/* * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) * Copyright (C) 2007 Alp Toker <alp@atoker.com> * Copyright (C) 2008 Eric Seidel <eric@webkit.org> * Copyright (C) 2008 Dirk Schulze <krit@webkit.org> * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "CanvasRenderingContext2D.h" #include "AffineTransform.h" #include "CSSMutableStyleDeclaration.h" #include "CSSParser.h" #include "CSSPropertyNames.h" #include "CSSStyleSelector.h" #include "CachedImage.h" #include "CanvasGradient.h" #include "CanvasPattern.h" #include "CanvasStyle.h" #include "ExceptionCode.h" #include "FloatConversion.h" #include "GraphicsContext.h" #include "HTMLCanvasElement.h" #include "HTMLImageElement.h" #include "HTMLMediaElement.h" #include "HTMLNames.h" #include "HTMLVideoElement.h" #include "ImageBuffer.h" #include "ImageData.h" #include "KURL.h" #include "Page.h" #include "RenderHTMLCanvas.h" #include "SecurityOrigin.h" #include "Settings.h" #include "StrokeStyleApplier.h" #include "TextMetrics.h" #include "TextRun.h" #if ENABLE(ACCELERATED_2D_CANVAS) #include "Chrome.h" #include "ChromeClient.h" #include "DrawingBuffer.h" #include "FrameView.h" #include "GraphicsContext3D.h" #include "SharedGraphicsContext3D.h" #if USE(ACCELERATED_COMPOSITING) #include "RenderLayer.h" #endif #endif #include <wtf/ByteArray.h> #include <wtf/MathExtras.h> #include <wtf/OwnPtr.h> #include <wtf/UnusedParam.h> using namespace std; namespace WebCore { using namespace HTMLNames; static const char* const defaultFont = "10px sans-serif"; class CanvasStrokeStyleApplier : public StrokeStyleApplier { public: CanvasStrokeStyleApplier(CanvasRenderingContext2D* canvasContext) : m_canvasContext(canvasContext) { } virtual void strokeStyle(GraphicsContext* c) { c->setStrokeThickness(m_canvasContext->lineWidth()); c->setLineCap(m_canvasContext->getLineCap()); c->setLineJoin(m_canvasContext->getLineJoin()); c->setMiterLimit(m_canvasContext->miterLimit()); } private: CanvasRenderingContext2D* m_canvasContext; }; CanvasRenderingContext2D::CanvasRenderingContext2D(HTMLCanvasElement* canvas, bool usesCSSCompatibilityParseMode, bool usesDashboardCompatibilityMode) : CanvasRenderingContext(canvas) , m_stateStack(1) , m_usesCSSCompatibilityParseMode(usesCSSCompatibilityParseMode) #if ENABLE(DASHBOARD_SUPPORT) , m_usesDashboardCompatibilityMode(usesDashboardCompatibilityMode) #endif #if ENABLE(ACCELERATED_2D_CANVAS) , m_context3D(0) #endif { #if !ENABLE(DASHBOARD_SUPPORT) ASSERT_UNUSED(usesDashboardCompatibilityMode, !usesDashboardCompatibilityMode); #endif // Make sure that even if the drawingContext() has a different default // thickness, it is in sync with the canvas thickness. setLineWidth(lineWidth()); #if ENABLE(ACCELERATED_2D_CANVAS) Page* p = canvas->document()->page(); if (!p) return; if (!p->settings()->accelerated2dCanvasEnabled()) return; if (GraphicsContext* c = drawingContext()) { m_context3D = p->sharedGraphicsContext3D(); if (m_context3D) { m_drawingBuffer = m_context3D->graphicsContext3D()->createDrawingBuffer(IntSize(canvas->width(), canvas->height())); if (!m_drawingBuffer) { c->setSharedGraphicsContext3D(0, 0, IntSize()); m_context3D.clear(); } else c->setSharedGraphicsContext3D(m_context3D.get(), m_drawingBuffer.get(), IntSize(canvas->width(), canvas->height())); } } #endif } CanvasRenderingContext2D::~CanvasRenderingContext2D() { } bool CanvasRenderingContext2D::isAccelerated() const { #if USE(IOSURFACE_CANVAS_BACKING_STORE) ImageBuffer* buffer = canvas()->buffer(); return buffer ? buffer->isAccelerated() : false; #elif ENABLE(ACCELERATED_2D_CANVAS) return m_context3D; #else return false; #endif } bool CanvasRenderingContext2D::paintsIntoCanvasBuffer() const { #if ENABLE(ACCELERATED_2D_CANVAS) if (m_context3D) return m_context3D->paintsIntoCanvasBuffer(); #endif return true; } void CanvasRenderingContext2D::reset() { m_stateStack.resize(1); m_stateStack.first() = State(); m_path.clear(); #if ENABLE(ACCELERATED_2D_CANVAS) if (GraphicsContext* c = drawingContext()) { if (m_context3D && m_drawingBuffer) { if (m_drawingBuffer->reset(IntSize(canvas()->width(), canvas()->height()))) { c->setSharedGraphicsContext3D(m_context3D.get(), m_drawingBuffer.get(), IntSize(canvas()->width(), canvas()->height())); #if USE(ACCELERATED_COMPOSITING) RenderBox* renderBox = canvas()->renderBox(); if (renderBox && renderBox->hasLayer() && renderBox->layer()->hasAcceleratedCompositing()) renderBox->layer()->contentChanged(RenderLayer::CanvasChanged); #endif } else { c->setSharedGraphicsContext3D(0, 0, IntSize()); m_drawingBuffer.clear(); m_context3D.clear(); } } } #endif } CanvasRenderingContext2D::State::State() : m_strokeStyle(CanvasStyle::createFromRGBA(Color::black)) , m_fillStyle(CanvasStyle::createFromRGBA(Color::black)) , m_lineWidth(1) , m_lineCap(ButtCap) , m_lineJoin(MiterJoin) , m_miterLimit(10) , m_shadowBlur(0) , m_shadowColor(Color::transparent) , m_globalAlpha(1) , m_globalComposite(CompositeSourceOver) , m_invertibleCTM(true) , m_textAlign(StartTextAlign) , m_textBaseline(AlphabeticTextBaseline) , m_unparsedFont(defaultFont) , m_realizedFont(false) { } CanvasRenderingContext2D::State::State(const State& other) : FontSelectorClient() { m_unparsedStrokeColor = other.m_unparsedStrokeColor; m_unparsedFillColor = other.m_unparsedFillColor; m_strokeStyle = other.m_strokeStyle; m_fillStyle = other.m_fillStyle; m_lineWidth = other.m_lineWidth; m_lineCap = other.m_lineCap; m_lineJoin = other.m_lineJoin; m_miterLimit = other.m_miterLimit; m_shadowOffset = other.m_shadowOffset; m_shadowBlur = other.m_shadowBlur; m_shadowColor = other.m_shadowColor; m_globalAlpha = other.m_globalAlpha; m_globalComposite = other.m_globalComposite; m_transform = other.m_transform; m_invertibleCTM = other.m_invertibleCTM; m_textAlign = other.m_textAlign; m_textBaseline = other.m_textBaseline; m_unparsedFont = other.m_unparsedFont; m_font = other.m_font; m_realizedFont = other.m_realizedFont; if (m_realizedFont) m_font.fontSelector()->registerForInvalidationCallbacks(this); } CanvasRenderingContext2D::State& CanvasRenderingContext2D::State::operator=(const State& other) { if (this == &other) return *this; if (m_realizedFont) m_font.fontSelector()->unregisterForInvalidationCallbacks(this); m_unparsedStrokeColor = other.m_unparsedStrokeColor; m_unparsedFillColor = other.m_unparsedFillColor; m_strokeStyle = other.m_strokeStyle; m_fillStyle = other.m_fillStyle; m_lineWidth = other.m_lineWidth; m_lineCap = other.m_lineCap; m_lineJoin = other.m_lineJoin; m_miterLimit = other.m_miterLimit; m_shadowOffset = other.m_shadowOffset; m_shadowBlur = other.m_shadowBlur; m_shadowColor = other.m_shadowColor; m_globalAlpha = other.m_globalAlpha; m_globalComposite = other.m_globalComposite; m_transform = other.m_transform; m_invertibleCTM = other.m_invertibleCTM; m_textAlign = other.m_textAlign; m_textBaseline = other.m_textBaseline; m_unparsedFont = other.m_unparsedFont; m_font = other.m_font; m_realizedFont = other.m_realizedFont; if (m_realizedFont) m_font.fontSelector()->registerForInvalidationCallbacks(this); return *this; } CanvasRenderingContext2D::State::~State() { if (m_realizedFont) m_font.fontSelector()->unregisterForInvalidationCallbacks(this); } void CanvasRenderingContext2D::State::fontsNeedUpdate(FontSelector* fontSelector) { ASSERT_ARG(fontSelector, fontSelector == m_font.fontSelector()); ASSERT(m_realizedFont); m_font.update(fontSelector); } void CanvasRenderingContext2D::save() { ASSERT(m_stateStack.size() >= 1); m_stateStack.append(state()); GraphicsContext* c = drawingContext(); if (!c) return; c->save(); } void CanvasRenderingContext2D::restore() { ASSERT(m_stateStack.size() >= 1); if (m_stateStack.size() <= 1) return; m_path.transform(state().m_transform); m_stateStack.removeLast(); m_path.transform(state().m_transform.inverse()); GraphicsContext* c = drawingContext(); if (!c) return; c->restore(); } void CanvasRenderingContext2D::setAllAttributesToDefault() { state().m_globalAlpha = 1; state().m_shadowOffset = FloatSize(); state().m_shadowBlur = 0; state().m_shadowColor = Color::transparent; state().m_globalComposite = CompositeSourceOver; GraphicsContext* context = drawingContext(); if (!context) return; context->setLegacyShadow(FloatSize(), 0, Color::transparent, ColorSpaceDeviceRGB); context->setAlpha(1); context->setCompositeOperation(CompositeSourceOver); } CanvasStyle* CanvasRenderingContext2D::strokeStyle() const { return state().m_strokeStyle.get(); } void CanvasRenderingContext2D::setStrokeStyle(PassRefPtr<CanvasStyle> style) { if (!style) return; if (state().m_strokeStyle && state().m_strokeStyle->isEquivalentColor(*style)) return; if (style->isCurrentColor()) { if (style->hasOverrideAlpha()) style = CanvasStyle::createFromRGBA(colorWithOverrideAlpha(currentColor(canvas()), style->overrideAlpha())); else style = CanvasStyle::createFromRGBA(currentColor(canvas())); } else checkOrigin(style->canvasPattern()); state().m_strokeStyle = style; GraphicsContext* c = drawingContext(); if (!c) return; state().m_strokeStyle->applyStrokeColor(c); state().m_unparsedStrokeColor = String(); } CanvasStyle* CanvasRenderingContext2D::fillStyle() const { return state().m_fillStyle.get(); } void CanvasRenderingContext2D::setFillStyle(PassRefPtr<CanvasStyle> style) { if (!style) return; if (state().m_fillStyle && state().m_fillStyle->isEquivalentColor(*style)) return; if (style->isCurrentColor()) { if (style->hasOverrideAlpha()) style = CanvasStyle::createFromRGBA(colorWithOverrideAlpha(currentColor(canvas()), style->overrideAlpha())); else style = CanvasStyle::createFromRGBA(currentColor(canvas())); } else checkOrigin(style->canvasPattern()); state().m_fillStyle = style; GraphicsContext* c = drawingContext(); if (!c) return; state().m_fillStyle->applyFillColor(c); state().m_unparsedFillColor = String(); } float CanvasRenderingContext2D::lineWidth() const { return state().m_lineWidth; } void CanvasRenderingContext2D::setLineWidth(float width) { if (!(isfinite(width) && width > 0)) return; state().m_lineWidth = width; GraphicsContext* c = drawingContext(); if (!c) return; c->setStrokeThickness(width); } String CanvasRenderingContext2D::lineCap() const { return lineCapName(state().m_lineCap); } void CanvasRenderingContext2D::setLineCap(const String& s) { LineCap cap; if (!parseLineCap(s, cap)) return; state().m_lineCap = cap; GraphicsContext* c = drawingContext(); if (!c) return; c->setLineCap(cap); } String CanvasRenderingContext2D::lineJoin() const { return lineJoinName(state().m_lineJoin); } void CanvasRenderingContext2D::setLineJoin(const String& s) { LineJoin join; if (!parseLineJoin(s, join)) return; state().m_lineJoin = join; GraphicsContext* c = drawingContext(); if (!c) return; c->setLineJoin(join); } float CanvasRenderingContext2D::miterLimit() const { return state().m_miterLimit; } void CanvasRenderingContext2D::setMiterLimit(float limit) { if (!(isfinite(limit) && limit > 0)) return; state().m_miterLimit = limit; GraphicsContext* c = drawingContext(); if (!c) return; c->setMiterLimit(limit); } float CanvasRenderingContext2D::shadowOffsetX() const { return state().m_shadowOffset.width(); } void CanvasRenderingContext2D::setShadowOffsetX(float x) { if (!isfinite(x)) return; state().m_shadowOffset.setWidth(x); applyShadow(); } float CanvasRenderingContext2D::shadowOffsetY() const { return state().m_shadowOffset.height(); } void CanvasRenderingContext2D::setShadowOffsetY(float y) { if (!isfinite(y)) return; state().m_shadowOffset.setHeight(y); applyShadow(); } float CanvasRenderingContext2D::shadowBlur() const { return state().m_shadowBlur; } void CanvasRenderingContext2D::setShadowBlur(float blur) { if (!(isfinite(blur) && blur >= 0)) return; state().m_shadowBlur = blur; applyShadow(); } String CanvasRenderingContext2D::shadowColor() const { return Color(state().m_shadowColor).serialized(); } void CanvasRenderingContext2D::setShadowColor(const String& color) { if (!parseColorOrCurrentColor(state().m_shadowColor, color, canvas())) return; applyShadow(); } float CanvasRenderingContext2D::globalAlpha() const { return state().m_globalAlpha; } void CanvasRenderingContext2D::setGlobalAlpha(float alpha) { if (!(alpha >= 0 && alpha <= 1)) return; state().m_globalAlpha = alpha; GraphicsContext* c = drawingContext(); if (!c) return; c->setAlpha(alpha); } String CanvasRenderingContext2D::globalCompositeOperation() const { return compositeOperatorName(state().m_globalComposite); } void CanvasRenderingContext2D::setGlobalCompositeOperation(const String& operation) { CompositeOperator op; if (!parseCompositeOperator(operation, op)) return; state().m_globalComposite = op; GraphicsContext* c = drawingContext(); if (!c) return; c->setCompositeOperation(op); #if ENABLE(ACCELERATED_2D_CANVAS) && !ENABLE(SKIA_GPU) if (isAccelerated() && op != CompositeSourceOver) { c->setSharedGraphicsContext3D(0, 0, IntSize()); m_drawingBuffer.clear(); m_context3D.clear(); // Mark as needing a style recalc so our compositing layer can be removed. canvas()->setNeedsStyleRecalc(SyntheticStyleChange); } #endif } void CanvasRenderingContext2D::scale(float sx, float sy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!isfinite(sx) | !isfinite(sy)) return; AffineTransform newTransform = state().m_transform; newTransform.scaleNonUniform(sx, sy); if (!newTransform.isInvertible()) { state().m_invertibleCTM = false; return; } state().m_transform = newTransform; c->scale(FloatSize(sx, sy)); m_path.transform(AffineTransform().scaleNonUniform(1.0 / sx, 1.0 / sy)); } void CanvasRenderingContext2D::rotate(float angleInRadians) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!isfinite(angleInRadians)) return; AffineTransform newTransform = state().m_transform; newTransform.rotate(angleInRadians / piDouble * 180.0); if (!newTransform.isInvertible()) { state().m_invertibleCTM = false; return; } state().m_transform = newTransform; c->rotate(angleInRadians); m_path.transform(AffineTransform().rotate(-angleInRadians / piDouble * 180.0)); } void CanvasRenderingContext2D::translate(float tx, float ty) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!isfinite(tx) | !isfinite(ty)) return; AffineTransform newTransform = state().m_transform; newTransform.translate(tx, ty); if (!newTransform.isInvertible()) { state().m_invertibleCTM = false; return; } state().m_transform = newTransform; c->translate(tx, ty); m_path.transform(AffineTransform().translate(-tx, -ty)); } void CanvasRenderingContext2D::transform(float m11, float m12, float m21, float m22, float dx, float dy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!isfinite(m11) | !isfinite(m21) | !isfinite(dx) | !isfinite(m12) | !isfinite(m22) | !isfinite(dy)) return; AffineTransform transform(m11, m12, m21, m22, dx, dy); AffineTransform newTransform = state().m_transform * transform; if (!newTransform.isInvertible()) { state().m_invertibleCTM = false; return; } state().m_transform = newTransform; c->concatCTM(transform); m_path.transform(transform.inverse()); } void CanvasRenderingContext2D::setTransform(float m11, float m12, float m21, float m22, float dx, float dy) { GraphicsContext* c = drawingContext(); if (!c) return; if (!isfinite(m11) | !isfinite(m21) | !isfinite(dx) | !isfinite(m12) | !isfinite(m22) | !isfinite(dy)) return; AffineTransform ctm = state().m_transform; if (!ctm.isInvertible()) return; c->concatCTM(c->getCTM().inverse()); c->concatCTM(canvas()->baseTransform()); state().m_transform = ctm.inverse() * state().m_transform; m_path.transform(ctm); state().m_invertibleCTM = true; transform(m11, m12, m21, m22, dx, dy); } void CanvasRenderingContext2D::setStrokeColor(const String& color) { if (color == state().m_unparsedStrokeColor) return; setStrokeStyle(CanvasStyle::createFromString(color, canvas()->document())); state().m_unparsedStrokeColor = color; } void CanvasRenderingContext2D::setStrokeColor(float grayLevel) { if (state().m_strokeStyle && state().m_strokeStyle->isEquivalentRGBA(grayLevel, grayLevel, grayLevel, 1.0f)) return; setStrokeStyle(CanvasStyle::createFromGrayLevelWithAlpha(grayLevel, 1.0f)); } void CanvasRenderingContext2D::setStrokeColor(const String& color, float alpha) { setStrokeStyle(CanvasStyle::createFromStringWithOverrideAlpha(color, alpha)); } void CanvasRenderingContext2D::setStrokeColor(float grayLevel, float alpha) { if (state().m_strokeStyle && state().m_strokeStyle->isEquivalentRGBA(grayLevel, grayLevel, grayLevel, alpha)) return; setStrokeStyle(CanvasStyle::createFromGrayLevelWithAlpha(grayLevel, alpha)); } void CanvasRenderingContext2D::setStrokeColor(float r, float g, float b, float a) { if (state().m_strokeStyle && state().m_strokeStyle->isEquivalentRGBA(r, g, b, a)) return; setStrokeStyle(CanvasStyle::createFromRGBAChannels(r, g, b, a)); } void CanvasRenderingContext2D::setStrokeColor(float c, float m, float y, float k, float a) { if (state().m_strokeStyle && state().m_strokeStyle->isEquivalentCMYKA(c, m, y, k, a)) return; setStrokeStyle(CanvasStyle::createFromCMYKAChannels(c, m, y, k, a)); } void CanvasRenderingContext2D::setFillColor(const String& color) { if (color == state().m_unparsedFillColor) return; setFillStyle(CanvasStyle::createFromString(color, canvas()->document())); state().m_unparsedFillColor = color; } void CanvasRenderingContext2D::setFillColor(float grayLevel) { if (state().m_fillStyle && state().m_fillStyle->isEquivalentRGBA(grayLevel, grayLevel, grayLevel, 1.0f)) return; setFillStyle(CanvasStyle::createFromGrayLevelWithAlpha(grayLevel, 1.0f)); } void CanvasRenderingContext2D::setFillColor(const String& color, float alpha) { setFillStyle(CanvasStyle::createFromStringWithOverrideAlpha(color, alpha)); } void CanvasRenderingContext2D::setFillColor(float grayLevel, float alpha) { if (state().m_fillStyle && state().m_fillStyle->isEquivalentRGBA(grayLevel, grayLevel, grayLevel, alpha)) return; setFillStyle(CanvasStyle::createFromGrayLevelWithAlpha(grayLevel, alpha)); } void CanvasRenderingContext2D::setFillColor(float r, float g, float b, float a) { if (state().m_fillStyle && state().m_fillStyle->isEquivalentRGBA(r, g, b, a)) return; setFillStyle(CanvasStyle::createFromRGBAChannels(r, g, b, a)); } void CanvasRenderingContext2D::setFillColor(float c, float m, float y, float k, float a) { if (state().m_fillStyle && state().m_fillStyle->isEquivalentCMYKA(c, m, y, k, a)) return; setFillStyle(CanvasStyle::createFromCMYKAChannels(c, m, y, k, a)); } void CanvasRenderingContext2D::beginPath() { m_path.clear(); } void CanvasRenderingContext2D::closePath() { if (m_path.isEmpty()) return; FloatRect boundRect = m_path.boundingRect(); if (boundRect.width() || boundRect.height()) m_path.closeSubpath(); } void CanvasRenderingContext2D::moveTo(float x, float y) { if (!isfinite(x) | !isfinite(y)) return; if (!state().m_invertibleCTM) return; m_path.moveTo(FloatPoint(x, y)); } void CanvasRenderingContext2D::lineTo(float x, float y) { if (!isfinite(x) | !isfinite(y)) return; if (!state().m_invertibleCTM) return; FloatPoint p1 = FloatPoint(x, y); if (!m_path.hasCurrentPoint()) m_path.moveTo(p1); else if (p1 != m_path.currentPoint()) m_path.addLineTo(FloatPoint(x, y)); } void CanvasRenderingContext2D::quadraticCurveTo(float cpx, float cpy, float x, float y) { if (!isfinite(cpx) | !isfinite(cpy) | !isfinite(x) | !isfinite(y)) return; if (!state().m_invertibleCTM) return; if (!m_path.hasCurrentPoint()) m_path.moveTo(FloatPoint(cpx, cpy)); FloatPoint p1 = FloatPoint(x, y); if (p1 != m_path.currentPoint()) m_path.addQuadCurveTo(FloatPoint(cpx, cpy), p1); } void CanvasRenderingContext2D::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y) { if (!isfinite(cp1x) | !isfinite(cp1y) | !isfinite(cp2x) | !isfinite(cp2y) | !isfinite(x) | !isfinite(y)) return; if (!state().m_invertibleCTM) return; if (!m_path.hasCurrentPoint()) m_path.moveTo(FloatPoint(cp1x, cp1y)); FloatPoint p1 = FloatPoint(x, y); if (p1 != m_path.currentPoint()) m_path.addBezierCurveTo(FloatPoint(cp1x, cp1y), FloatPoint(cp2x, cp2y), p1); } void CanvasRenderingContext2D::arcTo(float x1, float y1, float x2, float y2, float r, ExceptionCode& ec) { ec = 0; if (!isfinite(x1) | !isfinite(y1) | !isfinite(x2) | !isfinite(y2) | !isfinite(r)) return; if (r < 0) { ec = INDEX_SIZE_ERR; return; } if (!state().m_invertibleCTM) return; FloatPoint p1 = FloatPoint(x1, y1); FloatPoint p2 = FloatPoint(x2, y2); if (!m_path.hasCurrentPoint()) m_path.moveTo(p1); else if (p1 == m_path.currentPoint() || p1 == p2 || !r) lineTo(x1, y1); else m_path.addArcTo(p1, p2, r); } void CanvasRenderingContext2D::arc(float x, float y, float r, float sa, float ea, bool anticlockwise, ExceptionCode& ec) { ec = 0; if (!isfinite(x) | !isfinite(y) | !isfinite(r) | !isfinite(sa) | !isfinite(ea)) return; if (r < 0) { ec = INDEX_SIZE_ERR; return; } if (sa == ea) return; if (!state().m_invertibleCTM) return; m_path.addArc(FloatPoint(x, y), r, sa, ea, anticlockwise); } static bool validateRectForCanvas(float& x, float& y, float& width, float& height) { if (!isfinite(x) | !isfinite(y) | !isfinite(width) | !isfinite(height)) return false; if (!width && !height) return false; if (width < 0) { width = -width; x -= width; } if (height < 0) { height = -height; y -= height; } return true; } void CanvasRenderingContext2D::rect(float x, float y, float width, float height) { if (!state().m_invertibleCTM) return; if (!isfinite(x) || !isfinite(y) || !isfinite(width) || !isfinite(height)) return; if (!width && !height) { m_path.moveTo(FloatPoint(x, y)); return; } m_path.addRect(FloatRect(x, y, width, height)); } #if ENABLE(DASHBOARD_SUPPORT) void CanvasRenderingContext2D::clearPathForDashboardBackwardCompatibilityMode() { if (m_usesDashboardCompatibilityMode) m_path.clear(); } #endif void CanvasRenderingContext2D::fill() { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!m_path.isEmpty()) { c->fillPath(m_path); didDraw(m_path.boundingRect()); } #if ENABLE(DASHBOARD_SUPPORT) clearPathForDashboardBackwardCompatibilityMode(); #endif } void CanvasRenderingContext2D::stroke() { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!m_path.isEmpty()) { #if PLATFORM(QT) // Fast approximation of the stroke's bounding rect. // This yields a slightly oversized rect but is very fast // compared to Path::strokeBoundingRect(). FloatRect boundingRect = m_path.platformPath().controlPointRect(); boundingRect.inflate(state().m_miterLimit + state().m_lineWidth); #else CanvasStrokeStyleApplier strokeApplier(this); FloatRect boundingRect = m_path.strokeBoundingRect(&strokeApplier); #endif c->strokePath(m_path); didDraw(boundingRect); } #if ENABLE(DASHBOARD_SUPPORT) clearPathForDashboardBackwardCompatibilityMode(); #endif } void CanvasRenderingContext2D::clip() { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; c->canvasClip(m_path); #if ENABLE(DASHBOARD_SUPPORT) clearPathForDashboardBackwardCompatibilityMode(); #endif } bool CanvasRenderingContext2D::isPointInPath(const float x, const float y) { GraphicsContext* c = drawingContext(); if (!c) return false; if (!state().m_invertibleCTM) return false; FloatPoint point(x, y); AffineTransform ctm = state().m_transform; FloatPoint transformedPoint = ctm.inverse().mapPoint(point); if (!isfinite(transformedPoint.x()) || !isfinite(transformedPoint.y())) return false; return m_path.contains(transformedPoint); } void CanvasRenderingContext2D::clearRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; GraphicsContext* context = drawingContext(); if (!context) return; if (!state().m_invertibleCTM) return; FloatRect rect(x, y, width, height); save(); setAllAttributesToDefault(); context->clearRect(rect); didDraw(rect); restore(); } void CanvasRenderingContext2D::fillRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; // from the HTML5 Canvas spec: // If x0 = x1 and y0 = y1, then the linear gradient must paint nothing // If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing Gradient* gradient = c->fillGradient(); if (gradient && gradient->isZeroSize()) return; FloatRect rect(x, y, width, height); c->fillRect(rect); didDraw(rect); } void CanvasRenderingContext2D::strokeRect(float x, float y, float width, float height) { if (!validateRectForCanvas(x, y, width, height)) return; strokeRect(x, y, width, height, state().m_lineWidth); } void CanvasRenderingContext2D::strokeRect(float x, float y, float width, float height, float lineWidth) { if (!validateRectForCanvas(x, y, width, height)) return; if (!(lineWidth >= 0)) return; GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; FloatRect rect(x, y, width, height); FloatRect boundingRect = rect; boundingRect.inflate(lineWidth / 2); c->strokeRect(rect, lineWidth); didDraw(boundingRect); } #if USE(CG) static inline CGSize adjustedShadowSize(CGFloat width, CGFloat height) { // Work around <rdar://problem/5539388> by ensuring that shadow offsets will get truncated // to the desired integer. static const CGFloat extraShadowOffset = narrowPrecisionToCGFloat(1.0 / 128); if (width > 0) width += extraShadowOffset; else if (width < 0) width -= extraShadowOffset; if (height > 0) height += extraShadowOffset; else if (height < 0) height -= extraShadowOffset; return CGSizeMake(width, height); } #endif void CanvasRenderingContext2D::setShadow(float width, float height, float blur) { state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; state().m_shadowColor = Color::transparent; applyShadow(); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, const String& color) { if (!parseColorOrCurrentColor(state().m_shadowColor, color, canvas())) return; state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; applyShadow(); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float grayLevel) { state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; state().m_shadowColor = makeRGBA32FromFloats(grayLevel, grayLevel, grayLevel, 1.0f); GraphicsContext* c = drawingContext(); if (!c) return; c->setLegacyShadow(FloatSize(width, -height), state().m_shadowBlur, state().m_shadowColor, ColorSpaceDeviceRGB); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, const String& color, float alpha) { RGBA32 rgba; if (!parseColorOrCurrentColor(rgba, color, canvas())) return; state().m_shadowColor = colorWithOverrideAlpha(rgba, alpha); state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; GraphicsContext* c = drawingContext(); if (!c) return; c->setLegacyShadow(FloatSize(width, -height), state().m_shadowBlur, state().m_shadowColor, ColorSpaceDeviceRGB); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float grayLevel, float alpha) { state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; state().m_shadowColor = makeRGBA32FromFloats(grayLevel, grayLevel, grayLevel, alpha); GraphicsContext* c = drawingContext(); if (!c) return; c->setLegacyShadow(FloatSize(width, -height), state().m_shadowBlur, state().m_shadowColor, ColorSpaceDeviceRGB); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float r, float g, float b, float a) { state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; state().m_shadowColor = makeRGBA32FromFloats(r, g, b, a); GraphicsContext* c = drawingContext(); if (!c) return; c->setLegacyShadow(FloatSize(width, -height), state().m_shadowBlur, state().m_shadowColor, ColorSpaceDeviceRGB); } void CanvasRenderingContext2D::setShadow(float width, float height, float blur, float c, float m, float y, float k, float a) { state().m_shadowOffset = FloatSize(width, height); state().m_shadowBlur = blur; state().m_shadowColor = makeRGBAFromCMYKA(c, m, y, k, a); GraphicsContext* dc = drawingContext(); if (!dc) return; #if USE(CG) const CGFloat components[5] = { c, m, y, k, a }; CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceCMYK(); CGColorRef shadowColor = CGColorCreate(colorSpace, components); CGColorSpaceRelease(colorSpace); CGContextSetShadowWithColor(dc->platformContext(), adjustedShadowSize(width, -height), blur, shadowColor); CGColorRelease(shadowColor); #else dc->setLegacyShadow(FloatSize(width, -height), blur, state().m_shadowColor, ColorSpaceDeviceRGB); #endif } void CanvasRenderingContext2D::clearShadow() { state().m_shadowOffset = FloatSize(); state().m_shadowBlur = 0; state().m_shadowColor = Color::transparent; applyShadow(); } void CanvasRenderingContext2D::applyShadow() { GraphicsContext* c = drawingContext(); if (!c) return; float width = state().m_shadowOffset.width(); float height = state().m_shadowOffset.height(); c->setLegacyShadow(FloatSize(width, -height), state().m_shadowBlur, state().m_shadowColor, ColorSpaceDeviceRGB); } static IntSize size(HTMLImageElement* image) { if (CachedImage* cachedImage = image->cachedImage()) return cachedImage->imageSize(1.0f); // FIXME: Not sure about this. return IntSize(); } #if ENABLE(VIDEO) static IntSize size(HTMLVideoElement* video) { if (MediaPlayer* player = video->player()) return player->naturalSize(); return IntSize(); } #endif static inline FloatRect normalizeRect(const FloatRect& rect) { return FloatRect(min(rect.x(), rect.maxX()), min(rect.y(), rect.maxY()), max(rect.width(), -rect.width()), max(rect.height(), -rect.height())); } void CanvasRenderingContext2D::drawImage(HTMLImageElement* image, float x, float y, ExceptionCode& ec) { if (!image) { ec = TYPE_MISMATCH_ERR; return; } IntSize s = size(image); drawImage(image, x, y, s.width(), s.height(), ec); } void CanvasRenderingContext2D::drawImage(HTMLImageElement* image, float x, float y, float width, float height, ExceptionCode& ec) { if (!image) { ec = TYPE_MISMATCH_ERR; return; } IntSize s = size(image); drawImage(image, FloatRect(0, 0, s.width(), s.height()), FloatRect(x, y, width, height), ec); } void CanvasRenderingContext2D::drawImage(HTMLImageElement* image, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh, ExceptionCode& ec) { if (!image) { ec = TYPE_MISMATCH_ERR; return; } drawImage(image, FloatRect(sx, sy, sw, sh), FloatRect(dx, dy, dw, dh), ec); } void CanvasRenderingContext2D::drawImage(HTMLImageElement* image, const FloatRect& srcRect, const FloatRect& dstRect, ExceptionCode& ec) { drawImage(image, srcRect, dstRect, state().m_globalComposite, ec); } void CanvasRenderingContext2D::drawImage(HTMLImageElement* image, const FloatRect& srcRect, const FloatRect& dstRect, const CompositeOperator& op, ExceptionCode& ec) { if (!image) { ec = TYPE_MISMATCH_ERR; return; } ec = 0; if (!isfinite(dstRect.x()) || !isfinite(dstRect.y()) || !isfinite(dstRect.width()) || !isfinite(dstRect.height()) || !isfinite(srcRect.x()) || !isfinite(srcRect.y()) || !isfinite(srcRect.width()) || !isfinite(srcRect.height())) return; if (!dstRect.width() || !dstRect.height()) return; if (!image->complete()) return; FloatRect normalizedSrcRect = normalizeRect(srcRect); FloatRect normalizedDstRect = normalizeRect(dstRect); FloatRect imageRect = FloatRect(FloatPoint(), size(image)); if (!imageRect.contains(normalizedSrcRect) || !srcRect.width() || !srcRect.height()) { ec = INDEX_SIZE_ERR; return; } GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; CachedImage* cachedImage = image->cachedImage(); if (!cachedImage) return; checkOrigin(image); FloatRect sourceRect = c->roundToDevicePixels(normalizedSrcRect); FloatRect destRect = c->roundToDevicePixels(normalizedDstRect); c->drawImage(cachedImage->image(), ColorSpaceDeviceRGB, destRect, sourceRect, op); didDraw(destRect); } void CanvasRenderingContext2D::drawImage(HTMLCanvasElement* canvas, float x, float y, ExceptionCode& ec) { if (!canvas) { ec = TYPE_MISMATCH_ERR; return; } drawImage(canvas, x, y, canvas->width(), canvas->height(), ec); } void CanvasRenderingContext2D::drawImage(HTMLCanvasElement* canvas, float x, float y, float width, float height, ExceptionCode& ec) { if (!canvas) { ec = TYPE_MISMATCH_ERR; return; } drawImage(canvas, FloatRect(0, 0, canvas->width(), canvas->height()), FloatRect(x, y, width, height), ec); } void CanvasRenderingContext2D::drawImage(HTMLCanvasElement* canvas, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh, ExceptionCode& ec) { drawImage(canvas, FloatRect(sx, sy, sw, sh), FloatRect(dx, dy, dw, dh), ec); } void CanvasRenderingContext2D::drawImage(HTMLCanvasElement* sourceCanvas, const FloatRect& srcRect, const FloatRect& dstRect, ExceptionCode& ec) { if (!sourceCanvas) { ec = TYPE_MISMATCH_ERR; return; } FloatRect srcCanvasRect = FloatRect(FloatPoint(), sourceCanvas->size()); if (!srcCanvasRect.width() || !srcCanvasRect.height()) { ec = INVALID_STATE_ERR; return; } if (!srcCanvasRect.contains(normalizeRect(srcRect)) || !srcRect.width() || !srcRect.height()) { ec = INDEX_SIZE_ERR; return; } ec = 0; if (!dstRect.width() || !dstRect.height()) return; GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; FloatRect sourceRect = c->roundToDevicePixels(srcRect); FloatRect destRect = c->roundToDevicePixels(dstRect); // FIXME: Do this through platform-independent GraphicsContext API. ImageBuffer* buffer = sourceCanvas->buffer(); if (!buffer) return; checkOrigin(sourceCanvas); #if ENABLE(ACCELERATED_2D_CANVAS) // If we're drawing from one accelerated canvas 2d to another, avoid calling sourceCanvas->makeRenderingResultsAvailable() // as that will do a readback to software. CanvasRenderingContext* sourceContext = sourceCanvas->renderingContext(); // FIXME: Implement an accelerated path for drawing from a WebGL canvas to a 2d canvas when possible. if (!isAccelerated() || !sourceContext || !sourceContext->isAccelerated() || !sourceContext->is2d()) sourceCanvas->makeRenderingResultsAvailable(); #else sourceCanvas->makeRenderingResultsAvailable(); #endif c->drawImageBuffer(buffer, ColorSpaceDeviceRGB, destRect, sourceRect, state().m_globalComposite); didDraw(destRect); } #if ENABLE(VIDEO) void CanvasRenderingContext2D::drawImage(HTMLVideoElement* video, float x, float y, ExceptionCode& ec) { if (!video) { ec = TYPE_MISMATCH_ERR; return; } IntSize s = size(video); drawImage(video, x, y, s.width(), s.height(), ec); } void CanvasRenderingContext2D::drawImage(HTMLVideoElement* video, float x, float y, float width, float height, ExceptionCode& ec) { if (!video) { ec = TYPE_MISMATCH_ERR; return; } IntSize s = size(video); drawImage(video, FloatRect(0, 0, s.width(), s.height()), FloatRect(x, y, width, height), ec); } void CanvasRenderingContext2D::drawImage(HTMLVideoElement* video, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh, ExceptionCode& ec) { drawImage(video, FloatRect(sx, sy, sw, sh), FloatRect(dx, dy, dw, dh), ec); } void CanvasRenderingContext2D::drawImage(HTMLVideoElement* video, const FloatRect& srcRect, const FloatRect& dstRect, ExceptionCode& ec) { if (!video) { ec = TYPE_MISMATCH_ERR; return; } ec = 0; if (video->readyState() == HTMLMediaElement::HAVE_NOTHING || video->readyState() == HTMLMediaElement::HAVE_METADATA) return; FloatRect videoRect = FloatRect(FloatPoint(), size(video)); if (!videoRect.contains(normalizeRect(srcRect)) || !srcRect.width() || !srcRect.height()) { ec = INDEX_SIZE_ERR; return; } if (!dstRect.width() || !dstRect.height()) return; GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; checkOrigin(video); FloatRect sourceRect = c->roundToDevicePixels(srcRect); FloatRect destRect = c->roundToDevicePixels(dstRect); c->save(); c->clip(destRect); c->translate(destRect.x(), destRect.y()); c->scale(FloatSize(destRect.width() / sourceRect.width(), destRect.height() / sourceRect.height())); c->translate(-sourceRect.x(), -sourceRect.y()); video->paintCurrentFrameInContext(c, IntRect(IntPoint(), size(video))); c->restore(); didDraw(destRect); } #endif void CanvasRenderingContext2D::drawImageFromRect(HTMLImageElement* image, float sx, float sy, float sw, float sh, float dx, float dy, float dw, float dh, const String& compositeOperation) { CompositeOperator op; if (!parseCompositeOperator(compositeOperation, op)) op = CompositeSourceOver; ExceptionCode ec; drawImage(image, FloatRect(sx, sy, sw, sh), FloatRect(dx, dy, dw, dh), op, ec); } void CanvasRenderingContext2D::setAlpha(float alpha) { setGlobalAlpha(alpha); } void CanvasRenderingContext2D::setCompositeOperation(const String& operation) { setGlobalCompositeOperation(operation); } void CanvasRenderingContext2D::prepareGradientForDashboard(CanvasGradient* gradient) const { #if ENABLE(DASHBOARD_SUPPORT) if (m_usesDashboardCompatibilityMode) gradient->setDashboardCompatibilityMode(); #else UNUSED_PARAM(gradient); #endif } PassRefPtr<CanvasGradient> CanvasRenderingContext2D::createLinearGradient(float x0, float y0, float x1, float y1, ExceptionCode& ec) { if (!isfinite(x0) || !isfinite(y0) || !isfinite(x1) || !isfinite(y1)) { ec = NOT_SUPPORTED_ERR; return 0; } RefPtr<CanvasGradient> gradient = CanvasGradient::create(FloatPoint(x0, y0), FloatPoint(x1, y1)); prepareGradientForDashboard(gradient.get()); return gradient.release(); } PassRefPtr<CanvasGradient> CanvasRenderingContext2D::createRadialGradient(float x0, float y0, float r0, float x1, float y1, float r1, ExceptionCode& ec) { if (!isfinite(x0) || !isfinite(y0) || !isfinite(r0) || !isfinite(x1) || !isfinite(y1) || !isfinite(r1)) { ec = NOT_SUPPORTED_ERR; return 0; } if (r0 < 0 || r1 < 0) { ec = INDEX_SIZE_ERR; return 0; } RefPtr<CanvasGradient> gradient = CanvasGradient::create(FloatPoint(x0, y0), r0, FloatPoint(x1, y1), r1); prepareGradientForDashboard(gradient.get()); return gradient.release(); } PassRefPtr<CanvasPattern> CanvasRenderingContext2D::createPattern(HTMLImageElement* image, const String& repetitionType, ExceptionCode& ec) { if (!image) { ec = TYPE_MISMATCH_ERR; return 0; } bool repeatX, repeatY; ec = 0; CanvasPattern::parseRepetitionType(repetitionType, repeatX, repeatY, ec); if (ec) return 0; if (!image->complete()) return 0; CachedImage* cachedImage = image->cachedImage(); if (!cachedImage || !image->cachedImage()->image()) return CanvasPattern::create(Image::nullImage(), repeatX, repeatY, true); bool originClean = !canvas()->securityOrigin().taintsCanvas(KURL(KURL(), cachedImage->response().url())) && cachedImage->image()->hasSingleSecurityOrigin(); return CanvasPattern::create(cachedImage->image(), repeatX, repeatY, originClean); } PassRefPtr<CanvasPattern> CanvasRenderingContext2D::createPattern(HTMLCanvasElement* canvas, const String& repetitionType, ExceptionCode& ec) { if (!canvas) { ec = TYPE_MISMATCH_ERR; return 0; } if (!canvas->width() || !canvas->height()) { ec = INVALID_STATE_ERR; return 0; } bool repeatX, repeatY; ec = 0; CanvasPattern::parseRepetitionType(repetitionType, repeatX, repeatY, ec); if (ec) return 0; return CanvasPattern::create(canvas->copiedImage(), repeatX, repeatY, canvas->originClean()); } void CanvasRenderingContext2D::didDraw(const FloatRect& r, unsigned options) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; FloatRect dirtyRect = r; if (options & CanvasDidDrawApplyTransform) { AffineTransform ctm = state().m_transform; dirtyRect = ctm.mapRect(r); } if (options & CanvasDidDrawApplyShadow && alphaChannel(state().m_shadowColor)) { // The shadow gets applied after transformation FloatRect shadowRect(dirtyRect); shadowRect.move(state().m_shadowOffset); shadowRect.inflate(state().m_shadowBlur); dirtyRect.unite(shadowRect); } if (options & CanvasDidDrawApplyClip) { // FIXME: apply the current clip to the rectangle. Unfortunately we can't get the clip // back out of the GraphicsContext, so to take clip into account for incremental painting, // we'd have to keep the clip path around. } #if ENABLE(ACCELERATED_2D_CANVAS) if (isAccelerated()) drawingContext()->markDirtyRect(enclosingIntRect(dirtyRect)); #endif #if ENABLE(ACCELERATED_2D_CANVAS) && USE(ACCELERATED_COMPOSITING) // If we are drawing to hardware and we have a composited layer, just call contentChanged(). RenderBox* renderBox = canvas()->renderBox(); if (isAccelerated() && renderBox && renderBox->hasLayer() && renderBox->layer()->hasAcceleratedCompositing()) renderBox->layer()->contentChanged(RenderLayer::CanvasChanged); else #endif canvas()->didDraw(dirtyRect); } GraphicsContext* CanvasRenderingContext2D::drawingContext() const { return canvas()->drawingContext(); } static PassRefPtr<ImageData> createEmptyImageData(const IntSize& size) { RefPtr<ImageData> data = ImageData::create(size); memset(data->data()->data()->data(), 0, data->data()->data()->length()); return data.release(); } PassRefPtr<ImageData> CanvasRenderingContext2D::createImageData(PassRefPtr<ImageData> imageData, ExceptionCode& ec) const { if (!imageData) { ec = NOT_SUPPORTED_ERR; return 0; } return createEmptyImageData(imageData->size()); } PassRefPtr<ImageData> CanvasRenderingContext2D::createImageData(float sw, float sh, ExceptionCode& ec) const { ec = 0; if (!sw || !sh) { ec = INDEX_SIZE_ERR; return 0; } if (!isfinite(sw) || !isfinite(sh)) { ec = NOT_SUPPORTED_ERR; return 0; } FloatSize unscaledSize(fabs(sw), fabs(sh)); IntSize scaledSize = canvas()->convertLogicalToDevice(unscaledSize); if (scaledSize.width() < 1) scaledSize.setWidth(1); if (scaledSize.height() < 1) scaledSize.setHeight(1); float area = 4.0f * scaledSize.width() * scaledSize.height(); if (area > static_cast<float>(std::numeric_limits<int>::max())) return 0; return createEmptyImageData(scaledSize); } PassRefPtr<ImageData> CanvasRenderingContext2D::getImageData(float sx, float sy, float sw, float sh, ExceptionCode& ec) const { if (!canvas()->originClean()) { ec = SECURITY_ERR; return 0; } if (!sw || !sh) { ec = INDEX_SIZE_ERR; return 0; } if (!isfinite(sx) || !isfinite(sy) || !isfinite(sw) || !isfinite(sh)) { ec = NOT_SUPPORTED_ERR; return 0; } if (sw < 0) { sx += sw; sw = -sw; } if (sh < 0) { sy += sh; sh = -sh; } FloatRect unscaledRect(sx, sy, sw, sh); IntRect scaledRect = canvas()->convertLogicalToDevice(unscaledRect); if (scaledRect.width() < 1) scaledRect.setWidth(1); if (scaledRect.height() < 1) scaledRect.setHeight(1); ImageBuffer* buffer = canvas()->buffer(); if (!buffer) return createEmptyImageData(scaledRect.size()); RefPtr<ByteArray> byteArray = buffer->getUnmultipliedImageData(scaledRect); if (!byteArray) return 0; return ImageData::create(scaledRect.size(), byteArray.release()); } void CanvasRenderingContext2D::putImageData(ImageData* data, float dx, float dy, ExceptionCode& ec) { if (!data) { ec = TYPE_MISMATCH_ERR; return; } putImageData(data, dx, dy, 0, 0, data->width(), data->height(), ec); } void CanvasRenderingContext2D::putImageData(ImageData* data, float dx, float dy, float dirtyX, float dirtyY, float dirtyWidth, float dirtyHeight, ExceptionCode& ec) { if (!data) { ec = TYPE_MISMATCH_ERR; return; } if (!isfinite(dx) || !isfinite(dy) || !isfinite(dirtyX) || !isfinite(dirtyY) || !isfinite(dirtyWidth) || !isfinite(dirtyHeight)) { ec = NOT_SUPPORTED_ERR; return; } ImageBuffer* buffer = canvas()->buffer(); if (!buffer) return; if (dirtyWidth < 0) { dirtyX += dirtyWidth; dirtyWidth = -dirtyWidth; } if (dirtyHeight < 0) { dirtyY += dirtyHeight; dirtyHeight = -dirtyHeight; } FloatRect clipRect(dirtyX, dirtyY, dirtyWidth, dirtyHeight); clipRect.intersect(IntRect(0, 0, data->width(), data->height())); IntSize destOffset(static_cast<int>(dx), static_cast<int>(dy)); IntRect destRect = enclosingIntRect(clipRect); destRect.move(destOffset); destRect.intersect(IntRect(IntPoint(), buffer->size())); if (destRect.isEmpty()) return; IntRect sourceRect(destRect); sourceRect.move(-destOffset); buffer->putUnmultipliedImageData(data->data()->data(), IntSize(data->width(), data->height()), sourceRect, IntPoint(destOffset)); didDraw(destRect, CanvasDidDrawApplyNone); // ignore transform, shadow and clip } String CanvasRenderingContext2D::font() const { return state().m_unparsedFont; } void CanvasRenderingContext2D::setFont(const String& newFont) { RefPtr<CSSMutableStyleDeclaration> tempDecl = CSSMutableStyleDeclaration::create(); CSSParser parser(!m_usesCSSCompatibilityParseMode); String declarationText("font: "); declarationText += newFont; parser.parseDeclaration(tempDecl.get(), declarationText); if (!tempDecl->length()) return; // The parse succeeded. state().m_unparsedFont = newFont; // Map the <canvas> font into the text style. If the font uses keywords like larger/smaller, these will work // relative to the canvas. RefPtr<RenderStyle> newStyle = RenderStyle::create(); if (RenderStyle* computedStyle = canvas()->computedStyle()) newStyle->setFontDescription(computedStyle->fontDescription()); newStyle->font().update(newStyle->font().fontSelector()); // Now map the font property into the style. CSSStyleSelector* styleSelector = canvas()->styleSelector(); styleSelector->applyPropertyToStyle(CSSPropertyFont, tempDecl->getPropertyCSSValue(CSSPropertyFont).get(), newStyle.get()); state().m_font = newStyle->font(); state().m_font.update(styleSelector->fontSelector()); state().m_realizedFont = true; styleSelector->fontSelector()->registerForInvalidationCallbacks(&state()); } String CanvasRenderingContext2D::textAlign() const { return textAlignName(state().m_textAlign); } void CanvasRenderingContext2D::setTextAlign(const String& s) { TextAlign align; if (!parseTextAlign(s, align)) return; state().m_textAlign = align; } String CanvasRenderingContext2D::textBaseline() const { return textBaselineName(state().m_textBaseline); } void CanvasRenderingContext2D::setTextBaseline(const String& s) { TextBaseline baseline; if (!parseTextBaseline(s, baseline)) return; state().m_textBaseline = baseline; } void CanvasRenderingContext2D::fillText(const String& text, float x, float y) { drawTextInternal(text, x, y, true); } void CanvasRenderingContext2D::fillText(const String& text, float x, float y, float maxWidth) { drawTextInternal(text, x, y, true, maxWidth, true); } void CanvasRenderingContext2D::strokeText(const String& text, float x, float y) { drawTextInternal(text, x, y, false); } void CanvasRenderingContext2D::strokeText(const String& text, float x, float y, float maxWidth) { drawTextInternal(text, x, y, false, maxWidth, true); } PassRefPtr<TextMetrics> CanvasRenderingContext2D::measureText(const String& text) { RefPtr<TextMetrics> metrics = TextMetrics::create(); #if PLATFORM(QT) // We always use complex text shaping since it can't be turned off for QPainterPath::addText(). Font::CodePath oldCodePath = Font::codePath(); Font::setCodePath(Font::Complex); #endif metrics->setWidth(accessFont().width(TextRun(text.characters(), text.length()))); #if PLATFORM(QT) Font::setCodePath(oldCodePath); #endif return metrics.release(); } void CanvasRenderingContext2D::drawTextInternal(const String& text, float x, float y, bool fill, float /*maxWidth*/, bool /*useMaxWidth*/) { GraphicsContext* c = drawingContext(); if (!c) return; if (!state().m_invertibleCTM) return; if (!isfinite(x) | !isfinite(y)) return; const Font& font = accessFont(); const FontMetrics& fontMetrics = font.fontMetrics(); // FIXME: Handle maxWidth. // FIXME: Need to turn off font smoothing. RenderStyle* computedStyle = canvas()->computedStyle(); bool rtl = computedStyle ? !computedStyle->isLeftToRightDirection() : false; bool override = computedStyle ? computedStyle->unicodeBidi() == Override : false; unsigned length = text.length(); const UChar* string = text.characters(); TextRun textRun(string, length, false, 0, 0, TextRun::AllowTrailingExpansion, rtl, override); // Draw the item text at the correct point. FloatPoint location(x, y); switch (state().m_textBaseline) { case TopTextBaseline: case HangingTextBaseline: location.setY(y + fontMetrics.ascent()); break; case BottomTextBaseline: case IdeographicTextBaseline: location.setY(y - fontMetrics.descent()); break; case MiddleTextBaseline: location.setY(y - fontMetrics.descent() + fontMetrics.height() / 2); break; case AlphabeticTextBaseline: default: // Do nothing. break; } float width = font.width(TextRun(text, false, 0, 0, TextRun::AllowTrailingExpansion, rtl, override)); TextAlign align = state().m_textAlign; if (align == StartTextAlign) align = rtl ? RightTextAlign : LeftTextAlign; else if (align == EndTextAlign) align = rtl ? LeftTextAlign : RightTextAlign; switch (align) { case CenterTextAlign: location.setX(location.x() - width / 2); break; case RightTextAlign: location.setX(location.x() - width); break; default: break; } // The slop built in to this mask rect matches the heuristic used in FontCGWin.cpp for GDI text. FloatRect textRect = FloatRect(location.x() - fontMetrics.height() / 2, location.y() - fontMetrics.ascent() - fontMetrics.lineGap(), width + fontMetrics.height(), fontMetrics.lineSpacing()); if (!fill) textRect.inflate(c->strokeThickness() / 2); #if USE(CG) CanvasStyle* drawStyle = fill ? state().m_fillStyle.get() : state().m_strokeStyle.get(); if (drawStyle->canvasGradient() || drawStyle->canvasPattern()) { // FIXME: The rect is not big enough for miters on stroked text. IntRect maskRect = enclosingIntRect(textRect); #if USE(IOSURFACE_CANVAS_BACKING_STORE) OwnPtr<ImageBuffer> maskImage = ImageBuffer::create(maskRect.size(), ColorSpaceDeviceRGB, Accelerated); #else OwnPtr<ImageBuffer> maskImage = ImageBuffer::create(maskRect.size()); #endif GraphicsContext* maskImageContext = maskImage->context(); if (fill) maskImageContext->setFillColor(Color::black, ColorSpaceDeviceRGB); else { maskImageContext->setStrokeColor(Color::black, ColorSpaceDeviceRGB); maskImageContext->setStrokeThickness(c->strokeThickness()); } maskImageContext->setTextDrawingMode(fill ? TextModeFill : TextModeStroke); maskImageContext->translate(-maskRect.x(), -maskRect.y()); maskImageContext->drawBidiText(font, textRun, location); c->save(); c->clipToImageBuffer(maskImage.get(), maskRect); drawStyle->applyFillColor(c); c->fillRect(maskRect); c->restore(); return; } #endif c->setTextDrawingMode(fill ? TextModeFill : TextModeStroke); #if PLATFORM(QT) // We always use complex text shaping since it can't be turned off for QPainterPath::addText(). Font::CodePath oldCodePath = Font::codePath(); Font::setCodePath(Font::Complex); #endif c->drawBidiText(font, textRun, location); if (fill) didDraw(textRect); else { // When stroking text, pointy miters can extend outside of textRect, so we // punt and dirty the whole canvas. didDraw(FloatRect(0, 0, canvas()->width(), canvas()->height())); } #if PLATFORM(QT) Font::setCodePath(oldCodePath); #endif } const Font& CanvasRenderingContext2D::accessFont() { canvas()->document()->updateStyleIfNeeded(); if (!state().m_realizedFont) setFont(state().m_unparsedFont); return state().m_font; } void CanvasRenderingContext2D::paintRenderingResultsToCanvas() { #if ENABLE(ACCELERATED_2D_CANVAS) if (GraphicsContext* c = drawingContext()) c->syncSoftwareCanvas(); #endif } #if ENABLE(ACCELERATED_2D_CANVAS) && USE(ACCELERATED_COMPOSITING) PlatformLayer* CanvasRenderingContext2D::platformLayer() const { return m_drawingBuffer ? m_drawingBuffer->platformLayer() : 0; } #endif } // namespace WebCore