//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This defines CStringChecker, which is an assortment of checks on calls // to functions in <string.h>. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "InterCheckerAPI.h" #include "clang/Basic/CharInfo.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class CStringChecker : public Checker< eval::Call, check::PreStmt<DeclStmt>, check::LiveSymbols, check::DeadSymbols, check::RegionChanges > { mutable OwningPtr<BugType> BT_Null, BT_Bounds, BT_Overlap, BT_NotCString, BT_AdditionOverflow; mutable const char *CurrentFunctionDescription; public: /// The filter is used to filter out the diagnostics which are not enabled by /// the user. struct CStringChecksFilter { DefaultBool CheckCStringNullArg; DefaultBool CheckCStringOutOfBounds; DefaultBool CheckCStringBufferOverlap; DefaultBool CheckCStringNotNullTerm; }; CStringChecksFilter Filter; static void *getTag() { static int tag; return &tag; } bool evalCall(const CallExpr *CE, CheckerContext &C) const; void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; bool wantsRegionChangeUpdate(ProgramStateRef state) const; ProgramStateRef checkRegionChanges(ProgramStateRef state, const InvalidatedSymbols *, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallEvent *Call) const; typedef void (CStringChecker::*FnCheck)(CheckerContext &, const CallExpr *) const; void evalMemcpy(CheckerContext &C, const CallExpr *CE) const; void evalMempcpy(CheckerContext &C, const CallExpr *CE) const; void evalMemmove(CheckerContext &C, const CallExpr *CE) const; void evalBcopy(CheckerContext &C, const CallExpr *CE) const; void evalCopyCommon(CheckerContext &C, const CallExpr *CE, ProgramStateRef state, const Expr *Size, const Expr *Source, const Expr *Dest, bool Restricted = false, bool IsMempcpy = false) const; void evalMemcmp(CheckerContext &C, const CallExpr *CE) const; void evalstrLength(CheckerContext &C, const CallExpr *CE) const; void evalstrnLength(CheckerContext &C, const CallExpr *CE) const; void evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, bool IsStrnlen = false) const; void evalStrcpy(CheckerContext &C, const CallExpr *CE) const; void evalStrncpy(CheckerContext &C, const CallExpr *CE) const; void evalStpcpy(CheckerContext &C, const CallExpr *CE) const; void evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool returnEnd, bool isBounded, bool isAppending) const; void evalStrcat(CheckerContext &C, const CallExpr *CE) const; void evalStrncat(CheckerContext &C, const CallExpr *CE) const; void evalStrcmp(CheckerContext &C, const CallExpr *CE) const; void evalStrncmp(CheckerContext &C, const CallExpr *CE) const; void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const; void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const; void evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, bool isBounded = false, bool ignoreCase = false) const; // Utility methods std::pair<ProgramStateRef , ProgramStateRef > static assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, QualType Ty); static ProgramStateRef setCStringLength(ProgramStateRef state, const MemRegion *MR, SVal strLength); static SVal getCStringLengthForRegion(CheckerContext &C, ProgramStateRef &state, const Expr *Ex, const MemRegion *MR, bool hypothetical); SVal getCStringLength(CheckerContext &C, ProgramStateRef &state, const Expr *Ex, SVal Buf, bool hypothetical = false) const; const StringLiteral *getCStringLiteral(CheckerContext &C, ProgramStateRef &state, const Expr *expr, SVal val) const; static ProgramStateRef InvalidateBuffer(CheckerContext &C, ProgramStateRef state, const Expr *Ex, SVal V); static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, const MemRegion *MR); // Re-usable checks ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef state, const Expr *S, SVal l) const; ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, const Expr *S, SVal l, const char *message = NULL) const; ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef state, const Expr *Size, const Expr *FirstBuf, const Expr *SecondBuf, const char *firstMessage = NULL, const char *secondMessage = NULL, bool WarnAboutSize = false) const; ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef state, const Expr *Size, const Expr *Buf, const char *message = NULL, bool WarnAboutSize = false) const { // This is a convenience override. return CheckBufferAccess(C, state, Size, Buf, NULL, message, NULL, WarnAboutSize); } ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, const Expr *Size, const Expr *First, const Expr *Second) const; void emitOverlapBug(CheckerContext &C, ProgramStateRef state, const Stmt *First, const Stmt *Second) const; ProgramStateRef checkAdditionOverflow(CheckerContext &C, ProgramStateRef state, NonLoc left, NonLoc right) const; }; } //end anonymous namespace REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) //===----------------------------------------------------------------------===// // Individual checks and utility methods. //===----------------------------------------------------------------------===// std::pair<ProgramStateRef , ProgramStateRef > CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V, QualType Ty) { Optional<DefinedSVal> val = V.getAs<DefinedSVal>(); if (!val) return std::pair<ProgramStateRef , ProgramStateRef >(state, state); SValBuilder &svalBuilder = C.getSValBuilder(); DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty); return state->assume(svalBuilder.evalEQ(state, *val, zero)); } ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, ProgramStateRef state, const Expr *S, SVal l) const { // If a previous check has failed, propagate the failure. if (!state) return NULL; ProgramStateRef stateNull, stateNonNull; llvm::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType()); if (stateNull && !stateNonNull) { if (!Filter.CheckCStringNullArg) return NULL; ExplodedNode *N = C.generateSink(stateNull); if (!N) return NULL; if (!BT_Null) BT_Null.reset(new BuiltinBug("Unix API", "Null pointer argument in call to byte string function")); SmallString<80> buf; llvm::raw_svector_ostream os(buf); assert(CurrentFunctionDescription); os << "Null pointer argument in call to " << CurrentFunctionDescription; // Generate a report for this bug. BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get()); BugReport *report = new BugReport(*BT, os.str(), N); report->addRange(S->getSourceRange()); bugreporter::trackNullOrUndefValue(N, S, *report); C.emitReport(report); return NULL; } // From here on, assume that the value is non-null. assert(stateNonNull); return stateNonNull; } // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, ProgramStateRef state, const Expr *S, SVal l, const char *warningMsg) const { // If a previous check has failed, propagate the failure. if (!state) return NULL; // Check for out of bound array element access. const MemRegion *R = l.getAsRegion(); if (!R) return state; const ElementRegion *ER = dyn_cast<ElementRegion>(R); if (!ER) return state; assert(ER->getValueType() == C.getASTContext().CharTy && "CheckLocation should only be called with char* ElementRegions"); // Get the size of the array. const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion()); SValBuilder &svalBuilder = C.getSValBuilder(); SVal Extent = svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder)); DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>(); // Get the index of the accessed element. DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true); ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false); if (StOutBound && !StInBound) { ExplodedNode *N = C.generateSink(StOutBound); if (!N) return NULL; if (!BT_Bounds) { BT_Bounds.reset(new BuiltinBug("Out-of-bound array access", "Byte string function accesses out-of-bound array element")); } BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get()); // Generate a report for this bug. BugReport *report; if (warningMsg) { report = new BugReport(*BT, warningMsg, N); } else { assert(CurrentFunctionDescription); assert(CurrentFunctionDescription[0] != '\0'); SmallString<80> buf; llvm::raw_svector_ostream os(buf); os << toUppercase(CurrentFunctionDescription[0]) << &CurrentFunctionDescription[1] << " accesses out-of-bound array element"; report = new BugReport(*BT, os.str(), N); } // FIXME: It would be nice to eventually make this diagnostic more clear, // e.g., by referencing the original declaration or by saying *why* this // reference is outside the range. report->addRange(S->getSourceRange()); C.emitReport(report); return NULL; } // Array bound check succeeded. From this point forward the array bound // should always succeed. return StInBound; } ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef state, const Expr *Size, const Expr *FirstBuf, const Expr *SecondBuf, const char *firstMessage, const char *secondMessage, bool WarnAboutSize) const { // If a previous check has failed, propagate the failure. if (!state) return NULL; SValBuilder &svalBuilder = C.getSValBuilder(); ASTContext &Ctx = svalBuilder.getContext(); const LocationContext *LCtx = C.getLocationContext(); QualType sizeTy = Size->getType(); QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); // Check that the first buffer is non-null. SVal BufVal = state->getSVal(FirstBuf, LCtx); state = checkNonNull(C, state, FirstBuf, BufVal); if (!state) return NULL; // If out-of-bounds checking is turned off, skip the rest. if (!Filter.CheckCStringOutOfBounds) return state; // Get the access length and make sure it is known. // FIXME: This assumes the caller has already checked that the access length // is positive. And that it's unsigned. SVal LengthVal = state->getSVal(Size, LCtx); Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); if (!Length) return state; // Compute the offset of the last element to be accessed: size-1. NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); NonLoc LastOffset = svalBuilder .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>(); // Check that the first buffer is sufficiently long. SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType()); if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf); SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage); // If the buffer isn't large enough, abort. if (!state) return NULL; } // If there's a second buffer, check it as well. if (SecondBuf) { BufVal = state->getSVal(SecondBuf, LCtx); state = checkNonNull(C, state, SecondBuf, BufVal); if (!state) return NULL; BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType()); if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) { const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf); SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy); state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage); } } // Large enough or not, return this state! return state; } ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, ProgramStateRef state, const Expr *Size, const Expr *First, const Expr *Second) const { if (!Filter.CheckCStringBufferOverlap) return state; // Do a simple check for overlap: if the two arguments are from the same // buffer, see if the end of the first is greater than the start of the second // or vice versa. // If a previous check has failed, propagate the failure. if (!state) return NULL; ProgramStateRef stateTrue, stateFalse; // Get the buffer values and make sure they're known locations. const LocationContext *LCtx = C.getLocationContext(); SVal firstVal = state->getSVal(First, LCtx); SVal secondVal = state->getSVal(Second, LCtx); Optional<Loc> firstLoc = firstVal.getAs<Loc>(); if (!firstLoc) return state; Optional<Loc> secondLoc = secondVal.getAs<Loc>(); if (!secondLoc) return state; // Are the two values the same? SValBuilder &svalBuilder = C.getSValBuilder(); llvm::tie(stateTrue, stateFalse) = state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc)); if (stateTrue && !stateFalse) { // If the values are known to be equal, that's automatically an overlap. emitOverlapBug(C, stateTrue, First, Second); return NULL; } // assume the two expressions are not equal. assert(stateFalse); state = stateFalse; // Which value comes first? QualType cmpTy = svalBuilder.getConditionType(); SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy); Optional<DefinedOrUnknownSVal> reverseTest = reverse.getAs<DefinedOrUnknownSVal>(); if (!reverseTest) return state; llvm::tie(stateTrue, stateFalse) = state->assume(*reverseTest); if (stateTrue) { if (stateFalse) { // If we don't know which one comes first, we can't perform this test. return state; } else { // Switch the values so that firstVal is before secondVal. std::swap(firstLoc, secondLoc); // Switch the Exprs as well, so that they still correspond. std::swap(First, Second); } } // Get the length, and make sure it too is known. SVal LengthVal = state->getSVal(Size, LCtx); Optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); if (!Length) return state; // Convert the first buffer's start address to char*. // Bail out if the cast fails. ASTContext &Ctx = svalBuilder.getContext(); QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy); SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy, First->getType()); Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); if (!FirstStartLoc) return state; // Compute the end of the first buffer. Bail out if THAT fails. SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc, *Length, CharPtrTy); Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); if (!FirstEndLoc) return state; // Is the end of the first buffer past the start of the second buffer? SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy); Optional<DefinedOrUnknownSVal> OverlapTest = Overlap.getAs<DefinedOrUnknownSVal>(); if (!OverlapTest) return state; llvm::tie(stateTrue, stateFalse) = state->assume(*OverlapTest); if (stateTrue && !stateFalse) { // Overlap! emitOverlapBug(C, stateTrue, First, Second); return NULL; } // assume the two expressions don't overlap. assert(stateFalse); return stateFalse; } void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, const Stmt *First, const Stmt *Second) const { ExplodedNode *N = C.generateSink(state); if (!N) return; if (!BT_Overlap) BT_Overlap.reset(new BugType("Unix API", "Improper arguments")); // Generate a report for this bug. BugReport *report = new BugReport(*BT_Overlap, "Arguments must not be overlapping buffers", N); report->addRange(First->getSourceRange()); report->addRange(Second->getSourceRange()); C.emitReport(report); } ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, ProgramStateRef state, NonLoc left, NonLoc right) const { // If out-of-bounds checking is turned off, skip the rest. if (!Filter.CheckCStringOutOfBounds) return state; // If a previous check has failed, propagate the failure. if (!state) return NULL; SValBuilder &svalBuilder = C.getSValBuilder(); BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); QualType sizeTy = svalBuilder.getContext().getSizeType(); const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy); NonLoc maxVal = svalBuilder.makeIntVal(maxValInt); SVal maxMinusRight; if (right.getAs<nonloc::ConcreteInt>()) { maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right, sizeTy); } else { // Try switching the operands. (The order of these two assignments is // important!) maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left, sizeTy); left = right; } if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { QualType cmpTy = svalBuilder.getConditionType(); // If left > max - right, we have an overflow. SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left, *maxMinusRightNL, cmpTy); ProgramStateRef stateOverflow, stateOkay; llvm::tie(stateOverflow, stateOkay) = state->assume(willOverflow.castAs<DefinedOrUnknownSVal>()); if (stateOverflow && !stateOkay) { // We have an overflow. Emit a bug report. ExplodedNode *N = C.generateSink(stateOverflow); if (!N) return NULL; if (!BT_AdditionOverflow) BT_AdditionOverflow.reset(new BuiltinBug("API", "Sum of expressions causes overflow")); // This isn't a great error message, but this should never occur in real // code anyway -- you'd have to create a buffer longer than a size_t can // represent, which is sort of a contradiction. const char *warning = "This expression will create a string whose length is too big to " "be represented as a size_t"; // Generate a report for this bug. BugReport *report = new BugReport(*BT_AdditionOverflow, warning, N); C.emitReport(report); return NULL; } // From now on, assume an overflow didn't occur. assert(stateOkay); state = stateOkay; } return state; } ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, const MemRegion *MR, SVal strLength) { assert(!strLength.isUndef() && "Attempt to set an undefined string length"); MR = MR->StripCasts(); switch (MR->getKind()) { case MemRegion::StringRegionKind: // FIXME: This can happen if we strcpy() into a string region. This is // undefined [C99 6.4.5p6], but we should still warn about it. return state; case MemRegion::SymbolicRegionKind: case MemRegion::AllocaRegionKind: case MemRegion::VarRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: // These are the types we can currently track string lengths for. break; case MemRegion::ElementRegionKind: // FIXME: Handle element regions by upper-bounding the parent region's // string length. return state; default: // Other regions (mostly non-data) can't have a reliable C string length. // For now, just ignore the change. // FIXME: These are rare but not impossible. We should output some kind of // warning for things like strcpy((char[]){'a', 0}, "b"); return state; } if (strLength.isUnknown()) return state->remove<CStringLength>(MR); return state->set<CStringLength>(MR, strLength); } SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, ProgramStateRef &state, const Expr *Ex, const MemRegion *MR, bool hypothetical) { if (!hypothetical) { // If there's a recorded length, go ahead and return it. const SVal *Recorded = state->get<CStringLength>(MR); if (Recorded) return *Recorded; } // Otherwise, get a new symbol and update the state. SValBuilder &svalBuilder = C.getSValBuilder(); QualType sizeTy = svalBuilder.getContext().getSizeType(); SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(), MR, Ex, sizeTy, C.blockCount()); if (!hypothetical) state = state->set<CStringLength>(MR, strLength); return strLength; } SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, const Expr *Ex, SVal Buf, bool hypothetical) const { const MemRegion *MR = Buf.getAsRegion(); if (!MR) { // If we can't get a region, see if it's something we /know/ isn't a // C string. In the context of locations, the only time we can issue such // a warning is for labels. if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { if (!Filter.CheckCStringNotNullTerm) return UndefinedVal(); if (ExplodedNode *N = C.addTransition(state)) { if (!BT_NotCString) BT_NotCString.reset(new BuiltinBug("Unix API", "Argument is not a null-terminated string.")); SmallString<120> buf; llvm::raw_svector_ostream os(buf); assert(CurrentFunctionDescription); os << "Argument to " << CurrentFunctionDescription << " is the address of the label '" << Label->getLabel()->getName() << "', which is not a null-terminated string"; // Generate a report for this bug. BugReport *report = new BugReport(*BT_NotCString, os.str(), N); report->addRange(Ex->getSourceRange()); C.emitReport(report); } return UndefinedVal(); } // If it's not a region and not a label, give up. return UnknownVal(); } // If we have a region, strip casts from it and see if we can figure out // its length. For anything we can't figure out, just return UnknownVal. MR = MR->StripCasts(); switch (MR->getKind()) { case MemRegion::StringRegionKind: { // Modifying the contents of string regions is undefined [C99 6.4.5p6], // so we can assume that the byte length is the correct C string length. SValBuilder &svalBuilder = C.getSValBuilder(); QualType sizeTy = svalBuilder.getContext().getSizeType(); const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral(); return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy); } case MemRegion::SymbolicRegionKind: case MemRegion::AllocaRegionKind: case MemRegion::VarRegionKind: case MemRegion::FieldRegionKind: case MemRegion::ObjCIvarRegionKind: return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); case MemRegion::CompoundLiteralRegionKind: // FIXME: Can we track this? Is it necessary? return UnknownVal(); case MemRegion::ElementRegionKind: // FIXME: How can we handle this? It's not good enough to subtract the // offset from the base string length; consider "123\x00567" and &a[5]. return UnknownVal(); default: // Other regions (mostly non-data) can't have a reliable C string length. // In this case, an error is emitted and UndefinedVal is returned. // The caller should always be prepared to handle this case. if (!Filter.CheckCStringNotNullTerm) return UndefinedVal(); if (ExplodedNode *N = C.addTransition(state)) { if (!BT_NotCString) BT_NotCString.reset(new BuiltinBug("Unix API", "Argument is not a null-terminated string.")); SmallString<120> buf; llvm::raw_svector_ostream os(buf); assert(CurrentFunctionDescription); os << "Argument to " << CurrentFunctionDescription << " is "; if (SummarizeRegion(os, C.getASTContext(), MR)) os << ", which is not a null-terminated string"; else os << "not a null-terminated string"; // Generate a report for this bug. BugReport *report = new BugReport(*BT_NotCString, os.str(), N); report->addRange(Ex->getSourceRange()); C.emitReport(report); } return UndefinedVal(); } } const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, ProgramStateRef &state, const Expr *expr, SVal val) const { // Get the memory region pointed to by the val. const MemRegion *bufRegion = val.getAsRegion(); if (!bufRegion) return NULL; // Strip casts off the memory region. bufRegion = bufRegion->StripCasts(); // Cast the memory region to a string region. const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion); if (!strRegion) return NULL; // Return the actual string in the string region. return strRegion->getStringLiteral(); } ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C, ProgramStateRef state, const Expr *E, SVal V) { Optional<Loc> L = V.getAs<Loc>(); if (!L) return state; // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes // some assumptions about the value that CFRefCount can't. Even so, it should // probably be refactored. if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { const MemRegion *R = MR->getRegion()->StripCasts(); // Are we dealing with an ElementRegion? If so, we should be invalidating // the super-region. if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) { R = ER->getSuperRegion(); // FIXME: What about layers of ElementRegions? } // Invalidate this region. const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); return state->invalidateRegions(R, E, C.blockCount(), LCtx, /*CausesPointerEscape*/ false); } // If we have a non-region value by chance, just remove the binding. // FIXME: is this necessary or correct? This handles the non-Region // cases. Is it ever valid to store to these? return state->killBinding(*L); } bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, const MemRegion *MR) { const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR); switch (MR->getKind()) { case MemRegion::FunctionTextRegionKind: { const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl(); if (FD) os << "the address of the function '" << *FD << '\''; else os << "the address of a function"; return true; } case MemRegion::BlockTextRegionKind: os << "block text"; return true; case MemRegion::BlockDataRegionKind: os << "a block"; return true; case MemRegion::CXXThisRegionKind: case MemRegion::CXXTempObjectRegionKind: os << "a C++ temp object of type " << TVR->getValueType().getAsString(); return true; case MemRegion::VarRegionKind: os << "a variable of type" << TVR->getValueType().getAsString(); return true; case MemRegion::FieldRegionKind: os << "a field of type " << TVR->getValueType().getAsString(); return true; case MemRegion::ObjCIvarRegionKind: os << "an instance variable of type " << TVR->getValueType().getAsString(); return true; default: return false; } } //===----------------------------------------------------------------------===// // evaluation of individual function calls. //===----------------------------------------------------------------------===// void CStringChecker::evalCopyCommon(CheckerContext &C, const CallExpr *CE, ProgramStateRef state, const Expr *Size, const Expr *Dest, const Expr *Source, bool Restricted, bool IsMempcpy) const { CurrentFunctionDescription = "memory copy function"; // See if the size argument is zero. const LocationContext *LCtx = C.getLocationContext(); SVal sizeVal = state->getSVal(Size, LCtx); QualType sizeTy = Size->getType(); ProgramStateRef stateZeroSize, stateNonZeroSize; llvm::tie(stateZeroSize, stateNonZeroSize) = assumeZero(C, state, sizeVal, sizeTy); // Get the value of the Dest. SVal destVal = state->getSVal(Dest, LCtx); // If the size is zero, there won't be any actual memory access, so // just bind the return value to the destination buffer and return. if (stateZeroSize && !stateNonZeroSize) { stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal); C.addTransition(stateZeroSize); return; } // If the size can be nonzero, we have to check the other arguments. if (stateNonZeroSize) { state = stateNonZeroSize; // Ensure the destination is not null. If it is NULL there will be a // NULL pointer dereference. state = checkNonNull(C, state, Dest, destVal); if (!state) return; // Get the value of the Src. SVal srcVal = state->getSVal(Source, LCtx); // Ensure the source is not null. If it is NULL there will be a // NULL pointer dereference. state = checkNonNull(C, state, Source, srcVal); if (!state) return; // Ensure the accesses are valid and that the buffers do not overlap. const char * const writeWarning = "Memory copy function overflows destination buffer"; state = CheckBufferAccess(C, state, Size, Dest, Source, writeWarning, /* sourceWarning = */ NULL); if (Restricted) state = CheckOverlap(C, state, Size, Dest, Source); if (!state) return; // If this is mempcpy, get the byte after the last byte copied and // bind the expr. if (IsMempcpy) { loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>(); // Get the length to copy. if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) { // Get the byte after the last byte copied. SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add, destRegVal, *lenValNonLoc, Dest->getType()); // The byte after the last byte copied is the return value. state = state->BindExpr(CE, LCtx, lastElement); } else { // If we don't know how much we copied, we can at least // conjure a return value for later. SVal result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount()); state = state->BindExpr(CE, LCtx, result); } } else { // All other copies return the destination buffer. // (Well, bcopy() has a void return type, but this won't hurt.) state = state->BindExpr(CE, LCtx, destVal); } // Invalidate the destination. // FIXME: Even if we can't perfectly model the copy, we should see if we // can use LazyCompoundVals to copy the source values into the destination. // This would probably remove any existing bindings past the end of the // copied region, but that's still an improvement over blank invalidation. state = InvalidateBuffer(C, state, Dest, state->getSVal(Dest, C.getLocationContext())); C.addTransition(state); } } void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // void *memcpy(void *restrict dst, const void *restrict src, size_t n); // The return value is the address of the destination buffer. const Expr *Dest = CE->getArg(0); ProgramStateRef state = C.getState(); evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true); } void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); // The return value is a pointer to the byte following the last written byte. const Expr *Dest = CE->getArg(0); ProgramStateRef state = C.getState(); evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true); } void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // void *memmove(void *dst, const void *src, size_t n); // The return value is the address of the destination buffer. const Expr *Dest = CE->getArg(0); ProgramStateRef state = C.getState(); evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1)); } void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // void bcopy(const void *src, void *dst, size_t n); evalCopyCommon(C, CE, C.getState(), CE->getArg(2), CE->getArg(1), CE->getArg(0)); } void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // int memcmp(const void *s1, const void *s2, size_t n); CurrentFunctionDescription = "memory comparison function"; const Expr *Left = CE->getArg(0); const Expr *Right = CE->getArg(1); const Expr *Size = CE->getArg(2); ProgramStateRef state = C.getState(); SValBuilder &svalBuilder = C.getSValBuilder(); // See if the size argument is zero. const LocationContext *LCtx = C.getLocationContext(); SVal sizeVal = state->getSVal(Size, LCtx); QualType sizeTy = Size->getType(); ProgramStateRef stateZeroSize, stateNonZeroSize; llvm::tie(stateZeroSize, stateNonZeroSize) = assumeZero(C, state, sizeVal, sizeTy); // If the size can be zero, the result will be 0 in that case, and we don't // have to check either of the buffers. if (stateZeroSize) { state = stateZeroSize; state = state->BindExpr(CE, LCtx, svalBuilder.makeZeroVal(CE->getType())); C.addTransition(state); } // If the size can be nonzero, we have to check the other arguments. if (stateNonZeroSize) { state = stateNonZeroSize; // If we know the two buffers are the same, we know the result is 0. // First, get the two buffers' addresses. Another checker will have already // made sure they're not undefined. DefinedOrUnknownSVal LV = state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>(); DefinedOrUnknownSVal RV = state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>(); // See if they are the same. DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); ProgramStateRef StSameBuf, StNotSameBuf; llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); // If the two arguments might be the same buffer, we know the result is 0, // and we only need to check one size. if (StSameBuf) { state = StSameBuf; state = CheckBufferAccess(C, state, Size, Left); if (state) { state = StSameBuf->BindExpr(CE, LCtx, svalBuilder.makeZeroVal(CE->getType())); C.addTransition(state); } } // If the two arguments might be different buffers, we have to check the // size of both of them. if (StNotSameBuf) { state = StNotSameBuf; state = CheckBufferAccess(C, state, Size, Left, Right); if (state) { // The return value is the comparison result, which we don't know. SVal CmpV = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount()); state = state->BindExpr(CE, LCtx, CmpV); C.addTransition(state); } } } } void CStringChecker::evalstrLength(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 1) return; // size_t strlen(const char *s); evalstrLengthCommon(C, CE, /* IsStrnlen = */ false); } void CStringChecker::evalstrnLength(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; // size_t strnlen(const char *s, size_t maxlen); evalstrLengthCommon(C, CE, /* IsStrnlen = */ true); } void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE, bool IsStrnlen) const { CurrentFunctionDescription = "string length function"; ProgramStateRef state = C.getState(); const LocationContext *LCtx = C.getLocationContext(); if (IsStrnlen) { const Expr *maxlenExpr = CE->getArg(1); SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); ProgramStateRef stateZeroSize, stateNonZeroSize; llvm::tie(stateZeroSize, stateNonZeroSize) = assumeZero(C, state, maxlenVal, maxlenExpr->getType()); // If the size can be zero, the result will be 0 in that case, and we don't // have to check the string itself. if (stateZeroSize) { SVal zero = C.getSValBuilder().makeZeroVal(CE->getType()); stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero); C.addTransition(stateZeroSize); } // If the size is GUARANTEED to be zero, we're done! if (!stateNonZeroSize) return; // Otherwise, record the assumption that the size is nonzero. state = stateNonZeroSize; } // Check that the string argument is non-null. const Expr *Arg = CE->getArg(0); SVal ArgVal = state->getSVal(Arg, LCtx); state = checkNonNull(C, state, Arg, ArgVal); if (!state) return; SVal strLength = getCStringLength(C, state, Arg, ArgVal); // If the argument isn't a valid C string, there's no valid state to // transition to. if (strLength.isUndef()) return; DefinedOrUnknownSVal result = UnknownVal(); // If the check is for strnlen() then bind the return value to no more than // the maxlen value. if (IsStrnlen) { QualType cmpTy = C.getSValBuilder().getConditionType(); // It's a little unfortunate to be getting this again, // but it's not that expensive... const Expr *maxlenExpr = CE->getArg(1); SVal maxlenVal = state->getSVal(maxlenExpr, LCtx); Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); if (strLengthNL && maxlenValNL) { ProgramStateRef stateStringTooLong, stateStringNotTooLong; // Check if the strLength is greater than the maxlen. llvm::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(C.getSValBuilder().evalBinOpNN( state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy) .castAs<DefinedOrUnknownSVal>()); if (stateStringTooLong && !stateStringNotTooLong) { // If the string is longer than maxlen, return maxlen. result = *maxlenValNL; } else if (stateStringNotTooLong && !stateStringTooLong) { // If the string is shorter than maxlen, return its length. result = *strLengthNL; } } if (result.isUnknown()) { // If we don't have enough information for a comparison, there's // no guarantee the full string length will actually be returned. // All we know is the return value is the min of the string length // and the limit. This is better than nothing. result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount()); NonLoc resultNL = result.castAs<NonLoc>(); if (strLengthNL) { state = state->assume(C.getSValBuilder().evalBinOpNN( state, BO_LE, resultNL, *strLengthNL, cmpTy) .castAs<DefinedOrUnknownSVal>(), true); } if (maxlenValNL) { state = state->assume(C.getSValBuilder().evalBinOpNN( state, BO_LE, resultNL, *maxlenValNL, cmpTy) .castAs<DefinedOrUnknownSVal>(), true); } } } else { // This is a plain strlen(), not strnlen(). result = strLength.castAs<DefinedOrUnknownSVal>(); // If we don't know the length of the string, conjure a return // value, so it can be used in constraints, at least. if (result.isUnknown()) { result = C.getSValBuilder().conjureSymbolVal(0, CE, LCtx, C.blockCount()); } } // Bind the return value. assert(!result.isUnknown() && "Should have conjured a value by now"); state = state->BindExpr(CE, LCtx, result); C.addTransition(state); } void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; // char *strcpy(char *restrict dst, const char *restrict src); evalStrcpyCommon(C, CE, /* returnEnd = */ false, /* isBounded = */ false, /* isAppending = */ false); } void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; // char *strncpy(char *restrict dst, const char *restrict src, size_t n); evalStrcpyCommon(C, CE, /* returnEnd = */ false, /* isBounded = */ true, /* isAppending = */ false); } void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; // char *stpcpy(char *restrict dst, const char *restrict src); evalStrcpyCommon(C, CE, /* returnEnd = */ true, /* isBounded = */ false, /* isAppending = */ false); } void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; //char *strcat(char *restrict s1, const char *restrict s2); evalStrcpyCommon(C, CE, /* returnEnd = */ false, /* isBounded = */ false, /* isAppending = */ true); } void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; //char *strncat(char *restrict s1, const char *restrict s2, size_t n); evalStrcpyCommon(C, CE, /* returnEnd = */ false, /* isBounded = */ true, /* isAppending = */ true); } void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool returnEnd, bool isBounded, bool isAppending) const { CurrentFunctionDescription = "string copy function"; ProgramStateRef state = C.getState(); const LocationContext *LCtx = C.getLocationContext(); // Check that the destination is non-null. const Expr *Dst = CE->getArg(0); SVal DstVal = state->getSVal(Dst, LCtx); state = checkNonNull(C, state, Dst, DstVal); if (!state) return; // Check that the source is non-null. const Expr *srcExpr = CE->getArg(1); SVal srcVal = state->getSVal(srcExpr, LCtx); state = checkNonNull(C, state, srcExpr, srcVal); if (!state) return; // Get the string length of the source. SVal strLength = getCStringLength(C, state, srcExpr, srcVal); // If the source isn't a valid C string, give up. if (strLength.isUndef()) return; SValBuilder &svalBuilder = C.getSValBuilder(); QualType cmpTy = svalBuilder.getConditionType(); QualType sizeTy = svalBuilder.getContext().getSizeType(); // These two values allow checking two kinds of errors: // - actual overflows caused by a source that doesn't fit in the destination // - potential overflows caused by a bound that could exceed the destination SVal amountCopied = UnknownVal(); SVal maxLastElementIndex = UnknownVal(); const char *boundWarning = NULL; // If the function is strncpy, strncat, etc... it is bounded. if (isBounded) { // Get the max number of characters to copy. const Expr *lenExpr = CE->getArg(2); SVal lenVal = state->getSVal(lenExpr, LCtx); // Protect against misdeclared strncpy(). lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType()); Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); // If we know both values, we might be able to figure out how much // we're copying. if (strLengthNL && lenValNL) { ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; // Check if the max number to copy is less than the length of the src. // If the bound is equal to the source length, strncpy won't null- // terminate the result! llvm::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume( svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy) .castAs<DefinedOrUnknownSVal>()); if (stateSourceTooLong && !stateSourceNotTooLong) { // Max number to copy is less than the length of the src, so the actual // strLength copied is the max number arg. state = stateSourceTooLong; amountCopied = lenVal; } else if (!stateSourceTooLong && stateSourceNotTooLong) { // The source buffer entirely fits in the bound. state = stateSourceNotTooLong; amountCopied = strLength; } } // We still want to know if the bound is known to be too large. if (lenValNL) { if (isAppending) { // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) // Get the string length of the destination. If the destination is // memory that can't have a string length, we shouldn't be copying // into it anyway. SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); if (dstStrLength.isUndef()) return; if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) { maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy); boundWarning = "Size argument is greater than the free space in the " "destination buffer"; } } else { // For strncpy, this is just checking that lenVal <= sizeof(dst) // (Yes, strncpy and strncat differ in how they treat termination. // strncat ALWAYS terminates, but strncpy doesn't.) // We need a special case for when the copy size is zero, in which // case strncpy will do no work at all. Our bounds check uses n-1 // as the last element accessed, so n == 0 is problematic. ProgramStateRef StateZeroSize, StateNonZeroSize; llvm::tie(StateZeroSize, StateNonZeroSize) = assumeZero(C, state, *lenValNL, sizeTy); // If the size is known to be zero, we're done. if (StateZeroSize && !StateNonZeroSize) { StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal); C.addTransition(StateZeroSize); return; } // Otherwise, go ahead and figure out the last element we'll touch. // We don't record the non-zero assumption here because we can't // be sure. We won't warn on a possible zero. NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>(); maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy); boundWarning = "Size argument is greater than the length of the " "destination buffer"; } } // If we couldn't pin down the copy length, at least bound it. // FIXME: We should actually run this code path for append as well, but // right now it creates problems with constraints (since we can end up // trying to pass constraints from symbol to symbol). if (amountCopied.isUnknown() && !isAppending) { // Try to get a "hypothetical" string length symbol, which we can later // set as a real value if that turns out to be the case. amountCopied = getCStringLength(C, state, lenExpr, srcVal, true); assert(!amountCopied.isUndef()); if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) { if (lenValNL) { // amountCopied <= lenVal SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE, *amountCopiedNL, *lenValNL, cmpTy); state = state->assume( copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true); if (!state) return; } if (strLengthNL) { // amountCopied <= strlen(source) SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE, *amountCopiedNL, *strLengthNL, cmpTy); state = state->assume( copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true); if (!state) return; } } } } else { // The function isn't bounded. The amount copied should match the length // of the source buffer. amountCopied = strLength; } assert(state); // This represents the number of characters copied into the destination // buffer. (It may not actually be the strlen if the destination buffer // is not terminated.) SVal finalStrLength = UnknownVal(); // If this is an appending function (strcat, strncat...) then set the // string length to strlen(src) + strlen(dst) since the buffer will // ultimately contain both. if (isAppending) { // Get the string length of the destination. If the destination is memory // that can't have a string length, we shouldn't be copying into it anyway. SVal dstStrLength = getCStringLength(C, state, Dst, DstVal); if (dstStrLength.isUndef()) return; Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>(); Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); // If we know both string lengths, we might know the final string length. if (srcStrLengthNL && dstStrLengthNL) { // Make sure the two lengths together don't overflow a size_t. state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL); if (!state) return; finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL, *dstStrLengthNL, sizeTy); } // If we couldn't get a single value for the final string length, // we can at least bound it by the individual lengths. if (finalStrLength.isUnknown()) { // Try to get a "hypothetical" string length symbol, which we can later // set as a real value if that turns out to be the case. finalStrLength = getCStringLength(C, state, CE, DstVal, true); assert(!finalStrLength.isUndef()); if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) { if (srcStrLengthNL) { // finalStrLength >= srcStrLength SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE, *finalStrLengthNL, *srcStrLengthNL, cmpTy); state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(), true); if (!state) return; } if (dstStrLengthNL) { // finalStrLength >= dstStrLength SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE, *finalStrLengthNL, *dstStrLengthNL, cmpTy); state = state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true); if (!state) return; } } } } else { // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and // the final string length will match the input string length. finalStrLength = amountCopied; } // The final result of the function will either be a pointer past the last // copied element, or a pointer to the start of the destination buffer. SVal Result = (returnEnd ? UnknownVal() : DstVal); assert(state); // If the destination is a MemRegion, try to check for a buffer overflow and // record the new string length. if (Optional<loc::MemRegionVal> dstRegVal = DstVal.getAs<loc::MemRegionVal>()) { QualType ptrTy = Dst->getType(); // If we have an exact value on a bounded copy, use that to check for // overflows, rather than our estimate about how much is actually copied. if (boundWarning) { if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy); state = CheckLocation(C, state, CE->getArg(2), maxLastElement, boundWarning); if (!state) return; } } // Then, if the final length is known... if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *knownStrLength, ptrTy); // ...and we haven't checked the bound, we'll check the actual copy. if (!boundWarning) { const char * const warningMsg = "String copy function overflows destination buffer"; state = CheckLocation(C, state, Dst, lastElement, warningMsg); if (!state) return; } // If this is a stpcpy-style copy, the last element is the return value. if (returnEnd) Result = lastElement; } // Invalidate the destination. This must happen before we set the C string // length because invalidation will clear the length. // FIXME: Even if we can't perfectly model the copy, we should see if we // can use LazyCompoundVals to copy the source values into the destination. // This would probably remove any existing bindings past the end of the // string, but that's still an improvement over blank invalidation. state = InvalidateBuffer(C, state, Dst, *dstRegVal); // Set the C string length of the destination, if we know it. if (isBounded && !isAppending) { // strncpy is annoying in that it doesn't guarantee to null-terminate // the result string. If the original string didn't fit entirely inside // the bound (including the null-terminator), we don't know how long the // result is. if (amountCopied != strLength) finalStrLength = UnknownVal(); } state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength); } assert(state); // If this is a stpcpy-style copy, but we were unable to check for a buffer // overflow, we still need a result. Conjure a return value. if (returnEnd && Result.isUnknown()) { Result = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount()); } // Set the return value. state = state->BindExpr(CE, LCtx, Result); C.addTransition(state); } void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; //int strcmp(const char *s1, const char *s2); evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false); } void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; //int strncmp(const char *s1, const char *s2, size_t n); evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false); } void CStringChecker::evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 2) return; //int strcasecmp(const char *s1, const char *s2); evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true); } void CStringChecker::evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const { if (CE->getNumArgs() < 3) return; //int strncasecmp(const char *s1, const char *s2, size_t n); evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true); } void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE, bool isBounded, bool ignoreCase) const { CurrentFunctionDescription = "string comparison function"; ProgramStateRef state = C.getState(); const LocationContext *LCtx = C.getLocationContext(); // Check that the first string is non-null const Expr *s1 = CE->getArg(0); SVal s1Val = state->getSVal(s1, LCtx); state = checkNonNull(C, state, s1, s1Val); if (!state) return; // Check that the second string is non-null. const Expr *s2 = CE->getArg(1); SVal s2Val = state->getSVal(s2, LCtx); state = checkNonNull(C, state, s2, s2Val); if (!state) return; // Get the string length of the first string or give up. SVal s1Length = getCStringLength(C, state, s1, s1Val); if (s1Length.isUndef()) return; // Get the string length of the second string or give up. SVal s2Length = getCStringLength(C, state, s2, s2Val); if (s2Length.isUndef()) return; // If we know the two buffers are the same, we know the result is 0. // First, get the two buffers' addresses. Another checker will have already // made sure they're not undefined. DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>(); DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>(); // See if they are the same. SValBuilder &svalBuilder = C.getSValBuilder(); DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV); ProgramStateRef StSameBuf, StNotSameBuf; llvm::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf); // If the two arguments might be the same buffer, we know the result is 0, // and we only need to check one size. if (StSameBuf) { StSameBuf = StSameBuf->BindExpr(CE, LCtx, svalBuilder.makeZeroVal(CE->getType())); C.addTransition(StSameBuf); // If the two arguments are GUARANTEED to be the same, we're done! if (!StNotSameBuf) return; } assert(StNotSameBuf); state = StNotSameBuf; // At this point we can go about comparing the two buffers. // For now, we only do this if they're both known string literals. // Attempt to extract string literals from both expressions. const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val); const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val); bool canComputeResult = false; if (s1StrLiteral && s2StrLiteral) { StringRef s1StrRef = s1StrLiteral->getString(); StringRef s2StrRef = s2StrLiteral->getString(); if (isBounded) { // Get the max number of characters to compare. const Expr *lenExpr = CE->getArg(2); SVal lenVal = state->getSVal(lenExpr, LCtx); // If the length is known, we can get the right substrings. if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) { // Create substrings of each to compare the prefix. s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue()); s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue()); canComputeResult = true; } } else { // This is a normal, unbounded strcmp. canComputeResult = true; } if (canComputeResult) { // Real strcmp stops at null characters. size_t s1Term = s1StrRef.find('\0'); if (s1Term != StringRef::npos) s1StrRef = s1StrRef.substr(0, s1Term); size_t s2Term = s2StrRef.find('\0'); if (s2Term != StringRef::npos) s2StrRef = s2StrRef.substr(0, s2Term); // Use StringRef's comparison methods to compute the actual result. int result; if (ignoreCase) { // Compare string 1 to string 2 the same way strcasecmp() does. result = s1StrRef.compare_lower(s2StrRef); } else { // Compare string 1 to string 2 the same way strcmp() does. result = s1StrRef.compare(s2StrRef); } // Build the SVal of the comparison and bind the return value. SVal resultVal = svalBuilder.makeIntVal(result, CE->getType()); state = state->BindExpr(CE, LCtx, resultVal); } } if (!canComputeResult) { // Conjure a symbolic value. It's the best we can do. SVal resultVal = svalBuilder.conjureSymbolVal(0, CE, LCtx, C.blockCount()); state = state->BindExpr(CE, LCtx, resultVal); } // Record this as a possible path. C.addTransition(state); } //===----------------------------------------------------------------------===// // The driver method, and other Checker callbacks. //===----------------------------------------------------------------------===// bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const { const FunctionDecl *FDecl = C.getCalleeDecl(CE); if (!FDecl) return false; FnCheck evalFunction = 0; if (C.isCLibraryFunction(FDecl, "memcpy")) evalFunction = &CStringChecker::evalMemcpy; else if (C.isCLibraryFunction(FDecl, "mempcpy")) evalFunction = &CStringChecker::evalMempcpy; else if (C.isCLibraryFunction(FDecl, "memcmp")) evalFunction = &CStringChecker::evalMemcmp; else if (C.isCLibraryFunction(FDecl, "memmove")) evalFunction = &CStringChecker::evalMemmove; else if (C.isCLibraryFunction(FDecl, "strcpy")) evalFunction = &CStringChecker::evalStrcpy; else if (C.isCLibraryFunction(FDecl, "strncpy")) evalFunction = &CStringChecker::evalStrncpy; else if (C.isCLibraryFunction(FDecl, "stpcpy")) evalFunction = &CStringChecker::evalStpcpy; else if (C.isCLibraryFunction(FDecl, "strcat")) evalFunction = &CStringChecker::evalStrcat; else if (C.isCLibraryFunction(FDecl, "strncat")) evalFunction = &CStringChecker::evalStrncat; else if (C.isCLibraryFunction(FDecl, "strlen")) evalFunction = &CStringChecker::evalstrLength; else if (C.isCLibraryFunction(FDecl, "strnlen")) evalFunction = &CStringChecker::evalstrnLength; else if (C.isCLibraryFunction(FDecl, "strcmp")) evalFunction = &CStringChecker::evalStrcmp; else if (C.isCLibraryFunction(FDecl, "strncmp")) evalFunction = &CStringChecker::evalStrncmp; else if (C.isCLibraryFunction(FDecl, "strcasecmp")) evalFunction = &CStringChecker::evalStrcasecmp; else if (C.isCLibraryFunction(FDecl, "strncasecmp")) evalFunction = &CStringChecker::evalStrncasecmp; else if (C.isCLibraryFunction(FDecl, "bcopy")) evalFunction = &CStringChecker::evalBcopy; else if (C.isCLibraryFunction(FDecl, "bcmp")) evalFunction = &CStringChecker::evalMemcmp; // If the callee isn't a string function, let another checker handle it. if (!evalFunction) return false; // Make sure each function sets its own description. // (But don't bother in a release build.) assert(!(CurrentFunctionDescription = NULL)); // Check and evaluate the call. (this->*evalFunction)(C, CE); // If the evaluate call resulted in no change, chain to the next eval call // handler. // Note, the custom CString evaluation calls assume that basic safety // properties are held. However, if the user chooses to turn off some of these // checks, we ignore the issues and leave the call evaluation to a generic // handler. if (!C.isDifferent()) return false; return true; } void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { // Record string length for char a[] = "abc"; ProgramStateRef state = C.getState(); for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end(); I != E; ++I) { const VarDecl *D = dyn_cast<VarDecl>(*I); if (!D) continue; // FIXME: Handle array fields of structs. if (!D->getType()->isArrayType()) continue; const Expr *Init = D->getInit(); if (!Init) continue; if (!isa<StringLiteral>(Init)) continue; Loc VarLoc = state->getLValue(D, C.getLocationContext()); const MemRegion *MR = VarLoc.getAsRegion(); if (!MR) continue; SVal StrVal = state->getSVal(Init, C.getLocationContext()); assert(StrVal.isValid() && "Initializer string is unknown or undefined"); DefinedOrUnknownSVal strLength = getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>(); state = state->set<CStringLength>(MR, strLength); } C.addTransition(state); } bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const { CStringLengthTy Entries = state->get<CStringLength>(); return !Entries.isEmpty(); } ProgramStateRef CStringChecker::checkRegionChanges(ProgramStateRef state, const InvalidatedSymbols *, ArrayRef<const MemRegion *> ExplicitRegions, ArrayRef<const MemRegion *> Regions, const CallEvent *Call) const { CStringLengthTy Entries = state->get<CStringLength>(); if (Entries.isEmpty()) return state; llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; // First build sets for the changed regions and their super-regions. for (ArrayRef<const MemRegion *>::iterator I = Regions.begin(), E = Regions.end(); I != E; ++I) { const MemRegion *MR = *I; Invalidated.insert(MR); SuperRegions.insert(MR); while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) { MR = SR->getSuperRegion(); SuperRegions.insert(MR); } } CStringLengthTy::Factory &F = state->get_context<CStringLength>(); // Then loop over the entries in the current state. for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { const MemRegion *MR = I.getKey(); // Is this entry for a super-region of a changed region? if (SuperRegions.count(MR)) { Entries = F.remove(Entries, MR); continue; } // Is this entry for a sub-region of a changed region? const MemRegion *Super = MR; while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) { Super = SR->getSuperRegion(); if (Invalidated.count(Super)) { Entries = F.remove(Entries, MR); break; } } } return state->set<CStringLength>(Entries); } void CStringChecker::checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const { // Mark all symbols in our string length map as valid. CStringLengthTy Entries = state->get<CStringLength>(); for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { SVal Len = I.getData(); for (SymExpr::symbol_iterator si = Len.symbol_begin(), se = Len.symbol_end(); si != se; ++si) SR.markInUse(*si); } } void CStringChecker::checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const { if (!SR.hasDeadSymbols()) return; ProgramStateRef state = C.getState(); CStringLengthTy Entries = state->get<CStringLength>(); if (Entries.isEmpty()) return; CStringLengthTy::Factory &F = state->get_context<CStringLength>(); for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { SVal Len = I.getData(); if (SymbolRef Sym = Len.getAsSymbol()) { if (SR.isDead(Sym)) Entries = F.remove(Entries, I.getKey()); } } state = state->set<CStringLength>(Entries); C.addTransition(state); } #define REGISTER_CHECKER(name) \ void ento::register##name(CheckerManager &mgr) {\ static CStringChecker *TheChecker = 0; \ if (TheChecker == 0) \ TheChecker = mgr.registerChecker<CStringChecker>(); \ TheChecker->Filter.Check##name = true; \ } REGISTER_CHECKER(CStringNullArg) REGISTER_CHECKER(CStringOutOfBounds) REGISTER_CHECKER(CStringBufferOverlap) REGISTER_CHECKER(CStringNotNullTerm) void ento::registerCStringCheckerBasic(CheckerManager &Mgr) { registerCStringNullArg(Mgr); }