// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_INVERSE_H #define EIGEN_INVERSE_H namespace Eigen { namespace internal { /********************************** *** General case implementation *** **********************************/ template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> struct compute_inverse { static inline void run(const MatrixType& matrix, ResultType& result) { result = matrix.partialPivLu().inverse(); } }; template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; /**************************** *** Size 1 implementation *** ****************************/ template<typename MatrixType, typename ResultType> struct compute_inverse<MatrixType, ResultType, 1> { static inline void run(const MatrixType& matrix, ResultType& result) { typedef typename MatrixType::Scalar Scalar; result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0); } }; template<typename MatrixType, typename ResultType> struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> { static inline void run( const MatrixType& matrix, const typename MatrixType::RealScalar& absDeterminantThreshold, ResultType& result, typename ResultType::Scalar& determinant, bool& invertible ) { determinant = matrix.coeff(0,0); invertible = abs(determinant) > absDeterminantThreshold; if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; } }; /**************************** *** Size 2 implementation *** ****************************/ template<typename MatrixType, typename ResultType> inline void compute_inverse_size2_helper( const MatrixType& matrix, const typename ResultType::Scalar& invdet, ResultType& result) { result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; result.coeffRef(1,1) = matrix.coeff(0,0) * invdet; } template<typename MatrixType, typename ResultType> struct compute_inverse<MatrixType, ResultType, 2> { static inline void run(const MatrixType& matrix, ResultType& result) { typedef typename ResultType::Scalar Scalar; const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); compute_inverse_size2_helper(matrix, invdet, result); } }; template<typename MatrixType, typename ResultType> struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> { static inline void run( const MatrixType& matrix, const typename MatrixType::RealScalar& absDeterminantThreshold, ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible ) { typedef typename ResultType::Scalar Scalar; determinant = matrix.determinant(); invertible = abs(determinant) > absDeterminantThreshold; if(!invertible) return; const Scalar invdet = Scalar(1) / determinant; compute_inverse_size2_helper(matrix, invdet, inverse); } }; /**************************** *** Size 3 implementation *** ****************************/ template<typename MatrixType, int i, int j> inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) { enum { i1 = (i+1) % 3, i2 = (i+2) % 3, j1 = (j+1) % 3, j2 = (j+2) % 3 }; return m.coeff(i1, j1) * m.coeff(i2, j2) - m.coeff(i1, j2) * m.coeff(i2, j1); } template<typename MatrixType, typename ResultType> inline void compute_inverse_size3_helper( const MatrixType& matrix, const typename ResultType::Scalar& invdet, const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, ResultType& result) { result.row(0) = cofactors_col0 * invdet; result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet; result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet; result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet; result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet; result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet; result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet; } template<typename MatrixType, typename ResultType> struct compute_inverse<MatrixType, ResultType, 3> { static inline void run(const MatrixType& matrix, ResultType& result) { typedef typename ResultType::Scalar Scalar; Matrix<typename MatrixType::Scalar,3,1> cofactors_col0; cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); const Scalar invdet = Scalar(1) / det; compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); } }; template<typename MatrixType, typename ResultType> struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> { static inline void run( const MatrixType& matrix, const typename MatrixType::RealScalar& absDeterminantThreshold, ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible ) { typedef typename ResultType::Scalar Scalar; Matrix<Scalar,3,1> cofactors_col0; cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); invertible = abs(determinant) > absDeterminantThreshold; if(!invertible) return; const Scalar invdet = Scalar(1) / determinant; compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); } }; /**************************** *** Size 4 implementation *** ****************************/ template<typename Derived> inline const typename Derived::Scalar general_det3_helper (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3) { return matrix.coeff(i1,j1) * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); } template<typename MatrixType, int i, int j> inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) { enum { i1 = (i+1) % 4, i2 = (i+2) % 4, i3 = (i+3) % 4, j1 = (j+1) % 4, j2 = (j+2) % 4, j3 = (j+3) % 4 }; return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); } template<int Arch, typename Scalar, typename MatrixType, typename ResultType> struct compute_inverse_size4 { static void run(const MatrixType& matrix, ResultType& result) { result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix); result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix); result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix); result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix); result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix); result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix); result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix); result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix); result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix); result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix); result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix); result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix); result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix); result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix); result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix); result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix); result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); } }; template<typename MatrixType, typename ResultType> struct compute_inverse<MatrixType, ResultType, 4> : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, MatrixType, ResultType> { }; template<typename MatrixType, typename ResultType> struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> { static inline void run( const MatrixType& matrix, const typename MatrixType::RealScalar& absDeterminantThreshold, ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible ) { determinant = matrix.determinant(); invertible = abs(determinant) > absDeterminantThreshold; if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse); } }; /************************* *** MatrixBase methods *** *************************/ template<typename MatrixType> struct traits<inverse_impl<MatrixType> > { typedef typename MatrixType::PlainObject ReturnType; }; template<typename MatrixType> struct inverse_impl : public ReturnByValue<inverse_impl<MatrixType> > { typedef typename MatrixType::Index Index; typedef typename internal::eval<MatrixType>::type MatrixTypeNested; typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned; MatrixTypeNested m_matrix; inverse_impl(const MatrixType& matrix) : m_matrix(matrix) {} inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } template<typename Dest> inline void evalTo(Dest& dst) const { const int Size = EIGEN_PLAIN_ENUM_MIN(MatrixType::ColsAtCompileTime,Dest::ColsAtCompileTime); EIGEN_ONLY_USED_FOR_DEBUG(Size); eigen_assert(( (Size<=1) || (Size>4) || (extract_data(m_matrix)!=extract_data(dst))) && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); compute_inverse<MatrixTypeNestedCleaned, Dest>::run(m_matrix, dst); } }; } // end namespace internal /** \lu_module * * \returns the matrix inverse of this matrix. * * For small fixed sizes up to 4x4, this method uses cofactors. * In the general case, this method uses class PartialPivLU. * * \note This matrix must be invertible, otherwise the result is undefined. If you need an * invertibility check, do the following: * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). * \li for the general case, use class FullPivLU. * * Example: \include MatrixBase_inverse.cpp * Output: \verbinclude MatrixBase_inverse.out * * \sa computeInverseAndDetWithCheck() */ template<typename Derived> inline const internal::inverse_impl<Derived> MatrixBase<Derived>::inverse() const { EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) eigen_assert(rows() == cols()); return internal::inverse_impl<Derived>(derived()); } /** \lu_module * * Computation of matrix inverse and determinant, with invertibility check. * * This is only for fixed-size square matrices of size up to 4x4. * * \param inverse Reference to the matrix in which to store the inverse. * \param determinant Reference to the variable in which to store the inverse. * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. * \param absDeterminantThreshold Optional parameter controlling the invertibility check. * The matrix will be declared invertible if the absolute value of its * determinant is greater than this threshold. * * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out * * \sa inverse(), computeInverseWithCheck() */ template<typename Derived> template<typename ResultType> inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, const RealScalar& absDeterminantThreshold ) const { // i'd love to put some static assertions there, but SFINAE means that they have no effect... eigen_assert(rows() == cols()); // for 2x2, it's worth giving a chance to avoid evaluating. // for larger sizes, evaluating has negligible cost and limits code size. typedef typename internal::conditional< RowsAtCompileTime == 2, typename internal::remove_all<typename internal::nested<Derived, 2>::type>::type, PlainObject >::type MatrixType; internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run (derived(), absDeterminantThreshold, inverse, determinant, invertible); } /** \lu_module * * Computation of matrix inverse, with invertibility check. * * This is only for fixed-size square matrices of size up to 4x4. * * \param inverse Reference to the matrix in which to store the inverse. * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. * \param absDeterminantThreshold Optional parameter controlling the invertibility check. * The matrix will be declared invertible if the absolute value of its * determinant is greater than this threshold. * * Example: \include MatrixBase_computeInverseWithCheck.cpp * Output: \verbinclude MatrixBase_computeInverseWithCheck.out * * \sa inverse(), computeInverseAndDetWithCheck() */ template<typename Derived> template<typename ResultType> inline void MatrixBase<Derived>::computeInverseWithCheck( ResultType& inverse, bool& invertible, const RealScalar& absDeterminantThreshold ) const { RealScalar determinant; // i'd love to put some static assertions there, but SFINAE means that they have no effect... eigen_assert(rows() == cols()); computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); } } // end namespace Eigen #endif // EIGEN_INVERSE_H