// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_ #define V8_MIPS_ASSEMBLER_MIPS_INL_H_ #include "mips/assembler-mips.h" #include "cpu.h" #include "debug.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Operand and MemOperand. Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) { rm_ = no_reg; imm32_ = immediate; rmode_ = rmode; } Operand::Operand(const ExternalReference& f) { rm_ = no_reg; imm32_ = reinterpret_cast<int32_t>(f.address()); rmode_ = RelocInfo::EXTERNAL_REFERENCE; } Operand::Operand(Smi* value) { rm_ = no_reg; imm32_ = reinterpret_cast<intptr_t>(value); rmode_ = RelocInfo::NONE; } Operand::Operand(Register rm) { rm_ = rm; } bool Operand::is_reg() const { return rm_.is_valid(); } int FPURegister::ToAllocationIndex(FPURegister reg) { ASSERT(reg.code() % 2 == 0); ASSERT(reg.code() / 2 < kNumAllocatableRegisters); ASSERT(reg.is_valid()); ASSERT(!reg.is(kDoubleRegZero)); ASSERT(!reg.is(kLithiumScratchDouble)); return (reg.code() / 2); } // ----------------------------------------------------------------------------- // RelocInfo. void RelocInfo::apply(intptr_t delta) { if (IsCodeTarget(rmode_)) { uint32_t scope1 = (uint32_t) target_address() & ~kImm28Mask; uint32_t scope2 = reinterpret_cast<uint32_t>(pc_) & ~kImm28Mask; if (scope1 != scope2) { Assembler::JumpLabelToJumpRegister(pc_); } } if (IsInternalReference(rmode_)) { // Absolute code pointer inside code object moves with the code object. byte* p = reinterpret_cast<byte*>(pc_); int count = Assembler::RelocateInternalReference(p, delta); CPU::FlushICache(p, count * sizeof(uint32_t)); } } Address RelocInfo::target_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); return Assembler::target_address_at(pc_); } Address RelocInfo::target_address_address() { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY || rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LUI/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. In this case the target_address_address function should // return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. After jump optimization, // that is the address of the instruction that follows J/JAL/JR/JALR // instruction. return reinterpret_cast<Address>( pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize); } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) { ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY); Assembler::set_target_address_at(pc_, target); if (mode == UPDATE_WRITE_BARRIER && host() != NULL && IsCodeTarget(rmode_)) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } Object* RelocInfo::target_object() { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return reinterpret_cast<Object*>(Assembler::target_address_at(pc_)); } Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); return Handle<Object>(reinterpret_cast<Object**>( Assembler::target_address_at(pc_))); } Object** RelocInfo::target_object_address() { // Provide a "natural pointer" to the embedded object, // which can be de-referenced during heap iteration. ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); reconstructed_obj_ptr_ = reinterpret_cast<Object*>(Assembler::target_address_at(pc_)); return &reconstructed_obj_ptr_; } void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) { ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target)); if (mode == UPDATE_WRITE_BARRIER && host() != NULL && target->IsHeapObject()) { host()->GetHeap()->incremental_marking()->RecordWrite( host(), &Memory::Object_at(pc_), HeapObject::cast(target)); } } Address* RelocInfo::target_reference_address() { ASSERT(rmode_ == EXTERNAL_REFERENCE); reconstructed_adr_ptr_ = Assembler::target_address_at(pc_); return &reconstructed_adr_ptr_; } Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() { ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL); Address address = Memory::Address_at(pc_); return Handle<JSGlobalPropertyCell>( reinterpret_cast<JSGlobalPropertyCell**>(address)); } JSGlobalPropertyCell* RelocInfo::target_cell() { ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL); Address address = Memory::Address_at(pc_); Object* object = HeapObject::FromAddress( address - JSGlobalPropertyCell::kValueOffset); return reinterpret_cast<JSGlobalPropertyCell*>(object); } void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell, WriteBarrierMode mode) { ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL); Address address = cell->address() + JSGlobalPropertyCell::kValueOffset; Memory::Address_at(pc_) = address; if (mode == UPDATE_WRITE_BARRIER && host() != NULL) { // TODO(1550) We are passing NULL as a slot because cell can never be on // evacuation candidate. host()->GetHeap()->incremental_marking()->RecordWrite( host(), NULL, cell); } } Address RelocInfo::call_address() { ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); // The pc_ offset of 0 assumes mips patched return sequence per // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot(). return Assembler::target_address_at(pc_); } void RelocInfo::set_call_address(Address target) { ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); // The pc_ offset of 0 assumes mips patched return sequence per // debug-mips.cc BreakLocationIterator::SetDebugBreakAtReturn(), or // debug break slot per BreakLocationIterator::SetDebugBreakAtSlot(). Assembler::set_target_address_at(pc_, target); if (host() != NULL) { Object* target_code = Code::GetCodeFromTargetAddress(target); host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( host(), this, HeapObject::cast(target_code)); } } Object* RelocInfo::call_object() { return *call_object_address(); } Object** RelocInfo::call_object_address() { ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) || (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence())); return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize); } void RelocInfo::set_call_object(Object* target) { *call_object_address() = target; } bool RelocInfo::IsPatchedReturnSequence() { Instr instr0 = Assembler::instr_at(pc_); Instr instr1 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); Instr instr2 = Assembler::instr_at(pc_ + 2 * Assembler::kInstrSize); bool patched_return = ((instr0 & kOpcodeMask) == LUI && (instr1 & kOpcodeMask) == ORI && ((instr2 & kOpcodeMask) == JAL || ((instr2 & kOpcodeMask) == SPECIAL && (instr2 & kFunctionFieldMask) == JALR))); return patched_return; } bool RelocInfo::IsPatchedDebugBreakSlotSequence() { Instr current_instr = Assembler::instr_at(pc_); return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP); } void RelocInfo::Visit(ObjectVisitor* visitor) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { visitor->VisitEmbeddedPointer(this); } else if (RelocInfo::IsCodeTarget(mode)) { visitor->VisitCodeTarget(this); } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) { visitor->VisitGlobalPropertyCell(this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { visitor->VisitExternalReference(this); #ifdef ENABLE_DEBUGGER_SUPPORT // TODO(isolates): Get a cached isolate below. } else if (((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence())) && Isolate::Current()->debug()->has_break_points()) { visitor->VisitDebugTarget(this); #endif } else if (mode == RelocInfo::RUNTIME_ENTRY) { visitor->VisitRuntimeEntry(this); } } template<typename StaticVisitor> void RelocInfo::Visit(Heap* heap) { RelocInfo::Mode mode = rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { StaticVisitor::VisitEmbeddedPointer(heap, this); } else if (RelocInfo::IsCodeTarget(mode)) { StaticVisitor::VisitCodeTarget(heap, this); } else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) { StaticVisitor::VisitGlobalPropertyCell(heap, this); } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { StaticVisitor::VisitExternalReference(this); #ifdef ENABLE_DEBUGGER_SUPPORT } else if (heap->isolate()->debug()->has_break_points() && ((RelocInfo::IsJSReturn(mode) && IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(mode) && IsPatchedDebugBreakSlotSequence()))) { StaticVisitor::VisitDebugTarget(heap, this); #endif } else if (mode == RelocInfo::RUNTIME_ENTRY) { StaticVisitor::VisitRuntimeEntry(this); } } // ----------------------------------------------------------------------------- // Assembler. void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } } void Assembler::CheckTrampolinePoolQuick() { if (pc_offset() >= next_buffer_check_) { CheckTrampolinePool(); } } void Assembler::emit(Instr x) { if (!is_buffer_growth_blocked()) { CheckBuffer(); } *reinterpret_cast<Instr*>(pc_) = x; pc_ += kInstrSize; CheckTrampolinePoolQuick(); } } } // namespace v8::internal #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_