// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway namespace Eigen { // Note that we have to pass Dim and HDim because it is not allowed to use a template // parameter to define a template specialization. To be more precise, in the following // specializations, it is not allowed to use Dim+1 instead of HDim. template< typename Other, int Dim, int HDim, int OtherRows=Other::RowsAtCompileTime, int OtherCols=Other::ColsAtCompileTime> struct ei_transform_product_impl; /** \geometry_module \ingroup Geometry_Module * * \class Transform * * \brief Represents an homogeneous transformation in a N dimensional space * * \param _Scalar the scalar type, i.e., the type of the coefficients * \param _Dim the dimension of the space * * The homography is internally represented and stored as a (Dim+1)^2 matrix which * is available through the matrix() method. * * Conversion methods from/to Qt's QMatrix and QTransform are available if the * preprocessor token EIGEN_QT_SUPPORT is defined. * * \sa class Matrix, class Quaternion */ template<typename _Scalar, int _Dim> class Transform { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) enum { Dim = _Dim, ///< space dimension in which the transformation holds HDim = _Dim+1 ///< size of a respective homogeneous vector }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; /** type of the matrix used to represent the transformation */ typedef Matrix<Scalar,HDim,HDim> MatrixType; /** type of the matrix used to represent the linear part of the transformation */ typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; /** type of read/write reference to the linear part of the transformation */ typedef Block<MatrixType,Dim,Dim> LinearPart; /** type of read/write reference to the linear part of the transformation */ typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart; /** type of a vector */ typedef Matrix<Scalar,Dim,1> VectorType; /** type of a read/write reference to the translation part of the rotation */ typedef Block<MatrixType,Dim,1> TranslationPart; /** type of a read/write reference to the translation part of the rotation */ typedef const Block<const MatrixType,Dim,1> ConstTranslationPart; /** corresponding translation type */ typedef Translation<Scalar,Dim> TranslationType; /** corresponding scaling transformation type */ typedef Scaling<Scalar,Dim> ScalingType; protected: MatrixType m_matrix; public: /** Default constructor without initialization of the coefficients. */ inline Transform() { } inline Transform(const Transform& other) { m_matrix = other.m_matrix; } inline explicit Transform(const TranslationType& t) { *this = t; } inline explicit Transform(const ScalingType& s) { *this = s; } template<typename Derived> inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; } inline Transform& operator=(const Transform& other) { m_matrix = other.m_matrix; return *this; } template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value struct construct_from_matrix { static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) { transform->matrix() = other; } }; template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true> { static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other) { transform->linear() = other; transform->translation().setZero(); transform->matrix()(Dim,Dim) = Scalar(1); transform->matrix().template block<1,Dim>(Dim,0).setZero(); } }; /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ template<typename OtherDerived> inline explicit Transform(const MatrixBase<OtherDerived>& other) { construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other); } /** Set \c *this from a (Dim+1)^2 matrix. */ template<typename OtherDerived> inline Transform& operator=(const MatrixBase<OtherDerived>& other) { m_matrix = other; return *this; } #ifdef EIGEN_QT_SUPPORT inline Transform(const QMatrix& other); inline Transform& operator=(const QMatrix& other); inline QMatrix toQMatrix(void) const; inline Transform(const QTransform& other); inline Transform& operator=(const QTransform& other); inline QTransform toQTransform(void) const; #endif /** shortcut for m_matrix(row,col); * \sa MatrixBase::operaror(int,int) const */ inline Scalar operator() (int row, int col) const { return m_matrix(row,col); } /** shortcut for m_matrix(row,col); * \sa MatrixBase::operaror(int,int) */ inline Scalar& operator() (int row, int col) { return m_matrix(row,col); } /** \returns a read-only expression of the transformation matrix */ inline const MatrixType& matrix() const { return m_matrix; } /** \returns a writable expression of the transformation matrix */ inline MatrixType& matrix() { return m_matrix; } /** \returns a read-only expression of the linear (linear) part of the transformation */ inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); } /** \returns a writable expression of the linear (linear) part of the transformation */ inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); } /** \returns a read-only expression of the translation vector of the transformation */ inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); } /** \returns a writable expression of the translation vector of the transformation */ inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); } /** \returns an expression of the product between the transform \c *this and a matrix expression \a other * * The right hand side \a other might be either: * \li a vector of size Dim, * \li an homogeneous vector of size Dim+1, * \li a transformation matrix of size Dim+1 x Dim+1. */ // note: this function is defined here because some compilers cannot find the respective declaration template<typename OtherDerived> inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType operator * (const MatrixBase<OtherDerived> &other) const { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); } /** \returns the product expression of a transformation matrix \a a times a transform \a b * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */ template<typename OtherDerived> friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type operator * (const MatrixBase<OtherDerived> &a, const Transform &b) { return a.derived() * b.matrix(); } /** Contatenates two transformations */ inline const Transform operator * (const Transform& other) const { return Transform(m_matrix * other.matrix()); } /** \sa MatrixBase::setIdentity() */ void setIdentity() { m_matrix.setIdentity(); } static const typename MatrixType::IdentityReturnType Identity() { return MatrixType::Identity(); } template<typename OtherDerived> inline Transform& scale(const MatrixBase<OtherDerived> &other); template<typename OtherDerived> inline Transform& prescale(const MatrixBase<OtherDerived> &other); inline Transform& scale(Scalar s); inline Transform& prescale(Scalar s); template<typename OtherDerived> inline Transform& translate(const MatrixBase<OtherDerived> &other); template<typename OtherDerived> inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); template<typename RotationType> inline Transform& rotate(const RotationType& rotation); template<typename RotationType> inline Transform& prerotate(const RotationType& rotation); Transform& shear(Scalar sx, Scalar sy); Transform& preshear(Scalar sx, Scalar sy); inline Transform& operator=(const TranslationType& t); inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } inline Transform operator*(const TranslationType& t) const; inline Transform& operator=(const ScalingType& t); inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); } inline Transform operator*(const ScalingType& s) const; friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t) { Transform res = t; res.matrix().row(Dim) = t.matrix().row(Dim); res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy(); return res; } template<typename Derived> inline Transform& operator=(const RotationBase<Derived,Dim>& r); template<typename Derived> inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } template<typename Derived> inline Transform operator*(const RotationBase<Derived,Dim>& r) const; LinearMatrixType rotation() const; template<typename RotationMatrixType, typename ScalingMatrixType> void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; template<typename ScalingMatrixType, typename RotationMatrixType> void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; template<typename PositionDerived, typename OrientationType, typename ScaleDerived> Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); inline const MatrixType inverse(TransformTraits traits = Affine) const; /** \returns a const pointer to the column major internal matrix */ const Scalar* data() const { return m_matrix.data(); } /** \returns a non-const pointer to the column major internal matrix */ Scalar* data() { return m_matrix.data(); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit Transform(const Transform<OtherScalarType,Dim>& other) { m_matrix = other.matrix().template cast<Scalar>(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const { return m_matrix.isApprox(other.m_matrix, prec); } #ifdef EIGEN_TRANSFORM_PLUGIN #include EIGEN_TRANSFORM_PLUGIN #endif protected: }; /** \ingroup Geometry_Module */ typedef Transform<float,2> Transform2f; /** \ingroup Geometry_Module */ typedef Transform<float,3> Transform3f; /** \ingroup Geometry_Module */ typedef Transform<double,2> Transform2d; /** \ingroup Geometry_Module */ typedef Transform<double,3> Transform3d; /************************** *** Optional QT support *** **************************/ #ifdef EIGEN_QT_SUPPORT /** Initialises \c *this from a QMatrix assuming the dimension is 2. * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> Transform<Scalar,Dim>::Transform(const QMatrix& other) { *this = other; } /** Set \c *this from a QMatrix assuming the dimension is 2. * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other) { EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), 0, 0, 1; return *this; } /** \returns a QMatrix from \c *this assuming the dimension is 2. * * \warning this convertion might loss data if \c *this is not affine * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> QMatrix Transform<Scalar,Dim>::toQMatrix(void) const { EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(0,2), m_matrix.coeff(1,2)); } /** Initialises \c *this from a QTransform assuming the dimension is 2. * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> Transform<Scalar,Dim>::Transform(const QTransform& other) { *this = other; } /** Set \c *this from a QTransform assuming the dimension is 2. * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other) { EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) m_matrix << other.m11(), other.m21(), other.dx(), other.m12(), other.m22(), other.dy(), other.m13(), other.m23(), other.m33(); return *this; } /** \returns a QTransform from \c *this assuming the dimension is 2. * * This function is available only if the token EIGEN_QT_SUPPORT is defined. */ template<typename Scalar, int Dim> QTransform Transform<Scalar,Dim>::toQTransform(void) const { EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); } #endif /********************* *** Procedural API *** *********************/ /** Applies on the right the non uniform scale transformation represented * by the vector \a other to \c *this and returns a reference to \c *this. * \sa prescale() */ template<typename Scalar, int Dim> template<typename OtherDerived> Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) linear() = (linear() * other.asDiagonal()).lazy(); return *this; } /** Applies on the right a uniform scale of a factor \a c to \c *this * and returns a reference to \c *this. * \sa prescale(Scalar) */ template<typename Scalar, int Dim> inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s) { linear() *= s; return *this; } /** Applies on the left the non uniform scale transformation represented * by the vector \a other to \c *this and returns a reference to \c *this. * \sa scale() */ template<typename Scalar, int Dim> template<typename OtherDerived> Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy(); return *this; } /** Applies on the left a uniform scale of a factor \a c to \c *this * and returns a reference to \c *this. * \sa scale(Scalar) */ template<typename Scalar, int Dim> inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s) { m_matrix.template corner<Dim,HDim>(TopLeft) *= s; return *this; } /** Applies on the right the translation matrix represented by the vector \a other * to \c *this and returns a reference to \c *this. * \sa pretranslate() */ template<typename Scalar, int Dim> template<typename OtherDerived> Transform<Scalar,Dim>& Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) translation() += linear() * other; return *this; } /** Applies on the left the translation matrix represented by the vector \a other * to \c *this and returns a reference to \c *this. * \sa translate() */ template<typename Scalar, int Dim> template<typename OtherDerived> Transform<Scalar,Dim>& Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) translation() += other; return *this; } /** Applies on the right the rotation represented by the rotation \a rotation * to \c *this and returns a reference to \c *this. * * The template parameter \a RotationType is the type of the rotation which * must be known by ei_toRotationMatrix<>. * * Natively supported types includes: * - any scalar (2D), * - a Dim x Dim matrix expression, * - a Quaternion (3D), * - a AngleAxis (3D) * * This mechanism is easily extendable to support user types such as Euler angles, * or a pair of Quaternion for 4D rotations. * * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) */ template<typename Scalar, int Dim> template<typename RotationType> Transform<Scalar,Dim>& Transform<Scalar,Dim>::rotate(const RotationType& rotation) { linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation); return *this; } /** Applies on the left the rotation represented by the rotation \a rotation * to \c *this and returns a reference to \c *this. * * See rotate() for further details. * * \sa rotate() */ template<typename Scalar, int Dim> template<typename RotationType> Transform<Scalar,Dim>& Transform<Scalar,Dim>::prerotate(const RotationType& rotation) { m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation) * m_matrix.template block<Dim,HDim>(0,0); return *this; } /** Applies on the right the shear transformation represented * by the vector \a other to \c *this and returns a reference to \c *this. * \warning 2D only. * \sa preshear() */ template<typename Scalar, int Dim> Transform<Scalar,Dim>& Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy) { EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) VectorType tmp = linear().col(0)*sy + linear().col(1); linear() << linear().col(0) + linear().col(1)*sx, tmp; return *this; } /** Applies on the left the shear transformation represented * by the vector \a other to \c *this and returns a reference to \c *this. * \warning 2D only. * \sa shear() */ template<typename Scalar, int Dim> Transform<Scalar,Dim>& Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy) { EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); return *this; } /****************************************************** *** Scaling, Translation and Rotation compatibility *** ******************************************************/ template<typename Scalar, int Dim> inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t) { linear().setIdentity(); translation() = t.vector(); m_matrix.template block<1,Dim>(Dim,0).setZero(); m_matrix(Dim,Dim) = Scalar(1); return *this; } template<typename Scalar, int Dim> inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const { Transform res = *this; res.translate(t.vector()); return res; } template<typename Scalar, int Dim> inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s) { m_matrix.setZero(); linear().diagonal() = s.coeffs(); m_matrix.coeffRef(Dim,Dim) = Scalar(1); return *this; } template<typename Scalar, int Dim> inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const { Transform res = *this; res.scale(s.coeffs()); return res; } template<typename Scalar, int Dim> template<typename Derived> inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r) { linear() = ei_toRotationMatrix<Scalar,Dim>(r); translation().setZero(); m_matrix.template block<1,Dim>(Dim,0).setZero(); m_matrix.coeffRef(Dim,Dim) = Scalar(1); return *this; } template<typename Scalar, int Dim> template<typename Derived> inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const { Transform res = *this; res.rotate(r.derived()); return res; } /************************ *** Special functions *** ************************/ /** \returns the rotation part of the transformation * \nonstableyet * * \svd_module * * \sa computeRotationScaling(), computeScalingRotation(), class SVD */ template<typename Scalar, int Dim> typename Transform<Scalar,Dim>::LinearMatrixType Transform<Scalar,Dim>::rotation() const { LinearMatrixType result; computeRotationScaling(&result, (LinearMatrixType*)0); return result; } /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being * not necessarily positive. * * If either pointer is zero, the corresponding computation is skipped. * * \nonstableyet * * \svd_module * * \sa computeScalingRotation(), rotation(), class SVD */ template<typename Scalar, int Dim> template<typename RotationMatrixType, typename ScalingMatrixType> void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const { JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 Matrix<Scalar, Dim, 1> sv(svd.singularValues()); sv.coeffRef(0) *= x; if(scaling) { scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint(); } if(rotation) { LinearMatrixType m(svd.matrixU()); m.col(0) /= x; rotation->noalias() = m * svd.matrixV().adjoint(); } } /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being * not necessarily positive. * * If either pointer is zero, the corresponding computation is skipped. * * \nonstableyet * * \svd_module * * \sa computeRotationScaling(), rotation(), class SVD */ template<typename Scalar, int Dim> template<typename ScalingMatrixType, typename RotationMatrixType> void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const { JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV); Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 Matrix<Scalar, Dim, 1> sv(svd.singularValues()); sv.coeffRef(0) *= x; if(scaling) { scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint(); } if(rotation) { LinearMatrixType m(svd.matrixU()); m.col(0) /= x; rotation->noalias() = m * svd.matrixV().adjoint(); } } /** Convenient method to set \c *this from a position, orientation and scale * of a 3D object. */ template<typename Scalar, int Dim> template<typename PositionDerived, typename OrientationType, typename ScaleDerived> Transform<Scalar,Dim>& Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) { linear() = ei_toRotationMatrix<Scalar,Dim>(orientation); linear() *= scale.asDiagonal(); translation() = position; m_matrix.template block<1,Dim>(Dim,0).setZero(); m_matrix(Dim,Dim) = Scalar(1); return *this; } /** \nonstableyet * * \returns the inverse transformation matrix according to some given knowledge * on \c *this. * * \param traits allows to optimize the inversion process when the transformion * is known to be not a general transformation. The possible values are: * - Projective if the transformation is not necessarily affine, i.e., if the * last row is not guaranteed to be [0 ... 0 1] * - Affine is the default, the last row is assumed to be [0 ... 0 1] * - Isometry if the transformation is only a concatenations of translations * and rotations. * * \warning unless \a traits is always set to NoShear or NoScaling, this function * requires the generic inverse method of MatrixBase defined in the LU module. If * you forget to include this module, then you will get hard to debug linking errors. * * \sa MatrixBase::inverse() */ template<typename Scalar, int Dim> inline const typename Transform<Scalar,Dim>::MatrixType Transform<Scalar,Dim>::inverse(TransformTraits traits) const { if (traits == Projective) { return m_matrix.inverse(); } else { MatrixType res; if (traits == Affine) { res.template corner<Dim,Dim>(TopLeft) = linear().inverse(); } else if (traits == Isometry) { res.template corner<Dim,Dim>(TopLeft) = linear().transpose(); } else { ei_assert("invalid traits value in Transform::inverse()"); } // translation and remaining parts res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation(); res.template corner<1,Dim>(BottomLeft).setZero(); res.coeffRef(Dim,Dim) = Scalar(1); return res; } } /***************************************************** *** Specializations of operator* with a MatrixBase *** *****************************************************/ template<typename Other, int Dim, int HDim> struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim> { typedef Transform<typename Other::Scalar,Dim> TransformType; typedef typename TransformType::MatrixType MatrixType; typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; static ResultType run(const TransformType& tr, const Other& other) { return tr.matrix() * other; } }; template<typename Other, int Dim, int HDim> struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim> { typedef Transform<typename Other::Scalar,Dim> TransformType; typedef typename TransformType::MatrixType MatrixType; typedef TransformType ResultType; static ResultType run(const TransformType& tr, const Other& other) { TransformType res; res.translation() = tr.translation(); res.matrix().row(Dim) = tr.matrix().row(Dim); res.linear() = (tr.linear() * other).lazy(); return res; } }; template<typename Other, int Dim, int HDim> struct ei_transform_product_impl<Other,Dim,HDim, HDim,1> { typedef Transform<typename Other::Scalar,Dim> TransformType; typedef typename TransformType::MatrixType MatrixType; typedef typename ProductReturnType<MatrixType,Other>::Type ResultType; static ResultType run(const TransformType& tr, const Other& other) { return tr.matrix() * other; } }; template<typename Other, int Dim, int HDim> struct ei_transform_product_impl<Other,Dim,HDim, Dim,1> { typedef typename Other::Scalar Scalar; typedef Transform<Scalar,Dim> TransformType; typedef Matrix<Scalar,Dim,1> ResultType; static ResultType run(const TransformType& tr, const Other& other) { return ((tr.linear() * other) + tr.translation()) * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); } }; } // end namespace Eigen