// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SCALING_H #define EIGEN_SCALING_H namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Scaling * * \brief Represents a generic uniform scaling transformation * * \param _Scalar the scalar type, i.e., the type of the coefficients. * * This class represent a uniform scaling transformation. It is the return * type of Scaling(Scalar), and most of the time this is the only way it * is used. In particular, this class is not aimed to be used to store a scaling transformation, * but rather to make easier the constructions and updates of Transform objects. * * To represent an axis aligned scaling, use the DiagonalMatrix class. * * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform */ template<typename _Scalar> class UniformScaling { public: /** the scalar type of the coefficients */ typedef _Scalar Scalar; protected: Scalar m_factor; public: /** Default constructor without initialization. */ UniformScaling() {} /** Constructs and initialize a uniform scaling transformation */ explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} inline const Scalar& factor() const { return m_factor; } inline Scalar& factor() { return m_factor; } /** Concatenates two uniform scaling */ inline UniformScaling operator* (const UniformScaling& other) const { return UniformScaling(m_factor * other.factor()); } /** Concatenates a uniform scaling and a translation */ template<int Dim> inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; /** Concatenates a uniform scaling and an affine transformation */ template<int Dim, int Mode, int Options> inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const { Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; res.prescale(factor()); return res; } /** Concatenates a uniform scaling and a linear transformation matrix */ // TODO returns an expression template<typename Derived> inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const { return other * m_factor; } template<typename Derived,int Dim> inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const { return r.toRotationMatrix() * m_factor; } /** \returns the inverse scaling */ inline UniformScaling inverse() const { return UniformScaling(Scalar(1)/m_factor); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline UniformScaling<NewScalarType> cast() const { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) { m_factor = Scalar(other.factor()); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const { return internal::isApprox(m_factor, other.factor(), prec); } }; /** Concatenates a linear transformation matrix and a uniform scaling */ // NOTE this operator is defiend in MatrixBase and not as a friend function // of UniformScaling to fix an internal crash of Intel's ICC template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const { return derived() * s.factor(); } /** Constructs a uniform scaling from scale factor \a s */ static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } /** Constructs a uniform scaling from scale factor \a s */ static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } /** Constructs a uniform scaling from scale factor \a s */ template<typename RealScalar> static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) { return UniformScaling<std::complex<RealScalar> >(s); } /** Constructs a 2D axis aligned scaling */ template<typename Scalar> static inline DiagonalMatrix<Scalar,2> Scaling(Scalar sx, Scalar sy) { return DiagonalMatrix<Scalar,2>(sx, sy); } /** Constructs a 3D axis aligned scaling */ template<typename Scalar> static inline DiagonalMatrix<Scalar,3> Scaling(Scalar sx, Scalar sy, Scalar sz) { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } /** Constructs an axis aligned scaling expression from vector expression \a coeffs * This is an alias for coeffs.asDiagonal() */ template<typename Derived> static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) { return coeffs.asDiagonal(); } /** \addtogroup Geometry_Module */ //@{ /** \deprecated */ typedef DiagonalMatrix<float, 2> AlignedScaling2f; /** \deprecated */ typedef DiagonalMatrix<double,2> AlignedScaling2d; /** \deprecated */ typedef DiagonalMatrix<float, 3> AlignedScaling3f; /** \deprecated */ typedef DiagonalMatrix<double,3> AlignedScaling3d; //@} template<typename Scalar> template<int Dim> inline Transform<Scalar,Dim,Affine> UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const { Transform<Scalar,Dim,Affine> res; res.matrix().setZero(); res.linear().diagonal().fill(factor()); res.translation() = factor() * t.vector(); res(Dim,Dim) = Scalar(1); return res; } } // end namespace Eigen #endif // EIGEN_SCALING_H