/* DAVICOM DM9009/DM9102/DM9102A Etherboot Driver V1.00 This driver was ported from Marty Conner's Tulip Etherboot driver. Thanks Marty Connor (mdc@thinguin.org) You can get Tulip driver source file from this URL: "http://etherboot.sourceforge..net/#Distribution" This davicom etherboot driver supports DM9009/DM9102/DM9102A/ DM9102A+DM9801/DM9102A+DM9802 NICs. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. */ /*********************************************************************/ /* Revision History */ /*********************************************************************/ /* 19 OCT 2000 Sten 1.00 Different half and full duplex mode Do the different programming for DM9801/DM9802 12 OCT 2000 Sten 0.90 This driver was ported from tulip driver and it has the following difference. Changed symbol tulip/TULIP to davicom/DAVICOM Deleted some code that did not use in this driver. Used chain-strcture to replace ring structure for both TX/RX descriptor. Allocated two tx descriptor. According current media mode to set operating register(CR6) */ /*********************************************************************/ /* Declarations */ /*********************************************************************/ #include "etherboot.h" #include "nic.h" #include "pci.h" #include "cards.h" #undef DAVICOM_DEBUG #undef DAVICOM_DEBUG_WHERE #define TX_TIME_OUT 2*TICKS_PER_SEC typedef unsigned char u8; typedef signed char s8; typedef unsigned short u16; typedef signed short s16; typedef unsigned int u32; typedef signed int s32; /* Register offsets for davicom device */ enum davicom_offsets { CSR0=0, CSR1=0x08, CSR2=0x10, CSR3=0x18, CSR4=0x20, CSR5=0x28, CSR6=0x30, CSR7=0x38, CSR8=0x40, CSR9=0x48, CSR10=0x50, CSR11=0x58, CSR12=0x60, CSR13=0x68, CSR14=0x70, CSR15=0x78, CSR16=0x80, CSR20=0xA0 }; /* EEPROM Address width definitions */ #define EEPROM_ADDRLEN 6 #define EEPROM_SIZE 32 /* 1 << EEPROM_ADDRLEN */ /* Used to be 128, but we only need to read enough to get the MAC address at bytes 20..25 */ /* Data Read from the EEPROM */ static unsigned char ee_data[EEPROM_SIZE]; /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << addr_len) #define EE_READ_CMD (6 << addr_len) #define EE_ERASE_CMD (7 << addr_len) /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x02 /* EEPROM shift clock. */ #define EE_CS 0x01 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x05 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define EE_ENB (0x4800 | EE_CS) /* Sten 10/11 for phyxcer */ #define PHY_DATA_0 0x0 #define PHY_DATA_1 0x20000 #define MDCLKH 0x10000 /* Delay between EEPROM clock transitions. Even at 33Mhz current PCI implementations don't overrun the EEPROM clock. We add a bus turn-around to insure that this remains true. */ #define eeprom_delay() inl(ee_addr) /* helpful macro if on a big_endian machine for changing byte order. not strictly needed on Intel */ #define le16_to_cpu(val) (val) /* transmit and receive descriptor format */ struct txdesc { volatile unsigned long status; /* owner, status */ unsigned long buf1sz:11, /* size of buffer 1 */ buf2sz:11, /* size of buffer 2 */ control:10; /* control bits */ const unsigned char *buf1addr; /* buffer 1 address */ const unsigned char *buf2addr; /* buffer 2 address */ }; struct rxdesc { volatile unsigned long status; /* owner, status */ unsigned long buf1sz:11, /* size of buffer 1 */ buf2sz:11, /* size of buffer 2 */ control:10; /* control bits */ unsigned char *buf1addr; /* buffer 1 address */ unsigned char *buf2addr; /* buffer 2 address */ }; /* Size of transmit and receive buffers */ #define BUFLEN 1536 /*********************************************************************/ /* Global Storage */ /*********************************************************************/ /* PCI Bus parameters */ static unsigned short vendor, dev_id; static unsigned long ioaddr; /* Note: transmit and receive buffers must be longword aligned and longword divisable */ /* transmit descriptor and buffer */ #define NTXD 2 static struct txdesc txd[NTXD] __attribute__ ((aligned(4))); #ifdef USE_LOWMEM_BUFFER #define txb ((char *)0x10000 - BUFLEN) #else static unsigned char txb[BUFLEN] __attribute__ ((aligned(4))); #endif /* receive descriptor(s) and buffer(s) */ #define NRXD 4 static struct rxdesc rxd[NRXD] __attribute__ ((aligned(4))); #ifdef USE_LOWMEM_BUFFER #define rxb ((char *)0x10000 - NRXD * BUFLEN - BUFLEN) #else static unsigned char rxb[NRXD * BUFLEN] __attribute__ ((aligned(4))); #endif static int rxd_tail; static int TxPtr; /*********************************************************************/ /* Function Prototypes */ /*********************************************************************/ static void whereami(const char *str); static int read_eeprom(unsigned long ioaddr, int location, int addr_len); struct nic *davicom_probe(struct nic *nic, unsigned short *io_addrs, struct pci_device *pci); static void davicom_init_chain(struct nic *nic); /* Sten 10/9 */ static void davicom_reset(struct nic *nic); static void davicom_transmit(struct nic *nic, const char *d, unsigned int t, unsigned int s, const char *p); static int davicom_poll(struct nic *nic); static void davicom_disable(struct nic *nic); static void whereami (const char *str); #ifdef DAVICOM_DEBUG static void davicom_more(void); #endif /* DAVICOM_DEBUG */ static void davicom_wait(unsigned int nticks); static int phy_read(int); static void phy_write(int, u16); static void phy_write_1bit(u32, u32); static int phy_read_1bit(u32); static void davicom_media_chk(struct nic *); /*********************************************************************/ /* Utility Routines */ /*********************************************************************/ static inline void whereami (const char *str) { #ifdef DAVICOM_DEBUG_WHERE printf("%s\n", str); /* sleep(2); */ #endif } #ifdef DAVICOM_DEBUG static void davicom_more() { printf("\n\n-- more --"); while (!iskey()) /* wait */; getchar(); printf("\n\n"); } #endif /* DAVICOM_DEBUG */ static void davicom_wait(unsigned int nticks) { unsigned int to = currticks() + nticks; while (currticks() < to) /* wait */ ; } /*********************************************************************/ /* For DAVICOM phyxcer register by MII interface */ /*********************************************************************/ /* Read a word data from phy register */ static int phy_read(int location) { int i, phy_addr=1; u16 phy_data; u32 io_dcr9; whereami("phy_read\n"); io_dcr9 = ioaddr + CSR9; /* Send 33 synchronization clock to Phy controller */ for (i=0; i<34; i++) phy_write_1bit(io_dcr9, PHY_DATA_1); /* Send start command(01) to Phy */ phy_write_1bit(io_dcr9, PHY_DATA_0); phy_write_1bit(io_dcr9, PHY_DATA_1); /* Send read command(10) to Phy */ phy_write_1bit(io_dcr9, PHY_DATA_1); phy_write_1bit(io_dcr9, PHY_DATA_0); /* Send Phy addres */ for (i=0x10; i>0; i=i>>1) phy_write_1bit(io_dcr9, phy_addr&i ? PHY_DATA_1: PHY_DATA_0); /* Send register addres */ for (i=0x10; i>0; i=i>>1) phy_write_1bit(io_dcr9, location&i ? PHY_DATA_1: PHY_DATA_0); /* Skip transition state */ phy_read_1bit(io_dcr9); /* read 16bit data */ for (phy_data=0, i=0; i<16; i++) { phy_data<<=1; phy_data|=phy_read_1bit(io_dcr9); } return phy_data; } /* Write a word to Phy register */ static void phy_write(int location, u16 phy_data) { u16 i, phy_addr=1; u32 io_dcr9; whereami("phy_write\n"); io_dcr9 = ioaddr + CSR9; /* Send 33 synchronization clock to Phy controller */ for (i=0; i<34; i++) phy_write_1bit(io_dcr9, PHY_DATA_1); /* Send start command(01) to Phy */ phy_write_1bit(io_dcr9, PHY_DATA_0); phy_write_1bit(io_dcr9, PHY_DATA_1); /* Send write command(01) to Phy */ phy_write_1bit(io_dcr9, PHY_DATA_0); phy_write_1bit(io_dcr9, PHY_DATA_1); /* Send Phy addres */ for (i=0x10; i>0; i=i>>1) phy_write_1bit(io_dcr9, phy_addr&i ? PHY_DATA_1: PHY_DATA_0); /* Send register addres */ for (i=0x10; i>0; i=i>>1) phy_write_1bit(io_dcr9, location&i ? PHY_DATA_1: PHY_DATA_0); /* written trasnition */ phy_write_1bit(io_dcr9, PHY_DATA_1); phy_write_1bit(io_dcr9, PHY_DATA_0); /* Write a word data to PHY controller */ for (i=0x8000; i>0; i>>=1) phy_write_1bit(io_dcr9, phy_data&i ? PHY_DATA_1: PHY_DATA_0); } /* Write one bit data to Phy Controller */ static void phy_write_1bit(u32 ee_addr, u32 phy_data) { whereami("phy_write_1bit\n"); outl(phy_data, ee_addr); /* MII Clock Low */ eeprom_delay(); outl(phy_data|MDCLKH, ee_addr); /* MII Clock High */ eeprom_delay(); outl(phy_data, ee_addr); /* MII Clock Low */ eeprom_delay(); } /* Read one bit phy data from PHY controller */ static int phy_read_1bit(u32 ee_addr) { int phy_data; whereami("phy_read_1bit\n"); outl(0x50000, ee_addr); eeprom_delay(); phy_data=(inl(ee_addr)>>19) & 0x1; outl(0x40000, ee_addr); eeprom_delay(); return phy_data; } /* DM9801/DM9802 present check and program */ static void HPNA_process(void) { if ( (phy_read(3) & 0xfff0) == 0xb900 ) { if ( phy_read(31) == 0x4404 ) { /* DM9801 present */ if (phy_read(3) == 0xb901) phy_write(16, 0x5); /* DM9801 E4 */ else phy_write(16, 0x1005); /* DM9801 E3 and others */ phy_write(25, ((phy_read(24) + 3) & 0xff) | 0xf000); } else { /* DM9802 present */ phy_write(16, 0x5); phy_write(25, (phy_read(25) & 0xff00) + 2); } } } /* Sense media mode and set CR6 */ static void davicom_media_chk(struct nic * nic) { unsigned long to, csr6; csr6 = 0x00200000; /* SF */ outl(csr6, ioaddr + CSR6); if (vendor == PCI_VENDOR_ID_DAVICOM && dev_id == PCI_DEVICE_ID_DM9009) { /* Set to 10BaseT mode for DM9009 */ phy_write(0, 0); } else { /* For DM9102/DM9102A */ to = currticks() + 2 * TICKS_PER_SEC; while ( ((phy_read(1) & 0x24)!=0x24) && (currticks() < to)) /* wait */ ; if ( (phy_read(1) & 0x24) == 0x24 ) { if (phy_read(17) & 0xa000) csr6 |= 0x00000200; /* Full Duplex mode */ } else csr6 |= 0x00040000; /* Select DM9801/DM9802 when Ethernet link failed */ } /* set the chip's operating mode */ outl(csr6, ioaddr + CSR6); /* DM9801/DM9802 present check & program */ if (csr6 & 0x40000) HPNA_process(); } /*********************************************************************/ /* EEPROM Reading Code */ /*********************************************************************/ /* EEPROM routines adapted from the Linux Tulip Code */ /* Reading a serial EEPROM is a "bit" grungy, but we work our way through:->. */ static int read_eeprom(unsigned long ioaddr, int location, int addr_len) { int i; unsigned short retval = 0; long ee_addr = ioaddr + CSR9; int read_cmd = location | EE_READ_CMD; whereami("read_eeprom\n"); outl(EE_ENB & ~EE_CS, ee_addr); outl(EE_ENB, ee_addr); /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; outl(EE_ENB | dataval, ee_addr); eeprom_delay(); outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(); } outl(EE_ENB, ee_addr); for (i = 16; i > 0; i--) { outl(EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0); outl(EE_ENB, ee_addr); eeprom_delay(); } /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, ee_addr); return retval; } /*********************************************************************/ /* davicom_init_chain - setup the tx and rx descriptors */ /* Sten 10/9 */ /*********************************************************************/ static void davicom_init_chain(struct nic *nic) { int i; /* setup the transmit descriptor */ /* Sten: Set 2 TX descriptor but use one TX buffer because it transmit a packet and wait complete every time. */ for (i=0; i<NTXD; i++) { txd[i].buf1addr = &txb[0]; /* Used same TX buffer */ txd[i].buf2addr = (unsigned char *)&txd[i+1]; /* Point to Next TX desc */ txd[i].buf1sz = 0; txd[i].buf2sz = 0; txd[i].control = 0x184; /* Begin/End/Chain */ txd[i].status = 0x00000000; /* give ownership to Host */ } /* construct perfect filter frame with mac address as first match and broadcast address for all others */ for (i=0; i<192; i++) txb[i] = 0xFF; txb[0] = nic->node_addr[0]; txb[1] = nic->node_addr[1]; txb[4] = nic->node_addr[2]; txb[5] = nic->node_addr[3]; txb[8] = nic->node_addr[4]; txb[9] = nic->node_addr[5]; /* setup receive descriptor */ for (i=0; i<NRXD; i++) { rxd[i].buf1addr = &rxb[i * BUFLEN]; rxd[i].buf2addr = (unsigned char *)&rxd[i+1]; /* Point to Next RX desc */ rxd[i].buf1sz = BUFLEN; rxd[i].buf2sz = 0; /* not used */ rxd[i].control = 0x4; /* Chain Structure */ rxd[i].status = 0x80000000; /* give ownership to device */ } /* Chain the last descriptor to first */ txd[NTXD - 1].buf2addr = (unsigned char *)&txd[0]; rxd[NRXD - 1].buf2addr = (unsigned char *)&rxd[0]; TxPtr = 0; rxd_tail = 0; } /*********************************************************************/ /* davicom_reset - Reset adapter */ /*********************************************************************/ static void davicom_reset(struct nic *nic) { unsigned long to; u32 addr_low, addr_high; whereami("davicom_reset\n"); /* Stop Tx and RX */ outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6); /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ outl(0x00000001, ioaddr + CSR0); davicom_wait(TICKS_PER_SEC); /* TX/RX descriptor burst */ outl(0x0C00000, ioaddr + CSR0); /* Sten 10/9 */ /* set up transmit and receive descriptors */ davicom_init_chain(nic); /* Sten 10/9 */ /* Point to receive descriptor */ outl((unsigned long)&rxd[0], ioaddr + CSR3); outl((unsigned long)&txd[0], ioaddr + CSR4); /* Sten 10/9 */ /* According phyxcer media mode to set CR6, DM9102/A phyxcer can auto-detect media mode */ davicom_media_chk(nic); /* Prepare Setup Frame Sten 10/9 */ txd[TxPtr].buf1sz = 192; txd[TxPtr].control = 0x024; /* SF/CE */ txd[TxPtr].status = 0x80000000; /* Give ownership to device */ /* Start Tx */ outl(inl(ioaddr + CSR6) | 0x00002000, ioaddr + CSR6); /* immediate transmit demand */ outl(0, ioaddr + CSR1); to = currticks() + TX_TIME_OUT; while ((txd[TxPtr].status & 0x80000000) && (currticks() < to)) /* Sten 10/9 */ /* wait */ ; if (currticks() >= to) { printf ("TX Setup Timeout!\n"); } /* Point to next TX descriptor */ TxPtr = (++TxPtr >= NTXD) ? 0:TxPtr; /* Sten 10/9 */ #ifdef DAVICOM_DEBUG printf("txd.status = %X\n", txd.status); printf("ticks = %d\n", currticks() - (to - TX_TIME_OUT)); davicom_more(); #endif /* enable RX */ outl(inl(ioaddr + CSR6) | 0x00000002, ioaddr + CSR6); /* immediate poll demand */ outl(0, ioaddr + CSR2); } /*********************************************************************/ /* eth_transmit - Transmit a frame */ /*********************************************************************/ static void davicom_transmit(struct nic *nic, const char *d, unsigned int t, unsigned int s, const char *p) { unsigned long to; whereami("davicom_transmit\n"); /* Stop Tx */ /* outl(inl(ioaddr + CSR6) & ~0x00002000, ioaddr + CSR6); */ /* setup ethernet header */ memcpy(&txb[0], d, ETH_ALEN); /* DA 6byte */ memcpy(&txb[ETH_ALEN], nic->node_addr, ETH_ALEN); /* SA 6byte*/ txb[ETH_ALEN*2] = (t >> 8) & 0xFF; /* Frame type: 2byte */ txb[ETH_ALEN*2+1] = t & 0xFF; memcpy(&txb[ETH_HLEN], p, s); /* Frame data */ /* setup the transmit descriptor */ txd[TxPtr].buf1sz = ETH_HLEN+s; txd[TxPtr].control = 0x00000184; /* LS+FS+CE */ txd[TxPtr].status = 0x80000000; /* give ownership to device */ /* immediate transmit demand */ outl(0, ioaddr + CSR1); to = currticks() + TX_TIME_OUT; while ((txd[TxPtr].status & 0x80000000) && (currticks() < to)) /* wait */ ; if (currticks() >= to) { printf ("TX Timeout!\n"); } /* Point to next TX descriptor */ TxPtr = (++TxPtr >= NTXD) ? 0:TxPtr; /* Sten 10/9 */ } /*********************************************************************/ /* eth_poll - Wait for a frame */ /*********************************************************************/ static int davicom_poll(struct nic *nic) { whereami("davicom_poll\n"); if (rxd[rxd_tail].status & 0x80000000) return 0; whereami("davicom_poll got one\n"); nic->packetlen = (rxd[rxd_tail].status & 0x3FFF0000) >> 16; if( rxd[rxd_tail].status & 0x00008000){ rxd[rxd_tail].status = 0x80000000; rxd_tail++; if (rxd_tail == NRXD) rxd_tail = 0; return 0; } /* copy packet to working buffer */ /* XXX - this copy could be avoided with a little more work but for now we are content with it because the optimised memcpy is quite fast */ memcpy(nic->packet, rxb + rxd_tail * BUFLEN, nic->packetlen); /* return the descriptor and buffer to receive ring */ rxd[rxd_tail].status = 0x80000000; rxd_tail++; if (rxd_tail == NRXD) rxd_tail = 0; return 1; } /*********************************************************************/ /* eth_disable - Disable the interface */ /*********************************************************************/ static void davicom_disable(struct nic *nic) { whereami("davicom_disable\n"); /* disable interrupts */ outl(0x00000000, ioaddr + CSR7); /* Stop the chip's Tx and Rx processes. */ outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6); /* Clear the missed-packet counter. */ (volatile unsigned long)inl(ioaddr + CSR8); } /*********************************************************************/ /* eth_probe - Look for an adapter */ /*********************************************************************/ struct nic *davicom_probe(struct nic *nic, unsigned short *io_addrs, struct pci_device *pci) { unsigned int i; u32 l1, l2; whereami("davicom_probe\n"); if (io_addrs == 0 || *io_addrs == 0) return 0; vendor = pci->vendor; dev_id = pci->dev_id; ioaddr = *io_addrs; /* wakeup chip */ pcibios_write_config_dword(pci->bus, pci->devfn, 0x40, 0x00000000); /* Stop the chip's Tx and Rx processes. */ outl(inl(ioaddr + CSR6) & ~0x00002002, ioaddr + CSR6); /* Clear the missed-packet counter. */ (volatile unsigned long)inl(ioaddr + CSR8); /* Get MAC Address */ /* read EEPROM data */ for (i = 0; i < sizeof(ee_data)/2; i++) ((unsigned short *)ee_data)[i] = le16_to_cpu(read_eeprom(ioaddr, i, EEPROM_ADDRLEN)); /* extract MAC address from EEPROM buffer */ for (i=0; i<ETH_ALEN; i++) nic->node_addr[i] = ee_data[20+i]; printf("Davicom %! at ioaddr %#hX\n", nic->node_addr, ioaddr); /* initialize device */ davicom_reset(nic); nic->reset = davicom_reset; nic->poll = davicom_poll; nic->transmit = davicom_transmit; nic->disable = davicom_disable; return nic; }