs) == rhs; } } // end namespace WebCore #endif /* CheckedInt_h */