//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a generic engine for intraprocedural, path-sensitive, // dataflow analysis via graph reachability engine. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "CoreEngine" #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtCXX.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Casting.h" using namespace clang; using namespace ento; STATISTIC(NumSteps, "The # of steps executed."); STATISTIC(NumReachedMaxSteps, "The # of times we reached the max number of steps."); STATISTIC(NumPathsExplored, "The # of paths explored by the analyzer."); //===----------------------------------------------------------------------===// // Worklist classes for exploration of reachable states. //===----------------------------------------------------------------------===// WorkList::Visitor::~Visitor() {} namespace { class DFS : public WorkList { SmallVector<WorkListUnit,20> Stack; public: virtual bool hasWork() const { return !Stack.empty(); } virtual void enqueue(const WorkListUnit& U) { Stack.push_back(U); } virtual WorkListUnit dequeue() { assert (!Stack.empty()); const WorkListUnit& U = Stack.back(); Stack.pop_back(); // This technically "invalidates" U, but we are fine. return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (SmallVectorImpl<WorkListUnit>::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; class BFS : public WorkList { std::deque<WorkListUnit> Queue; public: virtual bool hasWork() const { return !Queue.empty(); } virtual void enqueue(const WorkListUnit& U) { Queue.push_back(U); } virtual WorkListUnit dequeue() { WorkListUnit U = Queue.front(); Queue.pop_front(); return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (std::deque<WorkListUnit>::iterator I = Queue.begin(), E = Queue.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; } // end anonymous namespace // Place the dstor for WorkList here because it contains virtual member // functions, and we the code for the dstor generated in one compilation unit. WorkList::~WorkList() {} WorkList *WorkList::makeDFS() { return new DFS(); } WorkList *WorkList::makeBFS() { return new BFS(); } namespace { class BFSBlockDFSContents : public WorkList { std::deque<WorkListUnit> Queue; SmallVector<WorkListUnit,20> Stack; public: virtual bool hasWork() const { return !Queue.empty() || !Stack.empty(); } virtual void enqueue(const WorkListUnit& U) { if (U.getNode()->getLocation().getAs<BlockEntrance>()) Queue.push_front(U); else Stack.push_back(U); } virtual WorkListUnit dequeue() { // Process all basic blocks to completion. if (!Stack.empty()) { const WorkListUnit& U = Stack.back(); Stack.pop_back(); // This technically "invalidates" U, but we are fine. return U; } assert(!Queue.empty()); // Don't use const reference. The subsequent pop_back() might make it // unsafe. WorkListUnit U = Queue.front(); Queue.pop_front(); return U; } virtual bool visitItemsInWorkList(Visitor &V) { for (SmallVectorImpl<WorkListUnit>::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) { if (V.visit(*I)) return true; } for (std::deque<WorkListUnit>::iterator I = Queue.begin(), E = Queue.end(); I != E; ++I) { if (V.visit(*I)) return true; } return false; } }; } // end anonymous namespace WorkList* WorkList::makeBFSBlockDFSContents() { return new BFSBlockDFSContents(); } //===----------------------------------------------------------------------===// // Core analysis engine. //===----------------------------------------------------------------------===// /// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps. bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps, ProgramStateRef InitState) { if (G->num_roots() == 0) { // Initialize the analysis by constructing // the root if none exists. const CFGBlock *Entry = &(L->getCFG()->getEntry()); assert (Entry->empty() && "Entry block must be empty."); assert (Entry->succ_size() == 1 && "Entry block must have 1 successor."); // Mark the entry block as visited. FunctionSummaries->markVisitedBasicBlock(Entry->getBlockID(), L->getDecl(), L->getCFG()->getNumBlockIDs()); // Get the solitary successor. const CFGBlock *Succ = *(Entry->succ_begin()); // Construct an edge representing the // starting location in the function. BlockEdge StartLoc(Entry, Succ, L); // Set the current block counter to being empty. WList->setBlockCounter(BCounterFactory.GetEmptyCounter()); if (!InitState) // Generate the root. generateNode(StartLoc, SubEng.getInitialState(L), 0); else generateNode(StartLoc, InitState, 0); } // Check if we have a steps limit bool UnlimitedSteps = Steps == 0; while (WList->hasWork()) { if (!UnlimitedSteps) { if (Steps == 0) { NumReachedMaxSteps++; break; } --Steps; } NumSteps++; const WorkListUnit& WU = WList->dequeue(); // Set the current block counter. WList->setBlockCounter(WU.getBlockCounter()); // Retrieve the node. ExplodedNode *Node = WU.getNode(); dispatchWorkItem(Node, Node->getLocation(), WU); } SubEng.processEndWorklist(hasWorkRemaining()); return WList->hasWork(); } void CoreEngine::dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc, const WorkListUnit& WU) { // Dispatch on the location type. switch (Loc.getKind()) { case ProgramPoint::BlockEdgeKind: HandleBlockEdge(Loc.castAs<BlockEdge>(), Pred); break; case ProgramPoint::BlockEntranceKind: HandleBlockEntrance(Loc.castAs<BlockEntrance>(), Pred); break; case ProgramPoint::BlockExitKind: assert (false && "BlockExit location never occur in forward analysis."); break; case ProgramPoint::CallEnterKind: { CallEnter CEnter = Loc.castAs<CallEnter>(); SubEng.processCallEnter(CEnter, Pred); break; } case ProgramPoint::CallExitBeginKind: SubEng.processCallExit(Pred); break; case ProgramPoint::EpsilonKind: { assert(Pred->hasSinglePred() && "Assume epsilon has exactly one predecessor by construction"); ExplodedNode *PNode = Pred->getFirstPred(); dispatchWorkItem(Pred, PNode->getLocation(), WU); break; } default: assert(Loc.getAs<PostStmt>() || Loc.getAs<PostInitializer>() || Loc.getAs<PostImplicitCall>() || Loc.getAs<CallExitEnd>()); HandlePostStmt(WU.getBlock(), WU.getIndex(), Pred); break; } } bool CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L, unsigned Steps, ProgramStateRef InitState, ExplodedNodeSet &Dst) { bool DidNotFinish = ExecuteWorkList(L, Steps, InitState); for (ExplodedGraph::eop_iterator I = G->eop_begin(), E = G->eop_end(); I != E; ++I) { Dst.Add(*I); } return DidNotFinish; } void CoreEngine::HandleBlockEdge(const BlockEdge &L, ExplodedNode *Pred) { const CFGBlock *Blk = L.getDst(); NodeBuilderContext BuilderCtx(*this, Blk, Pred); // Mark this block as visited. const LocationContext *LC = Pred->getLocationContext(); FunctionSummaries->markVisitedBasicBlock(Blk->getBlockID(), LC->getDecl(), LC->getCFG()->getNumBlockIDs()); // Check if we are entering the EXIT block. if (Blk == &(L.getLocationContext()->getCFG()->getExit())) { assert (L.getLocationContext()->getCFG()->getExit().size() == 0 && "EXIT block cannot contain Stmts."); // Process the final state transition. SubEng.processEndOfFunction(BuilderCtx, Pred); // This path is done. Don't enqueue any more nodes. return; } // Call into the SubEngine to process entering the CFGBlock. ExplodedNodeSet dstNodes; BlockEntrance BE(Blk, Pred->getLocationContext()); NodeBuilderWithSinks nodeBuilder(Pred, dstNodes, BuilderCtx, BE); SubEng.processCFGBlockEntrance(L, nodeBuilder, Pred); // Auto-generate a node. if (!nodeBuilder.hasGeneratedNodes()) { nodeBuilder.generateNode(Pred->State, Pred); } // Enqueue nodes onto the worklist. enqueue(dstNodes); } void CoreEngine::HandleBlockEntrance(const BlockEntrance &L, ExplodedNode *Pred) { // Increment the block counter. const LocationContext *LC = Pred->getLocationContext(); unsigned BlockId = L.getBlock()->getBlockID(); BlockCounter Counter = WList->getBlockCounter(); Counter = BCounterFactory.IncrementCount(Counter, LC->getCurrentStackFrame(), BlockId); WList->setBlockCounter(Counter); // Process the entrance of the block. if (Optional<CFGElement> E = L.getFirstElement()) { NodeBuilderContext Ctx(*this, L.getBlock(), Pred); SubEng.processCFGElement(*E, Pred, 0, &Ctx); } else HandleBlockExit(L.getBlock(), Pred); } void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode *Pred) { if (const Stmt *Term = B->getTerminator()) { switch (Term->getStmtClass()) { default: llvm_unreachable("Analysis for this terminator not implemented."); case Stmt::BinaryOperatorClass: // '&&' and '||' HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred); return; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: HandleBranch(cast<AbstractConditionalOperator>(Term)->getCond(), Term, B, Pred); return; // FIXME: Use constant-folding in CFG construction to simplify this // case. case Stmt::ChooseExprClass: HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred); return; case Stmt::CXXTryStmtClass: { // Generate a node for each of the successors. // Our logic for EH analysis can certainly be improved. for (CFGBlock::const_succ_iterator it = B->succ_begin(), et = B->succ_end(); it != et; ++it) { if (const CFGBlock *succ = *it) { generateNode(BlockEdge(B, succ, Pred->getLocationContext()), Pred->State, Pred); } } return; } case Stmt::DoStmtClass: HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred); return; case Stmt::CXXForRangeStmtClass: HandleBranch(cast<CXXForRangeStmt>(Term)->getCond(), Term, B, Pred); return; case Stmt::ForStmtClass: HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred); return; case Stmt::ContinueStmtClass: case Stmt::BreakStmtClass: case Stmt::GotoStmtClass: break; case Stmt::IfStmtClass: HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred); return; case Stmt::IndirectGotoStmtClass: { // Only 1 successor: the indirect goto dispatch block. assert (B->succ_size() == 1); IndirectGotoNodeBuilder builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(), *(B->succ_begin()), this); SubEng.processIndirectGoto(builder); return; } case Stmt::ObjCForCollectionStmtClass: { // In the case of ObjCForCollectionStmt, it appears twice in a CFG: // // (1) inside a basic block, which represents the binding of the // 'element' variable to a value. // (2) in a terminator, which represents the branch. // // For (1), subengines will bind a value (i.e., 0 or 1) indicating // whether or not collection contains any more elements. We cannot // just test to see if the element is nil because a container can // contain nil elements. HandleBranch(Term, Term, B, Pred); return; } case Stmt::SwitchStmtClass: { SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(), this); SubEng.processSwitch(builder); return; } case Stmt::WhileStmtClass: HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred); return; } } assert (B->succ_size() == 1 && "Blocks with no terminator should have at most 1 successor."); generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()), Pred->State, Pred); } void CoreEngine::HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock * B, ExplodedNode *Pred) { assert(B->succ_size() == 2); NodeBuilderContext Ctx(*this, B, Pred); ExplodedNodeSet Dst; SubEng.processBranch(Cond, Term, Ctx, Pred, Dst, *(B->succ_begin()), *(B->succ_begin()+1)); // Enqueue the new frontier onto the worklist. enqueue(Dst); } void CoreEngine::HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred) { assert(B); assert(!B->empty()); if (StmtIdx == B->size()) HandleBlockExit(B, Pred); else { NodeBuilderContext Ctx(*this, B, Pred); SubEng.processCFGElement((*B)[StmtIdx], Pred, StmtIdx, &Ctx); } } /// generateNode - Utility method to generate nodes, hook up successors, /// and add nodes to the worklist. void CoreEngine::generateNode(const ProgramPoint &Loc, ProgramStateRef State, ExplodedNode *Pred) { bool IsNew; ExplodedNode *Node = G->getNode(Loc, State, false, &IsNew); if (Pred) Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor. else { assert (IsNew); G->addRoot(Node); // 'Node' has no predecessor. Make it a root. } // Only add 'Node' to the worklist if it was freshly generated. if (IsNew) WList->enqueue(Node); } void CoreEngine::enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx) { assert(Block); assert (!N->isSink()); // Check if this node entered a callee. if (N->getLocation().getAs<CallEnter>()) { // Still use the index of the CallExpr. It's needed to create the callee // StackFrameContext. WList->enqueue(N, Block, Idx); return; } // Do not create extra nodes. Move to the next CFG element. if (N->getLocation().getAs<PostInitializer>() || N->getLocation().getAs<PostImplicitCall>()) { WList->enqueue(N, Block, Idx+1); return; } if (N->getLocation().getAs<EpsilonPoint>()) { WList->enqueue(N, Block, Idx); return; } // At this point, we know we're processing a normal statement. CFGStmt CS = (*Block)[Idx].castAs<CFGStmt>(); PostStmt Loc(CS.getStmt(), N->getLocationContext()); if (Loc == N->getLocation()) { // Note: 'N' should be a fresh node because otherwise it shouldn't be // a member of Deferred. WList->enqueue(N, Block, Idx+1); return; } bool IsNew; ExplodedNode *Succ = G->getNode(Loc, N->getState(), false, &IsNew); Succ->addPredecessor(N, *G); if (IsNew) WList->enqueue(Succ, Block, Idx+1); } ExplodedNode *CoreEngine::generateCallExitBeginNode(ExplodedNode *N) { // Create a CallExitBegin node and enqueue it. const StackFrameContext *LocCtx = cast<StackFrameContext>(N->getLocationContext()); // Use the callee location context. CallExitBegin Loc(LocCtx); bool isNew; ExplodedNode *Node = G->getNode(Loc, N->getState(), false, &isNew); Node->addPredecessor(N, *G); return isNew ? Node : 0; } void CoreEngine::enqueue(ExplodedNodeSet &Set) { for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { WList->enqueue(*I); } } void CoreEngine::enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx) { for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { enqueueStmtNode(*I, Block, Idx); } } void CoreEngine::enqueueEndOfFunction(ExplodedNodeSet &Set) { for (ExplodedNodeSet::iterator I = Set.begin(), E = Set.end(); I != E; ++I) { ExplodedNode *N = *I; // If we are in an inlined call, generate CallExitBegin node. if (N->getLocationContext()->getParent()) { N = generateCallExitBeginNode(N); if (N) WList->enqueue(N); } else { // TODO: We should run remove dead bindings here. G->addEndOfPath(N); NumPathsExplored++; } } } void NodeBuilder::anchor() { } ExplodedNode* NodeBuilder::generateNodeImpl(const ProgramPoint &Loc, ProgramStateRef State, ExplodedNode *FromN, bool MarkAsSink) { HasGeneratedNodes = true; bool IsNew; ExplodedNode *N = C.Eng.G->getNode(Loc, State, MarkAsSink, &IsNew); N->addPredecessor(FromN, *C.Eng.G); Frontier.erase(FromN); if (!IsNew) return 0; if (!MarkAsSink) Frontier.Add(N); return N; } void NodeBuilderWithSinks::anchor() { } StmtNodeBuilder::~StmtNodeBuilder() { if (EnclosingBldr) for (ExplodedNodeSet::iterator I = Frontier.begin(), E = Frontier.end(); I != E; ++I ) EnclosingBldr->addNodes(*I); } void BranchNodeBuilder::anchor() { } ExplodedNode *BranchNodeBuilder::generateNode(ProgramStateRef State, bool branch, ExplodedNode *NodePred) { // If the branch has been marked infeasible we should not generate a node. if (!isFeasible(branch)) return NULL; ProgramPoint Loc = BlockEdge(C.Block, branch ? DstT:DstF, NodePred->getLocationContext()); ExplodedNode *Succ = generateNodeImpl(Loc, State, NodePred); return Succ; } ExplodedNode* IndirectGotoNodeBuilder::generateNode(const iterator &I, ProgramStateRef St, bool IsSink) { bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, IsSink, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (!IsNew) return 0; if (!IsSink) Eng.WList->enqueue(Succ); return Succ; } ExplodedNode* SwitchNodeBuilder::generateCaseStmtNode(const iterator &I, ProgramStateRef St) { bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(), Pred->getLocationContext()), St, false, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (!IsNew) return 0; Eng.WList->enqueue(Succ); return Succ; } ExplodedNode* SwitchNodeBuilder::generateDefaultCaseNode(ProgramStateRef St, bool IsSink) { // Get the block for the default case. assert(Src->succ_rbegin() != Src->succ_rend()); CFGBlock *DefaultBlock = *Src->succ_rbegin(); // Sanity check for default blocks that are unreachable and not caught // by earlier stages. if (!DefaultBlock) return NULL; bool IsNew; ExplodedNode *Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock, Pred->getLocationContext()), St, IsSink, &IsNew); Succ->addPredecessor(Pred, *Eng.G); if (!IsNew) return 0; if (!IsSink) Eng.WList->enqueue(Succ); return Succ; }