// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway namespace Eigen { /** \geometry_module \ingroup Geometry_Module * * \class Scaling * * \brief Represents a possibly non uniform scaling transformation * * \param _Scalar the scalar type, i.e., the type of the coefficients. * \param _Dim the dimension of the space, can be a compile time value or Dynamic * * \note This class is not aimed to be used to store a scaling transformation, * but rather to make easier the constructions and updates of Transform objects. * * \sa class Translation, class Transform */ template<typename _Scalar, int _Dim> class Scaling { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) /** dimension of the space */ enum { Dim = _Dim }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; /** corresponding vector type */ typedef Matrix<Scalar,Dim,1> VectorType; /** corresponding linear transformation matrix type */ typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; /** corresponding translation type */ typedef Translation<Scalar,Dim> TranslationType; /** corresponding affine transformation type */ typedef Transform<Scalar,Dim> TransformType; protected: VectorType m_coeffs; public: /** Default constructor without initialization. */ Scaling() {} /** Constructs and initialize a uniform scaling transformation */ explicit inline Scaling(const Scalar& s) { m_coeffs.setConstant(s); } /** 2D only */ inline Scaling(const Scalar& sx, const Scalar& sy) { ei_assert(Dim==2); m_coeffs.x() = sx; m_coeffs.y() = sy; } /** 3D only */ inline Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) { ei_assert(Dim==3); m_coeffs.x() = sx; m_coeffs.y() = sy; m_coeffs.z() = sz; } /** Constructs and initialize the scaling transformation from a vector of scaling coefficients */ explicit inline Scaling(const VectorType& coeffs) : m_coeffs(coeffs) {} const VectorType& coeffs() const { return m_coeffs; } VectorType& coeffs() { return m_coeffs; } /** Concatenates two scaling */ inline Scaling operator* (const Scaling& other) const { return Scaling(coeffs().cwise() * other.coeffs()); } /** Concatenates a scaling and a translation */ inline TransformType operator* (const TranslationType& t) const; /** Concatenates a scaling and an affine transformation */ inline TransformType operator* (const TransformType& t) const; /** Concatenates a scaling and a linear transformation matrix */ // TODO returns an expression inline LinearMatrixType operator* (const LinearMatrixType& other) const { return coeffs().asDiagonal() * other; } /** Concatenates a linear transformation matrix and a scaling */ // TODO returns an expression friend inline LinearMatrixType operator* (const LinearMatrixType& other, const Scaling& s) { return other * s.coeffs().asDiagonal(); } template<typename Derived> inline LinearMatrixType operator*(const RotationBase<Derived,Dim>& r) const { return *this * r.toRotationMatrix(); } /** Applies scaling to vector */ inline VectorType operator* (const VectorType& other) const { return coeffs().asDiagonal() * other; } /** \returns the inverse scaling */ inline Scaling inverse() const { return Scaling(coeffs().cwise().inverse()); } inline Scaling& operator=(const Scaling& other) { m_coeffs = other.m_coeffs; return *this; } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> inline typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const { return typename internal::cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> inline explicit Scaling(const Scaling<OtherScalarType,Dim>& other) { m_coeffs = other.coeffs().template cast<Scalar>(); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const Scaling& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const { return m_coeffs.isApprox(other.m_coeffs, prec); } }; /** \addtogroup Geometry_Module */ //@{ typedef Scaling<float, 2> Scaling2f; typedef Scaling<double,2> Scaling2d; typedef Scaling<float, 3> Scaling3f; typedef Scaling<double,3> Scaling3d; //@} template<typename Scalar, int Dim> inline typename Scaling<Scalar,Dim>::TransformType Scaling<Scalar,Dim>::operator* (const TranslationType& t) const { TransformType res; res.matrix().setZero(); res.linear().diagonal() = coeffs(); res.translation() = m_coeffs.cwise() * t.vector(); res(Dim,Dim) = Scalar(1); return res; } template<typename Scalar, int Dim> inline typename Scaling<Scalar,Dim>::TransformType Scaling<Scalar,Dim>::operator* (const TransformType& t) const { TransformType res = t; res.prescale(m_coeffs); return res; } } // end namespace Eigen