//== BasicObjCFoundationChecks.cpp - Simple Apple-Foundation checks -*- C++ -*-- // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines BasicObjCFoundationChecks, a class that encapsulates // a set of simple checks to run on Objective-C code using Apple's Foundation // classes. // //===----------------------------------------------------------------------===// #include "ClangSACheckers.h" #include "clang/AST/ASTContext.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/StmtObjC.h" #include "clang/Analysis/DomainSpecific/CocoaConventions.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class APIMisuse : public BugType { public: APIMisuse(const char* name) : BugType(name, "API Misuse (Apple)") {} }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// static StringRef GetReceiverInterfaceName(const ObjCMethodCall &msg) { if (const ObjCInterfaceDecl *ID = msg.getReceiverInterface()) return ID->getIdentifier()->getName(); return StringRef(); } enum FoundationClass { FC_None, FC_NSArray, FC_NSDictionary, FC_NSEnumerator, FC_NSOrderedSet, FC_NSSet, FC_NSString }; static FoundationClass findKnownClass(const ObjCInterfaceDecl *ID) { static llvm::StringMap<FoundationClass> Classes; if (Classes.empty()) { Classes["NSArray"] = FC_NSArray; Classes["NSDictionary"] = FC_NSDictionary; Classes["NSEnumerator"] = FC_NSEnumerator; Classes["NSOrderedSet"] = FC_NSOrderedSet; Classes["NSSet"] = FC_NSSet; Classes["NSString"] = FC_NSString; } // FIXME: Should we cache this at all? FoundationClass result = Classes.lookup(ID->getIdentifier()->getName()); if (result == FC_None) if (const ObjCInterfaceDecl *Super = ID->getSuperClass()) return findKnownClass(Super); return result; } static inline bool isNil(SVal X) { return X.getAs<loc::ConcreteInt>().hasValue(); } //===----------------------------------------------------------------------===// // NilArgChecker - Check for prohibited nil arguments to ObjC method calls. //===----------------------------------------------------------------------===// namespace { class NilArgChecker : public Checker<check::PreObjCMessage> { mutable OwningPtr<APIMisuse> BT; void WarnNilArg(CheckerContext &C, const ObjCMethodCall &msg, unsigned Arg) const; public: void checkPreObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; }; } void NilArgChecker::WarnNilArg(CheckerContext &C, const ObjCMethodCall &msg, unsigned int Arg) const { if (!BT) BT.reset(new APIMisuse("nil argument")); if (ExplodedNode *N = C.generateSink()) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); os << "Argument to '" << GetReceiverInterfaceName(msg) << "' method '" << msg.getSelector().getAsString() << "' cannot be nil"; BugReport *R = new BugReport(*BT, os.str(), N); R->addRange(msg.getArgSourceRange(Arg)); C.emitReport(R); } } void NilArgChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { const ObjCInterfaceDecl *ID = msg.getReceiverInterface(); if (!ID) return; FoundationClass Class = findKnownClass(ID); static const unsigned InvalidArgIndex = UINT_MAX; unsigned Arg = InvalidArgIndex; if (Class == FC_NSString) { Selector S = msg.getSelector(); if (S.isUnarySelector()) return; // FIXME: This is going to be really slow doing these checks with // lexical comparisons. std::string NameStr = S.getAsString(); StringRef Name(NameStr); assert(!Name.empty()); // FIXME: Checking for initWithFormat: will not work in most cases // yet because [NSString alloc] returns id, not NSString*. We will // need support for tracking expected-type information in the analyzer // to find these errors. if (Name == "caseInsensitiveCompare:" || Name == "compare:" || Name == "compare:options:" || Name == "compare:options:range:" || Name == "compare:options:range:locale:" || Name == "componentsSeparatedByCharactersInSet:" || Name == "initWithFormat:") { Arg = 0; } } else if (Class == FC_NSArray) { Selector S = msg.getSelector(); if (S.isUnarySelector()) return; if (S.getNameForSlot(0).equals("addObject")) { Arg = 0; } else if (S.getNameForSlot(0).equals("insertObject") && S.getNameForSlot(1).equals("atIndex")) { Arg = 0; } else if (S.getNameForSlot(0).equals("replaceObjectAtIndex") && S.getNameForSlot(1).equals("withObject")) { Arg = 1; } else if (S.getNameForSlot(0).equals("setObject") && S.getNameForSlot(1).equals("atIndexedSubscript")) { Arg = 0; } else if (S.getNameForSlot(0).equals("arrayByAddingObject")) { Arg = 0; } } // If argument is '0', report a warning. if ((Arg != InvalidArgIndex) && isNil(msg.getArgSVal(Arg))) WarnNilArg(C, msg, Arg); } //===----------------------------------------------------------------------===// // Error reporting. //===----------------------------------------------------------------------===// namespace { class CFNumberCreateChecker : public Checker< check::PreStmt<CallExpr> > { mutable OwningPtr<APIMisuse> BT; mutable IdentifierInfo* II; public: CFNumberCreateChecker() : II(0) {} void checkPreStmt(const CallExpr *CE, CheckerContext &C) const; private: void EmitError(const TypedRegion* R, const Expr *Ex, uint64_t SourceSize, uint64_t TargetSize, uint64_t NumberKind); }; } // end anonymous namespace enum CFNumberType { kCFNumberSInt8Type = 1, kCFNumberSInt16Type = 2, kCFNumberSInt32Type = 3, kCFNumberSInt64Type = 4, kCFNumberFloat32Type = 5, kCFNumberFloat64Type = 6, kCFNumberCharType = 7, kCFNumberShortType = 8, kCFNumberIntType = 9, kCFNumberLongType = 10, kCFNumberLongLongType = 11, kCFNumberFloatType = 12, kCFNumberDoubleType = 13, kCFNumberCFIndexType = 14, kCFNumberNSIntegerType = 15, kCFNumberCGFloatType = 16 }; static Optional<uint64_t> GetCFNumberSize(ASTContext &Ctx, uint64_t i) { static const unsigned char FixedSize[] = { 8, 16, 32, 64, 32, 64 }; if (i < kCFNumberCharType) return FixedSize[i-1]; QualType T; switch (i) { case kCFNumberCharType: T = Ctx.CharTy; break; case kCFNumberShortType: T = Ctx.ShortTy; break; case kCFNumberIntType: T = Ctx.IntTy; break; case kCFNumberLongType: T = Ctx.LongTy; break; case kCFNumberLongLongType: T = Ctx.LongLongTy; break; case kCFNumberFloatType: T = Ctx.FloatTy; break; case kCFNumberDoubleType: T = Ctx.DoubleTy; break; case kCFNumberCFIndexType: case kCFNumberNSIntegerType: case kCFNumberCGFloatType: // FIXME: We need a way to map from names to Type*. default: return None; } return Ctx.getTypeSize(T); } #if 0 static const char* GetCFNumberTypeStr(uint64_t i) { static const char* Names[] = { "kCFNumberSInt8Type", "kCFNumberSInt16Type", "kCFNumberSInt32Type", "kCFNumberSInt64Type", "kCFNumberFloat32Type", "kCFNumberFloat64Type", "kCFNumberCharType", "kCFNumberShortType", "kCFNumberIntType", "kCFNumberLongType", "kCFNumberLongLongType", "kCFNumberFloatType", "kCFNumberDoubleType", "kCFNumberCFIndexType", "kCFNumberNSIntegerType", "kCFNumberCGFloatType" }; return i <= kCFNumberCGFloatType ? Names[i-1] : "Invalid CFNumberType"; } #endif void CFNumberCreateChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const { ProgramStateRef state = C.getState(); const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return; ASTContext &Ctx = C.getASTContext(); if (!II) II = &Ctx.Idents.get("CFNumberCreate"); if (FD->getIdentifier() != II || CE->getNumArgs() != 3) return; // Get the value of the "theType" argument. const LocationContext *LCtx = C.getLocationContext(); SVal TheTypeVal = state->getSVal(CE->getArg(1), LCtx); // FIXME: We really should allow ranges of valid theType values, and // bifurcate the state appropriately. Optional<nonloc::ConcreteInt> V = TheTypeVal.getAs<nonloc::ConcreteInt>(); if (!V) return; uint64_t NumberKind = V->getValue().getLimitedValue(); Optional<uint64_t> OptTargetSize = GetCFNumberSize(Ctx, NumberKind); // FIXME: In some cases we can emit an error. if (!OptTargetSize) return; uint64_t TargetSize = *OptTargetSize; // Look at the value of the integer being passed by reference. Essentially // we want to catch cases where the value passed in is not equal to the // size of the type being created. SVal TheValueExpr = state->getSVal(CE->getArg(2), LCtx); // FIXME: Eventually we should handle arbitrary locations. We can do this // by having an enhanced memory model that does low-level typing. Optional<loc::MemRegionVal> LV = TheValueExpr.getAs<loc::MemRegionVal>(); if (!LV) return; const TypedValueRegion* R = dyn_cast<TypedValueRegion>(LV->stripCasts()); if (!R) return; QualType T = Ctx.getCanonicalType(R->getValueType()); // FIXME: If the pointee isn't an integer type, should we flag a warning? // People can do weird stuff with pointers. if (!T->isIntegerType()) return; uint64_t SourceSize = Ctx.getTypeSize(T); // CHECK: is SourceSize == TargetSize if (SourceSize == TargetSize) return; // Generate an error. Only generate a sink if 'SourceSize < TargetSize'; // otherwise generate a regular node. // // FIXME: We can actually create an abstract "CFNumber" object that has // the bits initialized to the provided values. // if (ExplodedNode *N = SourceSize < TargetSize ? C.generateSink() : C.addTransition()) { SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); os << (SourceSize == 8 ? "An " : "A ") << SourceSize << " bit integer is used to initialize a CFNumber " "object that represents " << (TargetSize == 8 ? "an " : "a ") << TargetSize << " bit integer. "; if (SourceSize < TargetSize) os << (TargetSize - SourceSize) << " bits of the CFNumber value will be garbage." ; else os << (SourceSize - TargetSize) << " bits of the input integer will be lost."; if (!BT) BT.reset(new APIMisuse("Bad use of CFNumberCreate")); BugReport *report = new BugReport(*BT, os.str(), N); report->addRange(CE->getArg(2)->getSourceRange()); C.emitReport(report); } } //===----------------------------------------------------------------------===// // CFRetain/CFRelease/CFMakeCollectable checking for null arguments. //===----------------------------------------------------------------------===// namespace { class CFRetainReleaseChecker : public Checker< check::PreStmt<CallExpr> > { mutable OwningPtr<APIMisuse> BT; mutable IdentifierInfo *Retain, *Release, *MakeCollectable; public: CFRetainReleaseChecker(): Retain(0), Release(0), MakeCollectable(0) {} void checkPreStmt(const CallExpr *CE, CheckerContext &C) const; }; } // end anonymous namespace void CFRetainReleaseChecker::checkPreStmt(const CallExpr *CE, CheckerContext &C) const { // If the CallExpr doesn't have exactly 1 argument just give up checking. if (CE->getNumArgs() != 1) return; ProgramStateRef state = C.getState(); const FunctionDecl *FD = C.getCalleeDecl(CE); if (!FD) return; if (!BT) { ASTContext &Ctx = C.getASTContext(); Retain = &Ctx.Idents.get("CFRetain"); Release = &Ctx.Idents.get("CFRelease"); MakeCollectable = &Ctx.Idents.get("CFMakeCollectable"); BT.reset( new APIMisuse("null passed to CFRetain/CFRelease/CFMakeCollectable")); } // Check if we called CFRetain/CFRelease/CFMakeCollectable. const IdentifierInfo *FuncII = FD->getIdentifier(); if (!(FuncII == Retain || FuncII == Release || FuncII == MakeCollectable)) return; // FIXME: The rest of this just checks that the argument is non-null. // It should probably be refactored and combined with NonNullParamChecker. // Get the argument's value. const Expr *Arg = CE->getArg(0); SVal ArgVal = state->getSVal(Arg, C.getLocationContext()); Optional<DefinedSVal> DefArgVal = ArgVal.getAs<DefinedSVal>(); if (!DefArgVal) return; // Get a NULL value. SValBuilder &svalBuilder = C.getSValBuilder(); DefinedSVal zero = svalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>(); // Make an expression asserting that they're equal. DefinedOrUnknownSVal ArgIsNull = svalBuilder.evalEQ(state, zero, *DefArgVal); // Are they equal? ProgramStateRef stateTrue, stateFalse; llvm::tie(stateTrue, stateFalse) = state->assume(ArgIsNull); if (stateTrue && !stateFalse) { ExplodedNode *N = C.generateSink(stateTrue); if (!N) return; const char *description; if (FuncII == Retain) description = "Null pointer argument in call to CFRetain"; else if (FuncII == Release) description = "Null pointer argument in call to CFRelease"; else if (FuncII == MakeCollectable) description = "Null pointer argument in call to CFMakeCollectable"; else llvm_unreachable("impossible case"); BugReport *report = new BugReport(*BT, description, N); report->addRange(Arg->getSourceRange()); bugreporter::trackNullOrUndefValue(N, Arg, *report); C.emitReport(report); return; } // From here on, we know the argument is non-null. C.addTransition(stateFalse); } //===----------------------------------------------------------------------===// // Check for sending 'retain', 'release', or 'autorelease' directly to a Class. //===----------------------------------------------------------------------===// namespace { class ClassReleaseChecker : public Checker<check::PreObjCMessage> { mutable Selector releaseS; mutable Selector retainS; mutable Selector autoreleaseS; mutable Selector drainS; mutable OwningPtr<BugType> BT; public: void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const; }; } void ClassReleaseChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { if (!BT) { BT.reset(new APIMisuse("message incorrectly sent to class instead of class " "instance")); ASTContext &Ctx = C.getASTContext(); releaseS = GetNullarySelector("release", Ctx); retainS = GetNullarySelector("retain", Ctx); autoreleaseS = GetNullarySelector("autorelease", Ctx); drainS = GetNullarySelector("drain", Ctx); } if (msg.isInstanceMessage()) return; const ObjCInterfaceDecl *Class = msg.getReceiverInterface(); assert(Class); Selector S = msg.getSelector(); if (!(S == releaseS || S == retainS || S == autoreleaseS || S == drainS)) return; if (ExplodedNode *N = C.addTransition()) { SmallString<200> buf; llvm::raw_svector_ostream os(buf); os << "The '" << S.getAsString() << "' message should be sent to instances " "of class '" << Class->getName() << "' and not the class directly"; BugReport *report = new BugReport(*BT, os.str(), N); report->addRange(msg.getSourceRange()); C.emitReport(report); } } //===----------------------------------------------------------------------===// // Check for passing non-Objective-C types to variadic methods that expect // only Objective-C types. //===----------------------------------------------------------------------===// namespace { class VariadicMethodTypeChecker : public Checker<check::PreObjCMessage> { mutable Selector arrayWithObjectsS; mutable Selector dictionaryWithObjectsAndKeysS; mutable Selector setWithObjectsS; mutable Selector orderedSetWithObjectsS; mutable Selector initWithObjectsS; mutable Selector initWithObjectsAndKeysS; mutable OwningPtr<BugType> BT; bool isVariadicMessage(const ObjCMethodCall &msg) const; public: void checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const; }; } /// isVariadicMessage - Returns whether the given message is a variadic message, /// where all arguments must be Objective-C types. bool VariadicMethodTypeChecker::isVariadicMessage(const ObjCMethodCall &msg) const { const ObjCMethodDecl *MD = msg.getDecl(); if (!MD || !MD->isVariadic() || isa<ObjCProtocolDecl>(MD->getDeclContext())) return false; Selector S = msg.getSelector(); if (msg.isInstanceMessage()) { // FIXME: Ideally we'd look at the receiver interface here, but that's not // useful for init, because alloc returns 'id'. In theory, this could lead // to false positives, for example if there existed a class that had an // initWithObjects: implementation that does accept non-Objective-C pointer // types, but the chance of that happening is pretty small compared to the // gains that this analysis gives. const ObjCInterfaceDecl *Class = MD->getClassInterface(); switch (findKnownClass(Class)) { case FC_NSArray: case FC_NSOrderedSet: case FC_NSSet: return S == initWithObjectsS; case FC_NSDictionary: return S == initWithObjectsAndKeysS; default: return false; } } else { const ObjCInterfaceDecl *Class = msg.getReceiverInterface(); switch (findKnownClass(Class)) { case FC_NSArray: return S == arrayWithObjectsS; case FC_NSOrderedSet: return S == orderedSetWithObjectsS; case FC_NSSet: return S == setWithObjectsS; case FC_NSDictionary: return S == dictionaryWithObjectsAndKeysS; default: return false; } } } void VariadicMethodTypeChecker::checkPreObjCMessage(const ObjCMethodCall &msg, CheckerContext &C) const { if (!BT) { BT.reset(new APIMisuse("Arguments passed to variadic method aren't all " "Objective-C pointer types")); ASTContext &Ctx = C.getASTContext(); arrayWithObjectsS = GetUnarySelector("arrayWithObjects", Ctx); dictionaryWithObjectsAndKeysS = GetUnarySelector("dictionaryWithObjectsAndKeys", Ctx); setWithObjectsS = GetUnarySelector("setWithObjects", Ctx); orderedSetWithObjectsS = GetUnarySelector("orderedSetWithObjects", Ctx); initWithObjectsS = GetUnarySelector("initWithObjects", Ctx); initWithObjectsAndKeysS = GetUnarySelector("initWithObjectsAndKeys", Ctx); } if (!isVariadicMessage(msg)) return; // We are not interested in the selector arguments since they have // well-defined types, so the compiler will issue a warning for them. unsigned variadicArgsBegin = msg.getSelector().getNumArgs(); // We're not interested in the last argument since it has to be nil or the // compiler would have issued a warning for it elsewhere. unsigned variadicArgsEnd = msg.getNumArgs() - 1; if (variadicArgsEnd <= variadicArgsBegin) return; // Verify that all arguments have Objective-C types. Optional<ExplodedNode*> errorNode; ProgramStateRef state = C.getState(); for (unsigned I = variadicArgsBegin; I != variadicArgsEnd; ++I) { QualType ArgTy = msg.getArgExpr(I)->getType(); if (ArgTy->isObjCObjectPointerType()) continue; // Block pointers are treaded as Objective-C pointers. if (ArgTy->isBlockPointerType()) continue; // Ignore pointer constants. if (msg.getArgSVal(I).getAs<loc::ConcreteInt>()) continue; // Ignore pointer types annotated with 'NSObject' attribute. if (C.getASTContext().isObjCNSObjectType(ArgTy)) continue; // Ignore CF references, which can be toll-free bridged. if (coreFoundation::isCFObjectRef(ArgTy)) continue; // Generate only one error node to use for all bug reports. if (!errorNode.hasValue()) errorNode = C.addTransition(); if (!errorNode.getValue()) continue; SmallString<128> sbuf; llvm::raw_svector_ostream os(sbuf); StringRef TypeName = GetReceiverInterfaceName(msg); if (!TypeName.empty()) os << "Argument to '" << TypeName << "' method '"; else os << "Argument to method '"; os << msg.getSelector().getAsString() << "' should be an Objective-C pointer type, not '"; ArgTy.print(os, C.getLangOpts()); os << "'"; BugReport *R = new BugReport(*BT, os.str(), errorNode.getValue()); R->addRange(msg.getArgSourceRange(I)); C.emitReport(R); } } //===----------------------------------------------------------------------===// // Improves the modeling of loops over Cocoa collections. //===----------------------------------------------------------------------===// namespace { class ObjCLoopChecker : public Checker<check::PostStmt<ObjCForCollectionStmt> > { public: void checkPostStmt(const ObjCForCollectionStmt *FCS, CheckerContext &C) const; }; } static bool isKnownNonNilCollectionType(QualType T) { const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>(); if (!PT) return false; const ObjCInterfaceDecl *ID = PT->getInterfaceDecl(); if (!ID) return false; switch (findKnownClass(ID)) { case FC_NSArray: case FC_NSDictionary: case FC_NSEnumerator: case FC_NSOrderedSet: case FC_NSSet: return true; default: return false; } } void ObjCLoopChecker::checkPostStmt(const ObjCForCollectionStmt *FCS, CheckerContext &C) const { ProgramStateRef State = C.getState(); // Check if this is the branch for the end of the loop. SVal CollectionSentinel = State->getSVal(FCS, C.getLocationContext()); if (CollectionSentinel.isZeroConstant()) return; // See if the collection is one where we /know/ the elements are non-nil. const Expr *Collection = FCS->getCollection(); if (!isKnownNonNilCollectionType(Collection->getType())) return; // FIXME: Copied from ExprEngineObjC. const Stmt *Element = FCS->getElement(); SVal ElementVar; if (const DeclStmt *DS = dyn_cast<DeclStmt>(Element)) { const VarDecl *ElemDecl = cast<VarDecl>(DS->getSingleDecl()); assert(ElemDecl->getInit() == 0); ElementVar = State->getLValue(ElemDecl, C.getLocationContext()); } else { ElementVar = State->getSVal(Element, C.getLocationContext()); } if (!ElementVar.getAs<Loc>()) return; // Go ahead and assume the value is non-nil. SVal Val = State->getSVal(ElementVar.castAs<Loc>()); State = State->assume(Val.castAs<DefinedOrUnknownSVal>(), true); C.addTransition(State); } namespace { /// \class ObjCNonNilReturnValueChecker /// \brief The checker restricts the return values of APIs known to /// never (or almost never) return 'nil'. class ObjCNonNilReturnValueChecker : public Checker<check::PostObjCMessage> { mutable bool Initialized; mutable Selector ObjectAtIndex; mutable Selector ObjectAtIndexedSubscript; public: ObjCNonNilReturnValueChecker() : Initialized(false) {} void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; }; } static ProgramStateRef assumeExprIsNonNull(const Expr *NonNullExpr, ProgramStateRef State, CheckerContext &C) { SVal Val = State->getSVal(NonNullExpr, C.getLocationContext()); if (Optional<DefinedOrUnknownSVal> DV = Val.getAs<DefinedOrUnknownSVal>()) return State->assume(*DV, true); return State; } void ObjCNonNilReturnValueChecker::checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const { ProgramStateRef State = C.getState(); if (!Initialized) { ASTContext &Ctx = C.getASTContext(); ObjectAtIndex = GetUnarySelector("objectAtIndex", Ctx); ObjectAtIndexedSubscript = GetUnarySelector("objectAtIndexedSubscript", Ctx); } // Check the receiver type. if (const ObjCInterfaceDecl *Interface = M.getReceiverInterface()) { // Assume that object returned from '[self init]' or '[super init]' is not // 'nil' if we are processing an inlined function/method. // // A defensive callee will (and should) check if the object returned by // '[super init]' is 'nil' before doing it's own initialization. However, // since 'nil' is rarely returned in practice, we should not warn when the // caller to the defensive constructor uses the object in contexts where // 'nil' is not accepted. if (!C.inTopFrame() && M.getDecl() && M.getDecl()->getMethodFamily() == OMF_init && M.isReceiverSelfOrSuper()) { State = assumeExprIsNonNull(M.getOriginExpr(), State, C); } // Objects returned from // [NSArray|NSOrderedSet]::[ObjectAtIndex|ObjectAtIndexedSubscript] // are never 'nil'. FoundationClass Cl = findKnownClass(Interface); if (Cl == FC_NSArray || Cl == FC_NSOrderedSet) { Selector Sel = M.getSelector(); if (Sel == ObjectAtIndex || Sel == ObjectAtIndexedSubscript) { // Go ahead and assume the value is non-nil. State = assumeExprIsNonNull(M.getOriginExpr(), State, C); } } } C.addTransition(State); } //===----------------------------------------------------------------------===// // Check registration. //===----------------------------------------------------------------------===// void ento::registerNilArgChecker(CheckerManager &mgr) { mgr.registerChecker<NilArgChecker>(); } void ento::registerCFNumberCreateChecker(CheckerManager &mgr) { mgr.registerChecker<CFNumberCreateChecker>(); } void ento::registerCFRetainReleaseChecker(CheckerManager &mgr) { mgr.registerChecker<CFRetainReleaseChecker>(); } void ento::registerClassReleaseChecker(CheckerManager &mgr) { mgr.registerChecker<ClassReleaseChecker>(); } void ento::registerVariadicMethodTypeChecker(CheckerManager &mgr) { mgr.registerChecker<VariadicMethodTypeChecker>(); } void ento::registerObjCLoopChecker(CheckerManager &mgr) { mgr.registerChecker<ObjCLoopChecker>(); } void ento::registerObjCNonNilReturnValueChecker(CheckerManager &mgr) { mgr.registerChecker<ObjCNonNilReturnValueChecker>(); }