// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_PARTIALLU_H #define EIGEN_PARTIALLU_H namespace Eigen { /** \ingroup LU_Module * * \class PartialPivLU * * \brief LU decomposition of a matrix with partial pivoting, and related features * * \param MatrixType the type of the matrix of which we are computing the LU decomposition * * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P * is a permutation matrix. * * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. * * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided * by class FullPivLU. * * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, * such as rank computation. If you need these features, use class FullPivLU. * * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses * in the general case. * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. * * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). * * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU */ template<typename _MatrixType> class PartialPivLU { public: typedef _MatrixType MatrixType; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; typedef typename internal::traits<MatrixType>::StorageKind StorageKind; typedef typename MatrixType::Index Index; typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; /** * \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via PartialPivLU::compute(const MatrixType&). */ PartialPivLU(); /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem \a size. * \sa PartialPivLU() */ PartialPivLU(Index size); /** Constructor. * * \param matrix the matrix of which to compute the LU decomposition. * * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). * If you need to deal with non-full rank, use class FullPivLU instead. */ PartialPivLU(const MatrixType& matrix); PartialPivLU& compute(const MatrixType& matrix); /** \returns the LU decomposition matrix: the upper-triangular part is U, the * unit-lower-triangular part is L (at least for square matrices; in the non-square * case, special care is needed, see the documentation of class FullPivLU). * * \sa matrixL(), matrixU() */ inline const MatrixType& matrixLU() const { eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); return m_lu; } /** \returns the permutation matrix P. */ inline const PermutationType& permutationP() const { eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); return m_p; } /** This method returns the solution x to the equation Ax=b, where A is the matrix of which * *this is the LU decomposition. * * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, * the only requirement in order for the equation to make sense is that * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. * * \returns the solution. * * Example: \include PartialPivLU_solve.cpp * Output: \verbinclude PartialPivLU_solve.out * * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution * theoretically exists and is unique regardless of b. * * \sa TriangularView::solve(), inverse(), computeInverse() */ template<typename Rhs> inline const internal::solve_retval<PartialPivLU, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); return internal::solve_retval<PartialPivLU, Rhs>(*this, b.derived()); } /** \returns the inverse of the matrix of which *this is the LU decomposition. * * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for * invertibility, use class FullPivLU instead. * * \sa MatrixBase::inverse(), LU::inverse() */ inline const internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> inverse() const { eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); return internal::solve_retval<PartialPivLU,typename MatrixType::IdentityReturnType> (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols())); } /** \returns the determinant of the matrix of which * *this is the LU decomposition. It has only linear complexity * (that is, O(n) where n is the dimension of the square matrix) * as the LU decomposition has already been computed. * * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers * optimized paths. * * \warning a determinant can be very big or small, so for matrices * of large enough dimension, there is a risk of overflow/underflow. * * \sa MatrixBase::determinant() */ typename internal::traits<MatrixType>::Scalar determinant() const; MatrixType reconstructedMatrix() const; inline Index rows() const { return m_lu.rows(); } inline Index cols() const { return m_lu.cols(); } protected: MatrixType m_lu; PermutationType m_p; TranspositionType m_rowsTranspositions; Index m_det_p; bool m_isInitialized; }; template<typename MatrixType> PartialPivLU<MatrixType>::PartialPivLU() : m_lu(), m_p(), m_rowsTranspositions(), m_det_p(0), m_isInitialized(false) { } template<typename MatrixType> PartialPivLU<MatrixType>::PartialPivLU(Index size) : m_lu(size, size), m_p(size), m_rowsTranspositions(size), m_det_p(0), m_isInitialized(false) { } template<typename MatrixType> PartialPivLU<MatrixType>::PartialPivLU(const MatrixType& matrix) : m_lu(matrix.rows(), matrix.rows()), m_p(matrix.rows()), m_rowsTranspositions(matrix.rows()), m_det_p(0), m_isInitialized(false) { compute(matrix); } namespace internal { /** \internal This is the blocked version of fullpivlu_unblocked() */ template<typename Scalar, int StorageOrder, typename PivIndex> struct partial_lu_impl { // FIXME add a stride to Map, so that the following mapping becomes easier, // another option would be to create an expression being able to automatically // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, // and Block. typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; typedef Block<MapLU, Dynamic, Dynamic> MatrixType; typedef Block<MatrixType,Dynamic,Dynamic> BlockType; typedef typename MatrixType::RealScalar RealScalar; typedef typename MatrixType::Index Index; /** \internal performs the LU decomposition in-place of the matrix \a lu * using an unblocked algorithm. * * In addition, this function returns the row transpositions in the * vector \a row_transpositions which must have a size equal to the number * of columns of the matrix \a lu, and an integer \a nb_transpositions * which returns the actual number of transpositions. * * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. */ static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) { const Index rows = lu.rows(); const Index cols = lu.cols(); const Index size = (std::min)(rows,cols); nb_transpositions = 0; int first_zero_pivot = -1; for(Index k = 0; k < size; ++k) { Index rrows = rows-k-1; Index rcols = cols-k-1; Index row_of_biggest_in_col; RealScalar biggest_in_corner = lu.col(k).tail(rows-k).cwiseAbs().maxCoeff(&row_of_biggest_in_col); row_of_biggest_in_col += k; row_transpositions[k] = row_of_biggest_in_col; if(biggest_in_corner != RealScalar(0)) { if(k != row_of_biggest_in_col) { lu.row(k).swap(lu.row(row_of_biggest_in_col)); ++nb_transpositions; } // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) // overflow but not the actual quotient? lu.col(k).tail(rrows) /= lu.coeff(k,k); } else if(first_zero_pivot==-1) { // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, // and continue the factorization such we still have A = PLU first_zero_pivot = k; } if(k<rows-1) lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); } return first_zero_pivot; } /** \internal performs the LU decomposition in-place of the matrix represented * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a * recursive, blocked algorithm. * * In addition, this function returns the row transpositions in the * vector \a row_transpositions which must have a size equal to the number * of columns of the matrix \a lu, and an integer \a nb_transpositions * which returns the actual number of transpositions. * * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. * * \note This very low level interface using pointers, etc. is to: * 1 - reduce the number of instanciations to the strict minimum * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > */ static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) { MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); MatrixType lu(lu1,0,0,rows,cols); const Index size = (std::min)(rows,cols); // if the matrix is too small, no blocking: if(size<=16) { return unblocked_lu(lu, row_transpositions, nb_transpositions); } // automatically adjust the number of subdivisions to the size // of the matrix so that there is enough sub blocks: Index blockSize; { blockSize = size/8; blockSize = (blockSize/16)*16; blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); } nb_transpositions = 0; int first_zero_pivot = -1; for(Index k = 0; k < size; k+=blockSize) { Index bs = (std::min)(size-k,blockSize); // actual size of the block Index trows = rows - k - bs; // trailing rows Index tsize = size - k - bs; // trailing size // partition the matrix: // A00 | A01 | A02 // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 // A20 | A21 | A22 BlockType A_0(lu,0,0,rows,k); BlockType A_2(lu,0,k+bs,rows,tsize); BlockType A11(lu,k,k,bs,bs); BlockType A12(lu,k,k+bs,bs,tsize); BlockType A21(lu,k+bs,k,trows,bs); BlockType A22(lu,k+bs,k+bs,trows,tsize); PivIndex nb_transpositions_in_panel; // recursively call the blocked LU algorithm on [A11^T A21^T]^T // with a very small blocking size: Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, row_transpositions+k, nb_transpositions_in_panel, 16); if(ret>=0 && first_zero_pivot==-1) first_zero_pivot = k+ret; nb_transpositions += nb_transpositions_in_panel; // update permutations and apply them to A_0 for(Index i=k; i<k+bs; ++i) { Index piv = (row_transpositions[i] += k); A_0.row(i).swap(A_0.row(piv)); } if(trows) { // apply permutations to A_2 for(Index i=k;i<k+bs; ++i) A_2.row(i).swap(A_2.row(row_transpositions[i])); // A12 = A11^-1 A12 A11.template triangularView<UnitLower>().solveInPlace(A12); A22.noalias() -= A21 * A12; } } return first_zero_pivot; } }; /** \internal performs the LU decomposition with partial pivoting in-place. */ template<typename MatrixType, typename TranspositionType> void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::Index& nb_transpositions) { eigen_assert(lu.cols() == row_transpositions.size()); eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); partial_lu_impl <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::Index> ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); } } // end namespace internal template<typename MatrixType> PartialPivLU<MatrixType>& PartialPivLU<MatrixType>::compute(const MatrixType& matrix) { m_lu = matrix; eigen_assert(matrix.rows() == matrix.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); const Index size = matrix.rows(); m_rowsTranspositions.resize(size); typename TranspositionType::Index nb_transpositions; internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); m_det_p = (nb_transpositions%2) ? -1 : 1; m_p = m_rowsTranspositions; m_isInitialized = true; return *this; } template<typename MatrixType> typename internal::traits<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const { eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); return Scalar(m_det_p) * m_lu.diagonal().prod(); } /** \returns the matrix represented by the decomposition, * i.e., it returns the product: P^{-1} L U. * This function is provided for debug purpose. */ template<typename MatrixType> MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const { eigen_assert(m_isInitialized && "LU is not initialized."); // LU MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() * m_lu.template triangularView<Upper>(); // P^{-1}(LU) res = m_p.inverse() * res; return res; } /***** Implementation of solve() *****************************************************/ namespace internal { template<typename _MatrixType, typename Rhs> struct solve_retval<PartialPivLU<_MatrixType>, Rhs> : solve_retval_base<PartialPivLU<_MatrixType>, Rhs> { EIGEN_MAKE_SOLVE_HELPERS(PartialPivLU<_MatrixType>,Rhs) template<typename Dest> void evalTo(Dest& dst) const { /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. * So we proceed as follows: * Step 1: compute c = Pb. * Step 2: replace c by the solution x to Lx = c. * Step 3: replace c by the solution x to Ux = c. */ eigen_assert(rhs().rows() == dec().matrixLU().rows()); // Step 1 dst = dec().permutationP() * rhs(); // Step 2 dec().matrixLU().template triangularView<UnitLower>().solveInPlace(dst); // Step 3 dec().matrixLU().template triangularView<Upper>().solveInPlace(dst); } }; } // end namespace internal /******** MatrixBase methods *******/ /** \lu_module * * \return the partial-pivoting LU decomposition of \c *this. * * \sa class PartialPivLU */ template<typename Derived> inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::partialPivLu() const { return PartialPivLU<PlainObject>(eval()); } #if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS /** \lu_module * * Synonym of partialPivLu(). * * \return the partial-pivoting LU decomposition of \c *this. * * \sa class PartialPivLU */ template<typename Derived> inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> MatrixBase<Derived>::lu() const { return PartialPivLU<PlainObject>(eval()); } #endif } // end namespace Eigen #endif // EIGEN_PARTIALLU_H