// SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines SValBuilder, the base class for all (complete) SValBuilder // implementations. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Basic SVal creation. //===----------------------------------------------------------------------===// void SValBuilder::anchor() { } DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) { if (Loc::isLocType(type)) return makeNull(); if (type->isIntegerType()) return makeIntVal(0, type); // FIXME: Handle floats. // FIXME: Handle structs. return UnknownVal(); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const llvm::APSInt& rhs, QualType type) { // The Environment ensures we always get a persistent APSInt in // BasicValueFactory, so we don't need to get the APSInt from // BasicValueFactory again. assert(lhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type)); } NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType type) { assert(rhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type)); } NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op, const SymExpr *rhs, QualType type) { assert(lhs && rhs); assert(!Loc::isLocType(type)); return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type)); } NonLoc SValBuilder::makeNonLoc(const SymExpr *operand, QualType fromTy, QualType toTy) { assert(operand); assert(!Loc::isLocType(toTy)); return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy)); } SVal SValBuilder::convertToArrayIndex(SVal val) { if (val.isUnknownOrUndef()) return val; // Common case: we have an appropriately sized integer. if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) { const llvm::APSInt& I = CI->getValue(); if (I.getBitWidth() == ArrayIndexWidth && I.isSigned()) return val; } return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy); } nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){ return makeTruthVal(boolean->getValue()); } DefinedOrUnknownSVal SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) { QualType T = region->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getRegionValueSymbol(region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, unsigned count) { QualType T = expr->getType(); return conjureSymbolVal(symbolTag, expr, LCtx, T, count); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, QualType type, unsigned count) { if (!SymbolManager::canSymbolicate(type)) return UnknownVal(); SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt, const LocationContext *LCtx, QualType type, unsigned visitCount) { if (!SymbolManager::canSymbolicate(type)) return UnknownVal(); SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getConjuredHeapSymbolVal(const Expr *E, const LocationContext *LCtx, unsigned VisitCount) { QualType T = E->getType(); assert(Loc::isLocType(T)); assert(SymbolManager::canSymbolicate(T)); SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount); return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym)); } DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag, const MemRegion *region, const Expr *expr, QualType type, unsigned count) { assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type"); SymbolRef sym = SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag); if (Loc::isLocType(type)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedOrUnknownSVal SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedValueRegion *region) { QualType T = region->getValueType(); if (!SymbolManager::canSymbolicate(T)) return UnknownVal(); SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region); if (Loc::isLocType(T)) return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym)); return nonloc::SymbolVal(sym); } DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) { return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func)); } DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block, CanQualType locTy, const LocationContext *locContext) { const BlockTextRegion *BC = MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext()); const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext); return loc::MemRegionVal(BD); } /// Return a memory region for the 'this' object reference. loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D, const StackFrameContext *SFC) { return loc::MemRegionVal(getRegionManager(). getCXXThisRegion(D->getThisType(getContext()), SFC)); } /// Return a memory region for the 'this' object reference. loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D, const StackFrameContext *SFC) { const Type *T = D->getTypeForDecl(); QualType PT = getContext().getPointerType(QualType(T, 0)); return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC)); } //===----------------------------------------------------------------------===// SVal SValBuilder::makeSymExprValNN(ProgramStateRef State, BinaryOperator::Opcode Op, NonLoc LHS, NonLoc RHS, QualType ResultTy) { if (!State->isTainted(RHS) && !State->isTainted(LHS)) return UnknownVal(); const SymExpr *symLHS = LHS.getAsSymExpr(); const SymExpr *symRHS = RHS.getAsSymExpr(); // TODO: When the Max Complexity is reached, we should conjure a symbol // instead of generating an Unknown value and propagate the taint info to it. const unsigned MaxComp = 10000; // 100000 28X if (symLHS && symRHS && (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp) return makeNonLoc(symLHS, Op, symRHS, ResultTy); if (symLHS && symLHS->computeComplexity() < MaxComp) if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>()) return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy); if (symRHS && symRHS->computeComplexity() < MaxComp) if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>()) return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy); return UnknownVal(); } SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op, SVal lhs, SVal rhs, QualType type) { if (lhs.isUndef() || rhs.isUndef()) return UndefinedVal(); if (lhs.isUnknown() || rhs.isUnknown()) return UnknownVal(); if (Optional<Loc> LV = lhs.getAs<Loc>()) { if (Optional<Loc> RV = rhs.getAs<Loc>()) return evalBinOpLL(state, op, *LV, *RV, type); return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type); } if (Optional<Loc> RV = rhs.getAs<Loc>()) { // Support pointer arithmetic where the addend is on the left // and the pointer on the right. assert(op == BO_Add); // Commute the operands. return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type); } return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(), type); } DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state, DefinedOrUnknownSVal lhs, DefinedOrUnknownSVal rhs) { return evalBinOp(state, BO_EQ, lhs, rhs, Context.IntTy) .castAs<DefinedOrUnknownSVal>(); } /// Recursively check if the pointer types are equal modulo const, volatile, /// and restrict qualifiers. Also, assume that all types are similar to 'void'. /// Assumes the input types are canonical. static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy, QualType FromTy) { while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) { Qualifiers Quals1, Quals2; ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1); FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2); // Make sure that non cvr-qualifiers the other qualifiers (e.g., address // spaces) are identical. Quals1.removeCVRQualifiers(); Quals2.removeCVRQualifiers(); if (Quals1 != Quals2) return false; } // If we are casting to void, the 'From' value can be used to represent the // 'To' value. if (ToTy->isVoidType()) return true; if (ToTy != FromTy) return false; return true; } // FIXME: should rewrite according to the cast kind. SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) { castTy = Context.getCanonicalType(castTy); originalTy = Context.getCanonicalType(originalTy); if (val.isUnknownOrUndef() || castTy == originalTy) return val; // For const casts, casts to void, just propagate the value. if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType()) if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy), Context.getPointerType(originalTy))) return val; // Check for casts from pointers to integers. if (castTy->isIntegerType() && Loc::isLocType(originalTy)) return evalCastFromLoc(val.castAs<Loc>(), castTy); // Check for casts from integers to pointers. if (Loc::isLocType(castTy) && originalTy->isIntegerType()) { if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) { if (const MemRegion *R = LV->getLoc().getAsRegion()) { StoreManager &storeMgr = StateMgr.getStoreManager(); R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } return LV->getLoc(); } return dispatchCast(val, castTy); } // Just pass through function and block pointers. if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) { assert(Loc::isLocType(castTy)); return val; } // Check for casts from array type to another type. if (originalTy->isArrayType()) { // We will always decay to a pointer. val = StateMgr.ArrayToPointer(val.castAs<Loc>()); // Are we casting from an array to a pointer? If so just pass on // the decayed value. if (castTy->isPointerType() || castTy->isReferenceType()) return val; // Are we casting from an array to an integer? If so, cast the decayed // pointer value to an integer. assert(castTy->isIntegerType()); // FIXME: Keep these here for now in case we decide soon that we // need the original decayed type. // QualType elemTy = cast<ArrayType>(originalTy)->getElementType(); // QualType pointerTy = C.getPointerType(elemTy); return evalCastFromLoc(val.castAs<Loc>(), castTy); } // Check for casts from a region to a specific type. if (const MemRegion *R = val.getAsRegion()) { // Handle other casts of locations to integers. if (castTy->isIntegerType()) return evalCastFromLoc(loc::MemRegionVal(R), castTy); // FIXME: We should handle the case where we strip off view layers to get // to a desugared type. if (!Loc::isLocType(castTy)) { // FIXME: There can be gross cases where one casts the result of a function // (that returns a pointer) to some other value that happens to fit // within that pointer value. We currently have no good way to // model such operations. When this happens, the underlying operation // is that the caller is reasoning about bits. Conceptually we are // layering a "view" of a location on top of those bits. Perhaps // we need to be more lazy about mutual possible views, even on an // SVal? This may be necessary for bit-level reasoning as well. return UnknownVal(); } // We get a symbolic function pointer for a dereference of a function // pointer, but it is of function type. Example: // struct FPRec { // void (*my_func)(int * x); // }; // // int bar(int x); // // int f1_a(struct FPRec* foo) { // int x; // (*foo->my_func)(&x); // return bar(x)+1; // no-warning // } assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() || originalTy->isBlockPointerType() || castTy->isReferenceType()); StoreManager &storeMgr = StateMgr.getStoreManager(); // Delegate to store manager to get the result of casting a region to a // different type. If the MemRegion* returned is NULL, this expression // Evaluates to UnknownVal. R = storeMgr.castRegion(R, castTy); return R ? SVal(loc::MemRegionVal(R)) : UnknownVal(); } return dispatchCast(val, castTy); }