/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBenchmark.h" #include "SkFloatBits.h" #include "SkRandom.h" #include "SkRect.h" #include "SkString.h" class ScalarBench : public SkBenchmark { SkString fName; enum { N = 100000 }; public: ScalarBench(void* param, const char name[]) : INHERITED(param) { fName.printf("scalar_%s", name); fIsRendering = false; } virtual void performTest() = 0; protected: virtual int mulLoopCount() const { return 1; } virtual const char* onGetName() SK_OVERRIDE { return fName.c_str(); } virtual void onDraw(SkCanvas* canvas) { int n = SkBENCHLOOP(N * this->mulLoopCount()); for (int i = 0; i < n; i++) { this->performTest(); } } private: typedef SkBenchmark INHERITED; }; // we want to stop the compiler from eliminating code that it thinks is a no-op // so we have a non-static global we increment, hoping that will convince the // compiler to execute everything int gScalarBench_NonStaticGlobal; #define always_do(pred) \ do { \ if (pred) { \ ++gScalarBench_NonStaticGlobal; \ } \ } while (0) // having unknown values in our arrays can throw off the timing a lot, perhaps // handling NaN values is a lot slower. Anyway, this guy is just meant to put // reasonable values in our arrays. template <typename T> void init9(T array[9]) { SkRandom rand; for (int i = 0; i < 9; i++) { array[i] = rand.nextSScalar1(); } } class FloatComparisonBench : public ScalarBench { public: FloatComparisonBench(void* param) : INHERITED(param, "compare_float") { init9(fArray); } protected: virtual int mulLoopCount() const { return 4; } virtual void performTest() { always_do(fArray[6] != 0.0f || fArray[7] != 0.0f || fArray[8] != 1.0f); always_do(fArray[2] != 0.0f || fArray[5] != 0.0f); } private: float fArray[9]; typedef ScalarBench INHERITED; }; class ForcedIntComparisonBench : public ScalarBench { public: ForcedIntComparisonBench(void* param) : INHERITED(param, "compare_forced_int") { init9(fArray); } protected: virtual int mulLoopCount() const { return 4; } virtual void performTest() { always_do(SkScalarAs2sCompliment(fArray[6]) | SkScalarAs2sCompliment(fArray[7]) | (SkScalarAs2sCompliment(fArray[8]) - kPersp1Int)); always_do(SkScalarAs2sCompliment(fArray[2]) | SkScalarAs2sCompliment(fArray[5])); } private: static const int32_t kPersp1Int = 0x3f800000; SkScalar fArray[9]; typedef ScalarBench INHERITED; }; class IsFiniteScalarBench : public ScalarBench { public: IsFiniteScalarBench(void* param) : INHERITED(param, "isfinite") { SkRandom rand; for (size_t i = 0; i < ARRAY_N; ++i) { fArray[i] = rand.nextSScalar1(); } } protected: virtual int mulLoopCount() const { return 1; } virtual void performTest() SK_OVERRIDE { int sum = 0; for (size_t i = 0; i < ARRAY_N; ++i) { // We pass -fArray[i], so the compiler can't cheat and treat the // value as an int (even though we tell it that it is a float) sum += SkScalarIsFinite(-fArray[i]); } // we do this so the compiler won't optimize our loop away... this->doSomething(fArray, sum); } virtual void doSomething(SkScalar array[], int sum) {} private: enum { ARRAY_N = 64 }; SkScalar fArray[ARRAY_N]; typedef ScalarBench INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class RectBoundsBench : public SkBenchmark { enum { PTS = 100, N = SkBENCHLOOP(10000) }; SkPoint fPts[PTS]; public: RectBoundsBench(void* param) : INHERITED(param) { SkRandom rand; for (int i = 0; i < PTS; ++i) { fPts[i].fX = rand.nextSScalar1(); fPts[i].fY = rand.nextSScalar1(); } fIsRendering = false; } protected: virtual const char* onGetName() SK_OVERRIDE { return "rect_bounds"; } virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE { SkRect r; for (int i = 0; i < N; ++i) { r.set(fPts, PTS); } } private: typedef SkBenchmark INHERITED; }; /////////////////////////////////////////////////////////////////////////////// static SkBenchmark* S0(void* p) { return new FloatComparisonBench(p); } static SkBenchmark* S1(void* p) { return new ForcedIntComparisonBench(p); } static SkBenchmark* S2(void* p) { return new RectBoundsBench(p); } static SkBenchmark* S3(void* p) { return new IsFiniteScalarBench(p); } static BenchRegistry gReg0(S0); static BenchRegistry gReg1(S1); static BenchRegistry gReg2(S2); static BenchRegistry gReg3(S3);