===================== TableGen Fundamentals ===================== .. contents:: :local: Introduction ============ TableGen's purpose is to help a human develop and maintain records of domain-specific information. Because there may be a large number of these records, it is specifically designed to allow writing flexible descriptions and for common features of these records to be factored out. This reduces the amount of duplication in the description, reduces the chance of error, and makes it easier to structure domain specific information. The core part of TableGen `parses a file`_, instantiates the declarations, and hands the result off to a domain-specific `TableGen backend`_ for processing. The current major user of TableGen is the `LLVM code generator <CodeGenerator.html>`_. Note that if you work on TableGen much, and use emacs or vim, that you can find an emacs "TableGen mode" and a vim language file in the ``llvm/utils/emacs`` and ``llvm/utils/vim`` directories of your LLVM distribution, respectively. .. _intro: Basic concepts -------------- TableGen files consist of two key parts: 'classes' and 'definitions', both of which are considered 'records'. **TableGen records** have a unique name, a list of values, and a list of superclasses. The list of values is the main data that TableGen builds for each record; it is this that holds the domain specific information for the application. The interpretation of this data is left to a specific `TableGen backend`_, but the structure and format rules are taken care of and are fixed by TableGen. **TableGen definitions** are the concrete form of 'records'. These generally do not have any undefined values, and are marked with the '``def``' keyword. **TableGen classes** are abstract records that are used to build and describe other records. These 'classes' allow the end-user to build abstractions for either the domain they are targeting (such as "Register", "RegisterClass", and "Instruction" in the LLVM code generator) or for the implementor to help factor out common properties of records (such as "FPInst", which is used to represent floating point instructions in the X86 backend). TableGen keeps track of all of the classes that are used to build up a definition, so the backend can find all definitions of a particular class, such as "Instruction". **TableGen multiclasses** are groups of abstract records that are instantiated all at once. Each instantiation can result in multiple TableGen definitions. If a multiclass inherits from another multiclass, the definitions in the sub-multiclass become part of the current multiclass, as if they were declared in the current multiclass. .. _described above: An example record ----------------- With no other arguments, TableGen parses the specified file and prints out all of the classes, then all of the definitions. This is a good way to see what the various definitions expand to fully. Running this on the ``X86.td`` file prints this (at the time of this writing): .. code-block:: llvm ... def ADD32rr { // Instruction X86Inst I string Namespace = "X86"; dag OutOperandList = (outs GR32:$dst); dag InOperandList = (ins GR32:$src1, GR32:$src2); string AsmString = "add{l}\t{$src2, $dst|$dst, $src2}"; list<dag> Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]; list<Register> Uses = []; list<Register> Defs = [EFLAGS]; list<Predicate> Predicates = []; int CodeSize = 3; int AddedComplexity = 0; bit isReturn = 0; bit isBranch = 0; bit isIndirectBranch = 0; bit isBarrier = 0; bit isCall = 0; bit canFoldAsLoad = 0; bit mayLoad = 0; bit mayStore = 0; bit isImplicitDef = 0; bit isConvertibleToThreeAddress = 1; bit isCommutable = 1; bit isTerminator = 0; bit isReMaterializable = 0; bit isPredicable = 0; bit hasDelaySlot = 0; bit usesCustomInserter = 0; bit hasCtrlDep = 0; bit isNotDuplicable = 0; bit hasSideEffects = 0; bit neverHasSideEffects = 0; InstrItinClass Itinerary = NoItinerary; string Constraints = ""; string DisableEncoding = ""; bits<8> Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 }; Format Form = MRMDestReg; bits<6> FormBits = { 0, 0, 0, 0, 1, 1 }; ImmType ImmT = NoImm; bits<3> ImmTypeBits = { 0, 0, 0 }; bit hasOpSizePrefix = 0; bit hasAdSizePrefix = 0; bits<4> Prefix = { 0, 0, 0, 0 }; bit hasREX_WPrefix = 0; FPFormat FPForm = ?; bits<3> FPFormBits = { 0, 0, 0 }; } ... This definition corresponds to the 32-bit register-register ``add`` instruction of the x86 architecture. ``def ADD32rr`` defines a record named ``ADD32rr``, and the comment at the end of the line indicates the superclasses of the definition. The body of the record contains all of the data that TableGen assembled for the record, indicating that the instruction is part of the "X86" namespace, the pattern indicating how the instruction should be emitted into the assembly file, that it is a two-address instruction, has a particular encoding, etc. The contents and semantics of the information in the record are specific to the needs of the X86 backend, and are only shown as an example. As you can see, a lot of information is needed for every instruction supported by the code generator, and specifying it all manually would be unmaintainable, prone to bugs, and tiring to do in the first place. Because we are using TableGen, all of the information was derived from the following definition: .. code-block:: llvm let Defs = [EFLAGS], isCommutable = 1, // X = ADD Y,Z --> X = ADD Z,Y isConvertibleToThreeAddress = 1 in // Can transform into LEA. def ADD32rr : I<0x01, MRMDestReg, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "add{l}\t{$src2, $dst|$dst, $src2}", [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]>; This definition makes use of the custom class ``I`` (extended from the custom class ``X86Inst``), which is defined in the X86-specific TableGen file, to factor out the common features that instructions of its class share. A key feature of TableGen is that it allows the end-user to define the abstractions they prefer to use when describing their information. Each ``def`` record has a special entry called "NAME". This is the name of the record ("``ADD32rr``" above). In the general case ``def`` names can be formed from various kinds of string processing expressions and ``NAME`` resolves to the final value obtained after resolving all of those expressions. The user may refer to ``NAME`` anywhere she desires to use the ultimate name of the ``def``. ``NAME`` should not be defined anywhere else in user code to avoid conflicts. Running TableGen ---------------- TableGen runs just like any other LLVM tool. The first (optional) argument specifies the file to read. If a filename is not specified, ``llvm-tblgen`` reads from standard input. To be useful, one of the `TableGen backends`_ must be used. These backends are selectable on the command line (type '``llvm-tblgen -help``' for a list). For example, to get a list of all of the definitions that subclass a particular type (which can be useful for building up an enum list of these records), use the ``-print-enums`` option: .. code-block:: bash $ llvm-tblgen X86.td -print-enums -class=Register AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX, ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D, R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15, R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI, RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7, XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, $ llvm-tblgen X86.td -print-enums -class=Instruction ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri, ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8, ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm, ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr, ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ... The default backend prints out all of the records, as `described above`_. If you plan to use TableGen, you will most likely have to `write a backend`_ that extracts the information specific to what you need and formats it in the appropriate way. .. _parses a file: TableGen syntax =============== TableGen doesn't care about the meaning of data (that is up to the backend to define), but it does care about syntax, and it enforces a simple type system. This section describes the syntax and the constructs allowed in a TableGen file. TableGen primitives ------------------- TableGen comments ^^^^^^^^^^^^^^^^^ TableGen supports BCPL style "``//``" comments, which run to the end of the line, and it also supports **nestable** "``/* */``" comments. .. _TableGen type: The TableGen type system ^^^^^^^^^^^^^^^^^^^^^^^^ TableGen files are strongly typed, in a simple (but complete) type-system. These types are used to perform automatic conversions, check for errors, and to help interface designers constrain the input that they allow. Every `value definition`_ is required to have an associated type. TableGen supports a mixture of very low-level types (such as ``bit``) and very high-level types (such as ``dag``). This flexibility is what allows it to describe a wide range of information conveniently and compactly. The TableGen types are: ``bit`` A 'bit' is a boolean value that can hold either 0 or 1. ``int`` The 'int' type represents a simple 32-bit integer value, such as 5. ``string`` The 'string' type represents an ordered sequence of characters of arbitrary length. ``bits<n>`` A 'bits' type is an arbitrary, but fixed, size integer that is broken up into individual bits. This type is useful because it can handle some bits being defined while others are undefined. ``list<ty>`` This type represents a list whose elements are some other type. The contained type is arbitrary: it can even be another list type. Class type Specifying a class name in a type context means that the defined value must be a subclass of the specified class. This is useful in conjunction with the ``list`` type, for example, to constrain the elements of the list to a common base class (e.g., a ``list<Register>`` can only contain definitions derived from the "``Register``" class). ``dag`` This type represents a nestable directed graph of elements. ``code`` This represents a big hunk of text. This is lexically distinct from string values because it doesn't require escaping double quotes and other common characters that occur in code. To date, these types have been sufficient for describing things that TableGen has been used for, but it is straight-forward to extend this list if needed. .. _TableGen expressions: TableGen values and expressions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TableGen allows for a pretty reasonable number of different expression forms when building up values. These forms allow the TableGen file to be written in a natural syntax and flavor for the application. The current expression forms supported include: ``?`` uninitialized field ``0b1001011`` binary integer value ``07654321`` octal integer value (indicated by a leading 0) ``7`` decimal integer value ``0x7F`` hexadecimal integer value ``"foo"`` string value ``[{ ... }]`` code fragment ``[ X, Y, Z ]<type>`` list value. <type> is the type of the list element and is usually optional. In rare cases, TableGen is unable to deduce the element type in which case the user must specify it explicitly. ``{ a, b, c }`` initializer for a "bits<3>" value ``value`` value reference ``value{17}`` access to one bit of a value ``value{15-17}`` access to multiple bits of a value ``DEF`` reference to a record definition ``CLASS<val list>`` reference to a new anonymous definition of CLASS with the specified template arguments. ``X.Y`` reference to the subfield of a value ``list[4-7,17,2-3]`` A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from it. Elements may be included multiple times. ``foreach <var> = [ <list> ] in { <body> }`` ``foreach <var> = [ <list> ] in <def>`` Replicate <body> or <def>, replacing instances of <var> with each value in <list>. <var> is scoped at the level of the ``foreach`` loop and must not conflict with any other object introduced in <body> or <def>. Currently only ``def``\s are expanded within <body>. ``foreach <var> = 0-15 in ...`` ``foreach <var> = {0-15,32-47} in ...`` Loop over ranges of integers. The braces are required for multiple ranges. ``(DEF a, b)`` a dag value. The first element is required to be a record definition, the remaining elements in the list may be arbitrary other values, including nested ```dag``' values. ``!strconcat(a, b)`` A string value that is the result of concatenating the 'a' and 'b' strings. ``str1#str2`` "#" (paste) is a shorthand for !strconcat. It may concatenate things that are not quoted strings, in which case an implicit !cast<string> is done on the operand of the paste. ``!cast<type>(a)`` A symbol of type *type* obtained by looking up the string 'a' in the symbol table. If the type of 'a' does not match *type*, TableGen aborts with an error. !cast<string> is a special case in that the argument must be an object defined by a 'def' construct. ``!subst(a, b, c)`` If 'a' and 'b' are of string type or are symbol references, substitute 'b' for 'a' in 'c.' This operation is analogous to $(subst) in GNU make. ``!foreach(a, b, c)`` For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a dummy variable that should be declared as a member variable of an instantiated class. This operation is analogous to $(foreach) in GNU make. ``!head(a)`` The first element of list 'a.' ``!tail(a)`` The 2nd-N elements of list 'a.' ``!empty(a)`` An integer {0,1} indicating whether list 'a' is empty. ``!if(a,b,c)`` 'b' if the result of 'int' or 'bit' operator 'a' is nonzero, 'c' otherwise. ``!eq(a,b)`` 'bit 1' if string a is equal to string b, 0 otherwise. This only operates on string, int and bit objects. Use !cast<string> to compare other types of objects. Note that all of the values have rules specifying how they convert to values for different types. These rules allow you to assign a value like "``7``" to a "``bits<4>``" value, for example. Classes and definitions ----------------------- As mentioned in the `intro`_, classes and definitions (collectively known as 'records') in TableGen are the main high-level unit of information that TableGen collects. Records are defined with a ``def`` or ``class`` keyword, the record name, and an optional list of "`template arguments`_". If the record has superclasses, they are specified as a comma separated list that starts with a colon character ("``:``"). If `value definitions`_ or `let expressions`_ are needed for the class, they are enclosed in curly braces ("``{}``"); otherwise, the record ends with a semicolon. Here is a simple TableGen file: .. code-block:: llvm class C { bit V = 1; } def X : C; def Y : C { string Greeting = "hello"; } This example defines two definitions, ``X`` and ``Y``, both of which derive from the ``C`` class. Because of this, they both get the ``V`` bit value. The ``Y`` definition also gets the Greeting member as well. In general, classes are useful for collecting together the commonality between a group of records and isolating it in a single place. Also, classes permit the specification of default values for their subclasses, allowing the subclasses to override them as they wish. .. _value definition: .. _value definitions: Value definitions ^^^^^^^^^^^^^^^^^ Value definitions define named entries in records. A value must be defined before it can be referred to as the operand for another value definition or before the value is reset with a `let expression`_. A value is defined by specifying a `TableGen type`_ and a name. If an initial value is available, it may be specified after the type with an equal sign. Value definitions require terminating semicolons. .. _let expression: .. _let expressions: .. _"let" expressions within a record: 'let' expressions ^^^^^^^^^^^^^^^^^ A record-level let expression is used to change the value of a value definition in a record. This is primarily useful when a superclass defines a value that a derived class or definition wants to override. Let expressions consist of the '``let``' keyword followed by a value name, an equal sign ("``=``"), and a new value. For example, a new class could be added to the example above, redefining the ``V`` field for all of its subclasses: .. code-block:: llvm class D : C { let V = 0; } def Z : D; In this case, the ``Z`` definition will have a zero value for its ``V`` value, despite the fact that it derives (indirectly) from the ``C`` class, because the ``D`` class overrode its value. .. _template arguments: Class template arguments ^^^^^^^^^^^^^^^^^^^^^^^^ TableGen permits the definition of parameterized classes as well as normal concrete classes. Parameterized TableGen classes specify a list of variable bindings (which may optionally have defaults) that are bound when used. Here is a simple example: .. code-block:: llvm class FPFormat<bits<3> val> { bits<3> Value = val; } def NotFP : FPFormat<0>; def ZeroArgFP : FPFormat<1>; def OneArgFP : FPFormat<2>; def OneArgFPRW : FPFormat<3>; def TwoArgFP : FPFormat<4>; def CompareFP : FPFormat<5>; def CondMovFP : FPFormat<6>; def SpecialFP : FPFormat<7>; In this case, template arguments are used as a space efficient way to specify a list of "enumeration values", each with a "``Value``" field set to the specified integer. The more esoteric forms of `TableGen expressions`_ are useful in conjunction with template arguments. As an example: .. code-block:: llvm class ModRefVal<bits<2> val> { bits<2> Value = val; } def None : ModRefVal<0>; def Mod : ModRefVal<1>; def Ref : ModRefVal<2>; def ModRef : ModRefVal<3>; class Value<ModRefVal MR> { // Decode some information into a more convenient format, while providing // a nice interface to the user of the "Value" class. bit isMod = MR.Value{0}; bit isRef = MR.Value{1}; // other stuff... } // Example uses def bork : Value<Mod>; def zork : Value<Ref>; def hork : Value<ModRef>; This is obviously a contrived example, but it shows how template arguments can be used to decouple the interface provided to the user of the class from the actual internal data representation expected by the class. In this case, running ``llvm-tblgen`` on the example prints the following definitions: .. code-block:: llvm def bork { // Value bit isMod = 1; bit isRef = 0; } def hork { // Value bit isMod = 1; bit isRef = 1; } def zork { // Value bit isMod = 0; bit isRef = 1; } This shows that TableGen was able to dig into the argument and extract a piece of information that was requested by the designer of the "Value" class. For more realistic examples, please see existing users of TableGen, such as the X86 backend. Multiclass definitions and instances ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ While classes with template arguments are a good way to factor commonality between two instances of a definition, multiclasses allow a convenient notation for defining multiple definitions at once (instances of implicitly constructed classes). For example, consider an 3-address instruction set whose instructions come in two forms: "``reg = reg op reg``" and "``reg = reg op imm``" (e.g. SPARC). In this case, you'd like to specify in one place that this commonality exists, then in a separate place indicate what all the ops are. Here is an example TableGen fragment that shows this idea: .. code-block:: llvm def ops; def GPR; def Imm; class inst<int opc, string asmstr, dag operandlist>; multiclass ri_inst<int opc, string asmstr> { def _rr : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), (ops GPR:$dst, GPR:$src1, GPR:$src2)>; def _ri : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), (ops GPR:$dst, GPR:$src1, Imm:$src2)>; } // Instantiations of the ri_inst multiclass. defm ADD : ri_inst<0b111, "add">; defm SUB : ri_inst<0b101, "sub">; defm MUL : ri_inst<0b100, "mul">; ... The name of the resultant definitions has the multidef fragment names appended to them, so this defines ``ADD_rr``, ``ADD_ri``, ``SUB_rr``, etc. A defm may inherit from multiple multiclasses, instantiating definitions from each multiclass. Using a multiclass this way is exactly equivalent to instantiating the classes multiple times yourself, e.g. by writing: .. code-block:: llvm def ops; def GPR; def Imm; class inst<int opc, string asmstr, dag operandlist>; class rrinst<int opc, string asmstr> : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), (ops GPR:$dst, GPR:$src1, GPR:$src2)>; class riinst<int opc, string asmstr> : inst<opc, !strconcat(asmstr, " $dst, $src1, $src2"), (ops GPR:$dst, GPR:$src1, Imm:$src2)>; // Instantiations of the ri_inst multiclass. def ADD_rr : rrinst<0b111, "add">; def ADD_ri : riinst<0b111, "add">; def SUB_rr : rrinst<0b101, "sub">; def SUB_ri : riinst<0b101, "sub">; def MUL_rr : rrinst<0b100, "mul">; def MUL_ri : riinst<0b100, "mul">; ... A ``defm`` can also be used inside a multiclass providing several levels of multiclass instanciations. .. code-block:: llvm class Instruction<bits<4> opc, string Name> { bits<4> opcode = opc; string name = Name; } multiclass basic_r<bits<4> opc> { def rr : Instruction<opc, "rr">; def rm : Instruction<opc, "rm">; } multiclass basic_s<bits<4> opc> { defm SS : basic_r<opc>; defm SD : basic_r<opc>; def X : Instruction<opc, "x">; } multiclass basic_p<bits<4> opc> { defm PS : basic_r<opc>; defm PD : basic_r<opc>; def Y : Instruction<opc, "y">; } defm ADD : basic_s<0xf>, basic_p<0xf>; ... // Results def ADDPDrm { ... def ADDPDrr { ... def ADDPSrm { ... def ADDPSrr { ... def ADDSDrm { ... def ADDSDrr { ... def ADDY { ... def ADDX { ... ``defm`` declarations can inherit from classes too, the rule to follow is that the class list must start after the last multiclass, and there must be at least one multiclass before them. .. code-block:: llvm class XD { bits<4> Prefix = 11; } class XS { bits<4> Prefix = 12; } class I<bits<4> op> { bits<4> opcode = op; } multiclass R { def rr : I<4>; def rm : I<2>; } multiclass Y { defm SS : R, XD; defm SD : R, XS; } defm Instr : Y; // Results def InstrSDrm { bits<4> opcode = { 0, 0, 1, 0 }; bits<4> Prefix = { 1, 1, 0, 0 }; } ... def InstrSSrr { bits<4> opcode = { 0, 1, 0, 0 }; bits<4> Prefix = { 1, 0, 1, 1 }; } File scope entities ------------------- File inclusion ^^^^^^^^^^^^^^ TableGen supports the '``include``' token, which textually substitutes the specified file in place of the include directive. The filename should be specified as a double quoted string immediately after the '``include``' keyword. Example: .. code-block:: llvm include "foo.td" 'let' expressions ^^^^^^^^^^^^^^^^^ "Let" expressions at file scope are similar to `"let" expressions within a record`_, except they can specify a value binding for multiple records at a time, and may be useful in certain other cases. File-scope let expressions are really just another way that TableGen allows the end-user to factor out commonality from the records. File-scope "let" expressions take a comma-separated list of bindings to apply, and one or more records to bind the values in. Here are some examples: .. code-block:: llvm let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 in def RET : I<0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]>; let isCall = 1 in // All calls clobber the non-callee saved registers... let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] in { def CALLpcrel32 : Ii32<0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops), "call\t${dst:call}", []>; def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops), "call\t{*}$dst", [(X86call GR32:$dst)]>; def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops), "call\t{*}$dst", []>; } File-scope "let" expressions are often useful when a couple of definitions need to be added to several records, and the records do not otherwise need to be opened, as in the case with the ``CALL*`` instructions above. It's also possible to use "let" expressions inside multiclasses, providing more ways to factor out commonality from the records, specially if using several levels of multiclass instanciations. This also avoids the need of using "let" expressions within subsequent records inside a multiclass. .. code-block:: llvm multiclass basic_r<bits<4> opc> { let Predicates = [HasSSE2] in { def rr : Instruction<opc, "rr">; def rm : Instruction<opc, "rm">; } let Predicates = [HasSSE3] in def rx : Instruction<opc, "rx">; } multiclass basic_ss<bits<4> opc> { let IsDouble = 0 in defm SS : basic_r<opc>; let IsDouble = 1 in defm SD : basic_r<opc>; } defm ADD : basic_ss<0xf>; Looping ^^^^^^^ TableGen supports the '``foreach``' block, which textually replicates the loop body, substituting iterator values for iterator references in the body. Example: .. code-block:: llvm foreach i = [0, 1, 2, 3] in { def R#i : Register<...>; def F#i : Register<...>; } This will create objects ``R0``, ``R1``, ``R2`` and ``R3``. ``foreach`` blocks may be nested. If there is only one item in the body the braces may be elided: .. code-block:: llvm foreach i = [0, 1, 2, 3] in def R#i : Register<...>; Code Generator backend info =========================== Expressions used by code generator to describe instructions and isel patterns: ``(implicit a)`` an implicitly defined physical register. This tells the dag instruction selection emitter the input pattern's extra definitions matches implicit physical register definitions. .. _TableGen backend: .. _TableGen backends: .. _write a backend: TableGen backends ================= Until we get a step-by-step HowTo for writing TableGen backends, you can at least grab the boilerplate (build system, new files, etc.) from Clang's r173931. TODO: How they work, how to write one. This section should not contain details about any particular backend, except maybe ``-print-enums`` as an example. This should highlight the APIs in ``TableGen/Record.h``.