#include "SkBenchmark.h" #include "SkColorPriv.h" #include "SkMatrix.h" #include "SkRandom.h" #include "SkString.h" #include "SkPaint.h" static float sk_fsel(float pred, float result_ge, float result_lt) { return pred >= 0 ? result_ge : result_lt; } static float fast_floor(float x) { // float big = sk_fsel(x, 0x1.0p+23, -0x1.0p+23); float big = sk_fsel(x, (float)(1 << 23), -(float)(1 << 23)); return (x + big) - big; } class MathBench : public SkBenchmark { enum { kBuffer = 100, kLoop = 10000 }; SkString fName; float fSrc[kBuffer], fDst[kBuffer]; public: MathBench(void* param, const char name[]) : INHERITED(param) { fName.printf("math_%s", name); SkRandom rand; for (int i = 0; i < kBuffer; ++i) { fSrc[i] = rand.nextSScalar1(); } fIsRendering = false; } virtual void performTest(float* SK_RESTRICT dst, const float* SK_RESTRICT src, int count) = 0; protected: virtual int mulLoopCount() const { return 1; } virtual const char* onGetName() { return fName.c_str(); } virtual void onDraw(SkCanvas* canvas) { int n = SkBENCHLOOP(kLoop * this->mulLoopCount()); for (int i = 0; i < n; i++) { this->performTest(fDst, fSrc, kBuffer); } } private: typedef SkBenchmark INHERITED; }; class MathBenchU32 : public MathBench { public: MathBenchU32(void* param, const char name[]) : INHERITED(param, name) {} protected: virtual void performITest(uint32_t* SK_RESTRICT dst, const uint32_t* SK_RESTRICT src, int count) = 0; virtual void performTest(float* SK_RESTRICT dst, const float* SK_RESTRICT src, int count) SK_OVERRIDE { uint32_t* d = SkTCast<uint32_t*>(dst); const uint32_t* s = SkTCast<const uint32_t*>(src); this->performITest(d, s, count); } private: typedef MathBench INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class NoOpMathBench : public MathBench { public: NoOpMathBench(void* param) : INHERITED(param, "noOp") {} protected: virtual void performTest(float* SK_RESTRICT dst, const float* SK_RESTRICT src, int count) { for (int i = 0; i < count; ++i) { dst[i] = src[i] + 1; } } private: typedef MathBench INHERITED; }; class SlowISqrtMathBench : public MathBench { public: SlowISqrtMathBench(void* param) : INHERITED(param, "slowIsqrt") {} protected: virtual void performTest(float* SK_RESTRICT dst, const float* SK_RESTRICT src, int count) { for (int i = 0; i < count; ++i) { dst[i] = 1.0f / sk_float_sqrt(src[i]); } } private: typedef MathBench INHERITED; }; static inline float SkFastInvSqrt(float x) { float xhalf = 0.5f*x; int i = *SkTCast<int*>(&x); i = 0x5f3759df - (i>>1); x = *SkTCast<float*>(&i); x = x*(1.5f-xhalf*x*x); // x = x*(1.5f-xhalf*x*x); // this line takes err from 10^-3 to 10^-6 return x; } class FastISqrtMathBench : public MathBench { public: FastISqrtMathBench(void* param) : INHERITED(param, "fastIsqrt") {} protected: virtual void performTest(float* SK_RESTRICT dst, const float* SK_RESTRICT src, int count) { for (int i = 0; i < count; ++i) { dst[i] = SkFastInvSqrt(src[i]); } } private: typedef MathBench INHERITED; }; static inline uint32_t QMul64(uint32_t value, U8CPU alpha) { SkASSERT((uint8_t)alpha == alpha); const uint32_t mask = 0xFF00FF; uint64_t tmp = value; tmp = (tmp & mask) | ((tmp & ~mask) << 24); tmp *= alpha; return (uint32_t) (((tmp >> 8) & mask) | ((tmp >> 32) & ~mask)); } class QMul64Bench : public MathBenchU32 { public: QMul64Bench(void* param) : INHERITED(param, "qmul64") {} protected: virtual void performITest(uint32_t* SK_RESTRICT dst, const uint32_t* SK_RESTRICT src, int count) SK_OVERRIDE { for (int i = 0; i < count; ++i) { dst[i] = QMul64(src[i], (uint8_t)i); } } private: typedef MathBenchU32 INHERITED; }; class QMul32Bench : public MathBenchU32 { public: QMul32Bench(void* param) : INHERITED(param, "qmul32") {} protected: virtual void performITest(uint32_t* SK_RESTRICT dst, const uint32_t* SK_RESTRICT src, int count) SK_OVERRIDE { for (int i = 0; i < count; ++i) { dst[i] = SkAlphaMulQ(src[i], (uint8_t)i); } } private: typedef MathBenchU32 INHERITED; }; /////////////////////////////////////////////////////////////////////////////// static bool isFinite_int(float x) { uint32_t bits = SkFloat2Bits(x); // need unsigned for our shifts int exponent = bits << 1 >> 24; return exponent != 0xFF; } static bool isFinite_float(float x) { return SkToBool(sk_float_isfinite(x)); } static bool isFinite_mulzero(float x) { float y = x * 0; return y == y; } static bool isfinite_and_int(const float data[4]) { return isFinite_int(data[0]) && isFinite_int(data[1]) && isFinite_int(data[2]) && isFinite_int(data[3]); } static bool isfinite_and_float(const float data[4]) { return isFinite_float(data[0]) && isFinite_float(data[1]) && isFinite_float(data[2]) && isFinite_float(data[3]); } static bool isfinite_and_mulzero(const float data[4]) { return isFinite_mulzero(data[0]) && isFinite_mulzero(data[1]) && isFinite_mulzero(data[2]) && isFinite_mulzero(data[3]); } #define mulzeroadd(data) (data[0]*0 + data[1]*0 + data[2]*0 + data[3]*0) static bool isfinite_plus_int(const float data[4]) { return isFinite_int(mulzeroadd(data)); } static bool isfinite_plus_float(const float data[4]) { return !sk_float_isnan(mulzeroadd(data)); } static bool isfinite_plus_mulzero(const float data[4]) { float x = mulzeroadd(data); return x == x; } typedef bool (*IsFiniteProc)(const float[]); #define MAKEREC(name) { name, #name } static const struct { IsFiniteProc fProc; const char* fName; } gRec[] = { MAKEREC(isfinite_and_int), MAKEREC(isfinite_and_float), MAKEREC(isfinite_and_mulzero), MAKEREC(isfinite_plus_int), MAKEREC(isfinite_plus_float), MAKEREC(isfinite_plus_mulzero), }; #undef MAKEREC static bool isFinite(const SkRect& r) { // x * 0 will be NaN iff x is infinity or NaN. // a + b will be NaN iff either a or b is NaN. float value = r.fLeft * 0 + r.fTop * 0 + r.fRight * 0 + r.fBottom * 0; // value is either NaN or it is finite (zero). // value==value will be true iff value is not NaN return value == value; } class IsFiniteBench : public SkBenchmark { enum { N = SkBENCHLOOP(1000), NN = SkBENCHLOOP(1000), }; float fData[N]; public: IsFiniteBench(void* param, int index) : INHERITED(param) { SkRandom rand; for (int i = 0; i < N; ++i) { fData[i] = rand.nextSScalar1(); } if (index < 0) { fProc = NULL; fName = "isfinite_rect"; } else { fProc = gRec[index].fProc; fName = gRec[index].fName; } fIsRendering = false; } protected: virtual void onDraw(SkCanvas* canvas) { IsFiniteProc proc = fProc; const float* data = fData; // do this so the compiler won't throw away the function call int counter = 0; if (proc) { for (int j = 0; j < NN; ++j) { for (int i = 0; i < N - 4; ++i) { counter += proc(&data[i]); } } } else { for (int j = 0; j < NN; ++j) { for (int i = 0; i < N - 4; ++i) { const SkRect* r = reinterpret_cast<const SkRect*>(&data[i]); if (false) { // avoid bit rot, suppress warning isFinite(*r); } counter += r->isFinite(); } } } SkPaint paint; if (paint.getAlpha() == 0) { SkDebugf("%d\n", counter); } } virtual const char* onGetName() { return fName; } private: IsFiniteProc fProc; const char* fName; typedef SkBenchmark INHERITED; }; class FloorBench : public SkBenchmark { enum { ARRAY = SkBENCHLOOP(1000), LOOP = SkBENCHLOOP(1000), }; float fData[ARRAY]; bool fFast; public: FloorBench(void* param, bool fast) : INHERITED(param), fFast(fast) { SkRandom rand; for (int i = 0; i < ARRAY; ++i) { fData[i] = rand.nextSScalar1(); } if (fast) { fName = "floor_fast"; } else { fName = "floor_std"; } fIsRendering = false; } virtual void process(float) {} protected: virtual void onDraw(SkCanvas* canvas) { SkRandom rand; float accum = 0; const float* data = fData; if (fFast) { for (int j = 0; j < LOOP; ++j) { for (int i = 0; i < ARRAY; ++i) { accum += fast_floor(data[i]); } this->process(accum); } } else { for (int j = 0; j < LOOP; ++j) { for (int i = 0; i < ARRAY; ++i) { accum += sk_float_floor(data[i]); } this->process(accum); } } } virtual const char* onGetName() { return fName; } private: const char* fName; typedef SkBenchmark INHERITED; }; /////////////////////////////////////////////////////////////////////////////// static SkBenchmark* M0(void* p) { return new NoOpMathBench(p); } static SkBenchmark* M1(void* p) { return new SlowISqrtMathBench(p); } static SkBenchmark* M2(void* p) { return new FastISqrtMathBench(p); } static SkBenchmark* M3(void* p) { return new QMul64Bench(p); } static SkBenchmark* M4(void* p) { return new QMul32Bench(p); } static SkBenchmark* M5neg1(void* p) { return new IsFiniteBench(p, -1); } static SkBenchmark* M50(void* p) { return new IsFiniteBench(p, 0); } static SkBenchmark* M51(void* p) { return new IsFiniteBench(p, 1); } static SkBenchmark* M52(void* p) { return new IsFiniteBench(p, 2); } static SkBenchmark* M53(void* p) { return new IsFiniteBench(p, 3); } static SkBenchmark* M54(void* p) { return new IsFiniteBench(p, 4); } static SkBenchmark* M55(void* p) { return new IsFiniteBench(p, 5); } static SkBenchmark* F0(void* p) { return new FloorBench(p, false); } static SkBenchmark* F1(void* p) { return new FloorBench(p, true); } static BenchRegistry gReg0(M0); static BenchRegistry gReg1(M1); static BenchRegistry gReg2(M2); static BenchRegistry gReg3(M3); static BenchRegistry gReg4(M4); static BenchRegistry gReg5neg1(M5neg1); static BenchRegistry gReg50(M50); static BenchRegistry gReg51(M51); static BenchRegistry gReg52(M52); static BenchRegistry gReg53(M53); static BenchRegistry gReg54(M54); static BenchRegistry gReg55(M55); static BenchRegistry gRF0(F0); static BenchRegistry gRF1(F1);