//===- InstCombineSelect.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitSelect function. // //===----------------------------------------------------------------------===// #include "InstCombine.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace PatternMatch; /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, /// returning the kind and providing the out parameter results if we /// successfully match. static SelectPatternFlavor MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { SelectInst *SI = dyn_cast<SelectInst>(V); if (SI == 0) return SPF_UNKNOWN; ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition()); if (ICI == 0) return SPF_UNKNOWN; LHS = ICI->getOperand(0); RHS = ICI->getOperand(1); // (icmp X, Y) ? X : Y if (SI->getTrueValue() == ICI->getOperand(0) && SI->getFalseValue() == ICI->getOperand(1)) { switch (ICI->getPredicate()) { default: return SPF_UNKNOWN; // Equality. case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return SPF_UMAX; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return SPF_SMAX; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: return SPF_UMIN; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return SPF_SMIN; } } // (icmp X, Y) ? Y : X if (SI->getTrueValue() == ICI->getOperand(1) && SI->getFalseValue() == ICI->getOperand(0)) { switch (ICI->getPredicate()) { default: return SPF_UNKNOWN; // Equality. case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return SPF_UMIN; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return SPF_SMIN; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: return SPF_UMAX; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: return SPF_SMAX; } } // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) return SPF_UNKNOWN; } /// GetSelectFoldableOperands - We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned GetSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::LShr: case Instruction::AShr: return 1; default: return 0; // Cannot fold } } /// GetSelectFoldableConstant - For the same transformation as the previous /// function, return the identity constant that goes into the select. static Constant *GetSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: llvm_unreachable("This cannot happen!"); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return Constant::getNullValue(I->getType()); case Instruction::And: return Constant::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI /// have the same opcode and only one use each. Try to simplify this. Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { if (TI->getNumOperands() == 1) { // If this is a non-volatile load or a cast from the same type, // merge. if (TI->isCast()) { if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) return 0; // The select condition may be a vector. We may only change the operand // type if the vector width remains the same (and matches the condition). Type *CondTy = SI.getCondition()->getType(); if (CondTy->isVectorTy() && CondTy->getVectorNumElements() != FI->getOperand(0)->getType()->getVectorNumElements()) return 0; } else { return 0; // unknown unary op. } // Fold this by inserting a select from the input values. Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), FI->getOperand(0), SI.getName()+".v"); return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, TI->getType()); } // Only handle binary operators here. if (!isa<BinaryOperator>(TI)) return 0; // Figure out if the operations have any operands in common. Value *MatchOp, *OtherOpT, *OtherOpF; bool MatchIsOpZero; if (TI->getOperand(0) == FI->getOperand(0)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(1)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; } else if (!TI->isCommutative()) { return 0; } else if (TI->getOperand(0) == FI->getOperand(1)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(0)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else { return 0; } // If we reach here, they do have operations in common. Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, SI.getName()+".v"); if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { if (MatchIsOpZero) return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); else return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); } llvm_unreachable("Shouldn't get here"); } static bool isSelect01(Constant *C1, Constant *C2) { ConstantInt *C1I = dyn_cast<ConstantInt>(C1); if (!C1I) return false; ConstantInt *C2I = dyn_cast<ConstantInt>(C2); if (!C2I) return false; if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. return false; return C1I->isOne() || C1I->isAllOnesValue() || C2I->isOne() || C2I->isAllOnesValue(); } /// FoldSelectIntoOp - Try fold the select into one of the operands to /// facilitate further optimization. Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, Value *FalseVal) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa<Constant>(FalseVal)) { if (unsigned SFO = GetSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(TVI); Value *OOp = TVI->getOperand(2-OpToFold); // Avoid creating select between 2 constants unless it's selecting // between 0, 1 and -1. if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); NewSel->takeName(TVI); BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), FalseVal, NewSel); if (isa<PossiblyExactOperator>(BO)) BO->setIsExact(TVI_BO->isExact()); if (isa<OverflowingBinaryOperator>(BO)) { BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap()); BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap()); } return BO; } } } } } if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa<Constant>(TrueVal)) { if (unsigned SFO = GetSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(FVI); Value *OOp = FVI->getOperand(2-OpToFold); // Avoid creating select between 2 constants unless it's selecting // between 0, 1 and -1. if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); NewSel->takeName(FVI); BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), TrueVal, NewSel); if (isa<PossiblyExactOperator>(BO)) BO->setIsExact(FVI_BO->isExact()); if (isa<OverflowingBinaryOperator>(BO)) { BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap()); BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap()); } return BO; } } } } } return 0; } /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is /// replaced with RepOp. static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const DataLayout *TD, const TargetLibraryInfo *TLI) { // Trivial replacement. if (V == Op) return RepOp; Instruction *I = dyn_cast<Instruction>(V); if (!I) return 0; // If this is a binary operator, try to simplify it with the replaced op. if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) { if (B->getOperand(0) == Op) return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI); if (B->getOperand(1) == Op) return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI); } // Same for CmpInsts. if (CmpInst *C = dyn_cast<CmpInst>(I)) { if (C->getOperand(0) == Op) return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD, TLI); if (C->getOperand(1) == Op) return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD, TLI); } // TODO: We could hand off more cases to instsimplify here. // If all operands are constant after substituting Op for RepOp then we can // constant fold the instruction. if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { // Build a list of all constant operands. SmallVector<Constant*, 8> ConstOps; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { if (I->getOperand(i) == Op) ConstOps.push_back(CRepOp); else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) ConstOps.push_back(COp); else break; } // All operands were constants, fold it. if (ConstOps.size() == I->getNumOperands()) { if (CmpInst *C = dyn_cast<CmpInst>(I)) return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], ConstOps[1], TD, TLI); if (LoadInst *LI = dyn_cast<LoadInst>(I)) if (!LI->isVolatile()) return ConstantFoldLoadFromConstPtr(ConstOps[0], TD); return ConstantFoldInstOperands(I->getOpcode(), I->getType(), ConstOps, TD, TLI); } } return 0; } /// visitSelectInstWithICmp - Visit a SelectInst that has an /// ICmpInst as its first operand. /// Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI) { bool Changed = false; ICmpInst::Predicate Pred = ICI->getPredicate(); Value *CmpLHS = ICI->getOperand(0); Value *CmpRHS = ICI->getOperand(1); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // Check cases where the comparison is with a constant that // can be adjusted to fit the min/max idiom. We may move or edit ICI // here, so make sure the select is the only user. if (ICI->hasOneUse()) if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { // X < MIN ? T : F --> F if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) && CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) return ReplaceInstUsesWith(SI, FalseVal); // X > MAX ? T : F --> F else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT) && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) return ReplaceInstUsesWith(SI, FalseVal); switch (Pred) { default: break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: { // These transformations only work for selects over integers. IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); if (!SelectTy) break; Constant *AdjustedRHS; if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); // X > C ? X : C+1 --> X < C+1 ? C+1 : X // X < C ? X : C-1 --> X > C-1 ? C-1 : X if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) ; // Nothing to do here. Values match without any sign/zero extension. // Types do not match. Instead of calculating this with mixed types // promote all to the larger type. This enables scalar evolution to // analyze this expression. else if (CmpRHS->getType()->getScalarSizeInBits() < SelectTy->getBitWidth()) { Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && sextRHS == FalseVal) { CmpLHS = TrueVal; AdjustedRHS = sextRHS; } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && sextRHS == TrueVal) { CmpLHS = FalseVal; AdjustedRHS = sextRHS; } else if (ICI->isUnsigned()) { Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X // zext + signed compare cannot be changed: // 0xff <s 0x00, but 0x00ff >s 0x0000 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && zextRHS == FalseVal) { CmpLHS = TrueVal; AdjustedRHS = zextRHS; } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && zextRHS == TrueVal) { CmpLHS = FalseVal; AdjustedRHS = zextRHS; } else break; } else break; } else break; Pred = ICmpInst::getSwappedPredicate(Pred); CmpRHS = AdjustedRHS; std::swap(FalseVal, TrueVal); ICI->setPredicate(Pred); ICI->setOperand(0, CmpLHS); ICI->setOperand(1, CmpRHS); SI.setOperand(1, TrueVal); SI.setOperand(2, FalseVal); // Move ICI instruction right before the select instruction. Otherwise // the sext/zext value may be defined after the ICI instruction uses it. ICI->moveBefore(&SI); Changed = true; break; } } } // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 // FIXME: Type and constness constraints could be lifted, but we have to // watch code size carefully. We should consider xor instead of // sub/add when we decide to do that. if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { if (TrueVal->getType() == Ty) { if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { ConstantInt *C1 = NULL, *C2 = NULL; if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { C1 = dyn_cast<ConstantInt>(TrueVal); C2 = dyn_cast<ConstantInt>(FalseVal); } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { C1 = dyn_cast<ConstantInt>(FalseVal); C2 = dyn_cast<ConstantInt>(TrueVal); } if (C1 && C2) { // This shift results in either -1 or 0. Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); // Check if we can express the operation with a single or. if (C2->isAllOnesValue()) return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); } } } } // If we have an equality comparison then we know the value in one of the // arms of the select. See if substituting this value into the arm and // simplifying the result yields the same value as the other arm. if (Pred == ICmpInst::ICMP_EQ) { if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal || SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal) return ReplaceInstUsesWith(SI, FalseVal); if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal || SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal) return ReplaceInstUsesWith(SI, FalseVal); } else if (Pred == ICmpInst::ICMP_NE) { if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal || SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal) return ReplaceInstUsesWith(SI, TrueVal); if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal || SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal) return ReplaceInstUsesWith(SI, TrueVal); } // NOTE: if we wanted to, this is where to detect integer MIN/MAX if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { // Transform (X == C) ? X : Y -> (X == C) ? C : Y SI.setOperand(1, CmpRHS); Changed = true; } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { // Transform (X != C) ? Y : X -> (X != C) ? Y : C SI.setOperand(2, CmpRHS); Changed = true; } } return Changed ? &SI : 0; } /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a /// PHI node (but the two may be in different blocks). See if the true/false /// values (V) are live in all of the predecessor blocks of the PHI. For /// example, cases like this cannot be mapped: /// /// X = phi [ C1, BB1], [C2, BB2] /// Y = add /// Z = select X, Y, 0 /// /// because Y is not live in BB1/BB2. /// static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, const SelectInst &SI) { // If the value is a non-instruction value like a constant or argument, it // can always be mapped. const Instruction *I = dyn_cast<Instruction>(V); if (I == 0) return true; // If V is a PHI node defined in the same block as the condition PHI, we can // map the arguments. const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); if (const PHINode *VP = dyn_cast<PHINode>(I)) if (VP->getParent() == CondPHI->getParent()) return true; // Otherwise, if the PHI and select are defined in the same block and if V is // defined in a different block, then we can transform it. if (SI.getParent() == CondPHI->getParent() && I->getParent() != CondPHI->getParent()) return true; // Otherwise we have a 'hard' case and we can't tell without doing more // detailed dominator based analysis, punt. return false; } /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: /// SPF2(SPF1(A, B), C) Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C) { if (C == A || C == B) { // MAX(MAX(A, B), B) -> MAX(A, B) // MIN(MIN(a, b), a) -> MIN(a, b) if (SPF1 == SPF2) return ReplaceInstUsesWith(Outer, Inner); // MAX(MIN(a, b), a) -> a // MIN(MAX(a, b), a) -> a if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) return ReplaceInstUsesWith(Outer, C); } // TODO: MIN(MIN(A, 23), 97) return 0; } /// foldSelectICmpAnd - If one of the constants is zero (we know they can't /// both be) and we have an icmp instruction with zero, and we have an 'and' /// with the non-constant value and a power of two we can turn the select /// into a shift on the result of the 'and'. static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, ConstantInt *FalseVal, InstCombiner::BuilderTy *Builder) { const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); if (!IC || !IC->isEquality()) return 0; if (!match(IC->getOperand(1), m_Zero())) return 0; ConstantInt *AndRHS; Value *LHS = IC->getOperand(0); if (LHS->getType() != SI.getType() || !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) return 0; // If both select arms are non-zero see if we have a select of the form // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic // for 'x ? 2^n : 0' and fix the thing up at the end. ConstantInt *Offset = 0; if (!TrueVal->isZero() && !FalseVal->isZero()) { if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) Offset = FalseVal; else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) Offset = TrueVal; else return 0; // Adjust TrueVal and FalseVal to the offset. TrueVal = ConstantInt::get(Builder->getContext(), TrueVal->getValue() - Offset->getValue()); FalseVal = ConstantInt::get(Builder->getContext(), FalseVal->getValue() - Offset->getValue()); } // Make sure the mask in the 'and' and one of the select arms is a power of 2. if (!AndRHS->getValue().isPowerOf2() || (!TrueVal->getValue().isPowerOf2() && !FalseVal->getValue().isPowerOf2())) return 0; // Determine which shift is needed to transform result of the 'and' into the // desired result. ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; unsigned ValZeros = ValC->getValue().logBase2(); unsigned AndZeros = AndRHS->getValue().logBase2(); Value *V = LHS; if (ValZeros > AndZeros) V = Builder->CreateShl(V, ValZeros - AndZeros); else if (ValZeros < AndZeros) V = Builder->CreateLShr(V, AndZeros - ValZeros); // Okay, now we know that everything is set up, we just don't know whether we // have a icmp_ne or icmp_eq and whether the true or false val is the zero. bool ShouldNotVal = !TrueVal->isZero(); ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; if (ShouldNotVal) V = Builder->CreateXor(V, ValC); // Apply an offset if needed. if (Offset) V = Builder->CreateAdd(V, Offset); return V; } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD)) return ReplaceInstUsesWith(SI, V); if (SI.getType()->isIntegerTy(1)) { if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { if (C->getZExtValue()) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::CreateOr(CondVal, FalseVal); } // Change: A = select B, false, C --> A = and !B, C Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); return BinaryOperator::CreateAnd(NotCond, FalseVal); } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { if (C->getZExtValue() == false) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::CreateAnd(CondVal, TrueVal); } // Change: A = select B, C, true --> A = or !B, C Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); return BinaryOperator::CreateOr(NotCond, TrueVal); } // select a, b, a -> a&b // select a, a, b -> a|b if (CondVal == TrueVal) return BinaryOperator::CreateOr(CondVal, FalseVal); else if (CondVal == FalseVal) return BinaryOperator::CreateAnd(CondVal, TrueVal); // select a, ~a, b -> (~a)&b // select a, b, ~a -> (~a)|b if (match(TrueVal, m_Not(m_Specific(CondVal)))) return BinaryOperator::CreateAnd(TrueVal, FalseVal); else if (match(FalseVal, m_Not(m_Specific(CondVal)))) return BinaryOperator::CreateOr(TrueVal, FalseVal); } // Selecting between two integer constants? if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { // select C, 1, 0 -> zext C to int if (FalseValC->isZero() && TrueValC->getValue() == 1) return new ZExtInst(CondVal, SI.getType()); // select C, -1, 0 -> sext C to int if (FalseValC->isZero() && TrueValC->isAllOnesValue()) return new SExtInst(CondVal, SI.getType()); // select C, 0, 1 -> zext !C to int if (TrueValC->isZero() && FalseValC->getValue() == 1) { Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); return new ZExtInst(NotCond, SI.getType()); } // select C, 0, -1 -> sext !C to int if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); return new SExtInst(NotCond, SI.getType()); } if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) return ReplaceInstUsesWith(SI, V); } // See if we are selecting two values based on a comparison of the two values. if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, FalseVal); } // Transform (X une Y) ? X : Y -> X if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, TrueVal); } // NOTE: if we wanted to, this is where to detect MIN/MAX } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, FalseVal); } // Transform (X une Y) ? Y : X -> Y if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { // This is not safe in general for floating point: // consider X== -0, Y== +0. // It becomes safe if either operand is a nonzero constant. ConstantFP *CFPt, *CFPf; if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && !CFPt->getValueAPF().isZero()) || ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && !CFPf->getValueAPF().isZero())) return ReplaceInstUsesWith(SI, TrueVal); } // NOTE: if we wanted to, this is where to detect MIN/MAX } // NOTE: if we wanted to, this is where to detect ABS } // See if we are selecting two values based on a comparison of the two values. if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) return Result; if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) if (TI->hasOneUse() && FI->hasOneUse()) { Instruction *AddOp = 0, *SubOp = 0; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) if (TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) return IV; // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is // even legal for FP. if ((TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) || (TI->getOpcode() == Instruction::FSub && FI->getOpcode() == Instruction::FAdd)) { AddOp = FI; SubOp = TI; } else if ((FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) || (FI->getOpcode() == Instruction::FSub && TI->getOpcode() == Instruction::FAdd)) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = 0; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (SI.getType()->isFPOrFPVectorTy()) { NegVal = Builder->CreateFNeg(SubOp->getOperand(1)); } else { NegVal = Builder->CreateNeg(SubOp->getOperand(1)); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Value *NewSel = Builder->CreateSelect(CondVal, NewTrueOp, NewFalseOp, SI.getName() + ".p"); if (SI.getType()->isFPOrFPVectorTy()) return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); else return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); } } } // See if we can fold the select into one of our operands. if (SI.getType()->isIntegerTy()) { if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) return FoldI; // MAX(MAX(a, b), a) -> MAX(a, b) // MIN(MIN(a, b), a) -> MIN(a, b) // MAX(MIN(a, b), a) -> a // MIN(MAX(a, b), a) -> a Value *LHS, *RHS, *LHS2, *RHS2; if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, SI, SPF, RHS)) return R; if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, SI, SPF, LHS)) return R; } // TODO. // ABS(-X) -> ABS(X) // ABS(ABS(X)) -> ABS(X) } // See if we can fold the select into a phi node if the condition is a select. if (isa<PHINode>(SI.getCondition())) // The true/false values have to be live in the PHI predecessor's blocks. if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) if (Instruction *NV = FoldOpIntoPhi(SI)) return NV; if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { if (TrueSI->getCondition() == CondVal) { if (SI.getTrueValue() == TrueSI->getTrueValue()) return 0; SI.setOperand(1, TrueSI->getTrueValue()); return &SI; } } if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { if (FalseSI->getCondition() == CondVal) { if (SI.getFalseValue() == FalseSI->getFalseValue()) return 0; SI.setOperand(2, FalseSI->getFalseValue()); return &SI; } } if (BinaryOperator::isNot(CondVal)) { SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); SI.setOperand(1, FalseVal); SI.setOperand(2, TrueVal); return &SI; } if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) { unsigned VWidth = VecTy->getNumElements(); APInt UndefElts(VWidth, 0); APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { if (V != &SI) return ReplaceInstUsesWith(SI, V); return &SI; } if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) { // Form a shufflevector instruction. SmallVector<Constant *, 8> Mask(VWidth); Type *Int32Ty = Type::getInt32Ty(CV->getContext()); for (unsigned i = 0; i != VWidth; ++i) { Constant *Elem = cast<Constant>(CV->getOperand(i)); if (ConstantInt *E = dyn_cast<ConstantInt>(Elem)) Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0)); else if (isa<UndefValue>(Elem)) Mask[i] = UndefValue::get(Int32Ty); else return 0; } Constant *MaskVal = ConstantVector::get(Mask); Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal); return ReplaceInstUsesWith(SI, V); } if (isa<ConstantAggregateZero>(CondVal)) { return ReplaceInstUsesWith(SI, FalseVal); } } return 0; }