//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements semantic analysis for inline asm statements. // //===----------------------------------------------------------------------===// #include "clang/Sema/SemaInternal.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallString.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/TargetSelect.h" using namespace clang; using namespace sema; /// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently /// ignore "noop" casts in places where an lvalue is required by an inline asm. /// We emulate this behavior when -fheinous-gnu-extensions is specified, but /// provide a strong guidance to not use it. /// /// This method checks to see if the argument is an acceptable l-value and /// returns false if it is a case we can handle. static bool CheckAsmLValue(const Expr *E, Sema &S) { // Type dependent expressions will be checked during instantiation. if (E->isTypeDependent()) return false; if (E->isLValue()) return false; // Cool, this is an lvalue. // Okay, this is not an lvalue, but perhaps it is the result of a cast that we // are supposed to allow. const Expr *E2 = E->IgnoreParenNoopCasts(S.Context); if (E != E2 && E2->isLValue()) { if (!S.getLangOpts().HeinousExtensions) S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue) << E->getSourceRange(); else S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue) << E->getSourceRange(); // Accept, even if we emitted an error diagnostic. return false; } // None of the above, just randomly invalid non-lvalue. return true; } /// isOperandMentioned - Return true if the specified operand # is mentioned /// anywhere in the decomposed asm string. static bool isOperandMentioned(unsigned OpNo, ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) { for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) { const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p]; if (!Piece.isOperand()) continue; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (Piece.getOperandNo() == OpNo) return true; } return false; } StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg constraints, MultiExprArg exprs, Expr *asmString, MultiExprArg clobbers, SourceLocation RParenLoc) { unsigned NumClobbers = clobbers.size(); StringLiteral **Constraints = reinterpret_cast<StringLiteral**>(constraints.data()); Expr **Exprs = exprs.data(); StringLiteral *AsmString = cast<StringLiteral>(asmString); StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data()); SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; // The parser verifies that there is a string literal here. if (!AsmString->isAscii()) return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character) << AsmString->getSourceRange()); for (unsigned i = 0; i != NumOutputs; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef OutputName; if (Names[i]) OutputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName); if (!Context.getTargetInfo().validateOutputConstraint(Info)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_output_constraint) << Info.getConstraintStr()); // Check that the output exprs are valid lvalues. Expr *OutputExpr = Exprs[i]; if (CheckAsmLValue(OutputExpr, *this)) { return StmtError(Diag(OutputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_output) << OutputExpr->getSourceRange()); } OutputConstraintInfos.push_back(Info); } SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) { StringLiteral *Literal = Constraints[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef InputName; if (Names[i]) InputName = Names[i]->getName(); TargetInfo::ConstraintInfo Info(Literal->getString(), InputName); if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(), NumOutputs, Info)) { return StmtError(Diag(Literal->getLocStart(), diag::err_asm_invalid_input_constraint) << Info.getConstraintStr()); } Expr *InputExpr = Exprs[i]; // Only allow void types for memory constraints. if (Info.allowsMemory() && !Info.allowsRegister()) { if (CheckAsmLValue(InputExpr, *this)) return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_lvalue_in_input) << Info.getConstraintStr() << InputExpr->getSourceRange()); } if (Info.allowsRegister()) { if (InputExpr->getType()->isVoidType()) { return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_type_in_input) << InputExpr->getType() << Info.getConstraintStr() << InputExpr->getSourceRange()); } } ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]); if (Result.isInvalid()) return StmtError(); Exprs[i] = Result.take(); InputConstraintInfos.push_back(Info); const Type *Ty = Exprs[i]->getType().getTypePtr(); if (Ty->isDependentType() || Ty->isIncompleteType()) continue; unsigned Size = Context.getTypeSize(Ty); if (!Context.getTargetInfo().validateInputSize(Literal->getString(), Size)) return StmtError(Diag(InputExpr->getLocStart(), diag::err_asm_invalid_input_size) << Info.getConstraintStr()); } // Check that the clobbers are valid. for (unsigned i = 0; i != NumClobbers; i++) { StringLiteral *Literal = Clobbers[i]; if (!Literal->isAscii()) return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character) << Literal->getSourceRange()); StringRef Clobber = Literal->getString(); if (!Context.getTargetInfo().isValidClobber(Clobber)) return StmtError(Diag(Literal->getLocStart(), diag::err_asm_unknown_register_name) << Clobber); } GCCAsmStmt *NS = new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, NumClobbers, Clobbers, RParenLoc); // Validate the asm string, ensuring it makes sense given the operands we // have. SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces; unsigned DiagOffs; if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) { Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID) << AsmString->getSourceRange(); return StmtError(); } // Validate constraints and modifiers. for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { GCCAsmStmt::AsmStringPiece &Piece = Pieces[i]; if (!Piece.isOperand()) continue; // Look for the correct constraint index. unsigned Idx = 0; unsigned ConstraintIdx = 0; for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) { TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; if (Idx == Piece.getOperandNo()) break; ++Idx; if (Info.isReadWrite()) { if (Idx == Piece.getOperandNo()) break; ++Idx; } } for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; if (Idx == Piece.getOperandNo()) break; ++Idx; if (Info.isReadWrite()) { if (Idx == Piece.getOperandNo()) break; ++Idx; } } // Now that we have the right indexes go ahead and check. StringLiteral *Literal = Constraints[ConstraintIdx]; const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr(); if (Ty->isDependentType() || Ty->isIncompleteType()) continue; unsigned Size = Context.getTypeSize(Ty); if (!Context.getTargetInfo() .validateConstraintModifier(Literal->getString(), Piece.getModifier(), Size)) Diag(Exprs[ConstraintIdx]->getLocStart(), diag::warn_asm_mismatched_size_modifier); } // Validate tied input operands for type mismatches. for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) { TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; // If this is a tied constraint, verify that the output and input have // either exactly the same type, or that they are int/ptr operands with the // same size (int/long, int*/long, are ok etc). if (!Info.hasTiedOperand()) continue; unsigned TiedTo = Info.getTiedOperand(); unsigned InputOpNo = i+NumOutputs; Expr *OutputExpr = Exprs[TiedTo]; Expr *InputExpr = Exprs[InputOpNo]; if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent()) continue; QualType InTy = InputExpr->getType(); QualType OutTy = OutputExpr->getType(); if (Context.hasSameType(InTy, OutTy)) continue; // All types can be tied to themselves. // Decide if the input and output are in the same domain (integer/ptr or // floating point. enum AsmDomain { AD_Int, AD_FP, AD_Other } InputDomain, OutputDomain; if (InTy->isIntegerType() || InTy->isPointerType()) InputDomain = AD_Int; else if (InTy->isRealFloatingType()) InputDomain = AD_FP; else InputDomain = AD_Other; if (OutTy->isIntegerType() || OutTy->isPointerType()) OutputDomain = AD_Int; else if (OutTy->isRealFloatingType()) OutputDomain = AD_FP; else OutputDomain = AD_Other; // They are ok if they are the same size and in the same domain. This // allows tying things like: // void* to int* // void* to int if they are the same size. // double to long double if they are the same size. // uint64_t OutSize = Context.getTypeSize(OutTy); uint64_t InSize = Context.getTypeSize(InTy); if (OutSize == InSize && InputDomain == OutputDomain && InputDomain != AD_Other) continue; // If the smaller input/output operand is not mentioned in the asm string, // then we can promote the smaller one to a larger input and the asm string // won't notice. bool SmallerValueMentioned = false; // If this is a reference to the input and if the input was the smaller // one, then we have to reject this asm. if (isOperandMentioned(InputOpNo, Pieces)) { // This is a use in the asm string of the smaller operand. Since we // codegen this by promoting to a wider value, the asm will get printed // "wrong". SmallerValueMentioned |= InSize < OutSize; } if (isOperandMentioned(TiedTo, Pieces)) { // If this is a reference to the output, and if the output is the larger // value, then it's ok because we'll promote the input to the larger type. SmallerValueMentioned |= OutSize < InSize; } // If the smaller value wasn't mentioned in the asm string, and if the // output was a register, just extend the shorter one to the size of the // larger one. if (!SmallerValueMentioned && InputDomain != AD_Other && OutputConstraintInfos[TiedTo].allowsRegister()) continue; // Either both of the operands were mentioned or the smaller one was // mentioned. One more special case that we'll allow: if the tied input is // integer, unmentioned, and is a constant, then we'll allow truncating it // down to the size of the destination. if (InputDomain == AD_Int && OutputDomain == AD_Int && !isOperandMentioned(InputOpNo, Pieces) && InputExpr->isEvaluatable(Context)) { CastKind castKind = (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast); InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take(); Exprs[InputOpNo] = InputExpr; NS->setInputExpr(i, InputExpr); continue; } Diag(InputExpr->getLocStart(), diag::err_asm_tying_incompatible_types) << InTy << OutTy << OutputExpr->getSourceRange() << InputExpr->getSourceRange(); return StmtError(); } return Owned(NS); } // getSpelling - Get the spelling of the AsmTok token. static StringRef getSpelling(Sema &SemaRef, Token AsmTok) { StringRef Asm; SmallString<512> TokenBuf; TokenBuf.resize(512); bool StringInvalid = false; Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid); assert (!StringInvalid && "Expected valid string!"); return Asm; } // Build the inline assembly string. Returns true on error. static bool buildMSAsmString(Sema &SemaRef, SourceLocation AsmLoc, ArrayRef<Token> AsmToks, SmallVectorImpl<unsigned> &TokOffsets, std::string &AsmString) { assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!"); SmallString<512> Asm; for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) { bool isNewAsm = ((i == 0) || AsmToks[i].isAtStartOfLine() || AsmToks[i].is(tok::kw_asm)); if (isNewAsm) { if (i != 0) Asm += "\n\t"; if (AsmToks[i].is(tok::kw_asm)) { i++; // Skip __asm if (i == e) { SemaRef.Diag(AsmLoc, diag::err_asm_empty); return true; } } } if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm) Asm += ' '; StringRef Spelling = getSpelling(SemaRef, AsmToks[i]); Asm += Spelling; TokOffsets.push_back(Asm.size()); } AsmString = Asm.str(); return false; } namespace { class MCAsmParserSemaCallbackImpl : public llvm::MCAsmParserSemaCallback { Sema &SemaRef; SourceLocation AsmLoc; ArrayRef<Token> AsmToks; ArrayRef<unsigned> TokOffsets; public: MCAsmParserSemaCallbackImpl(Sema &Ref, SourceLocation Loc, ArrayRef<Token> Toks, ArrayRef<unsigned> Offsets) : SemaRef(Ref), AsmLoc(Loc), AsmToks(Toks), TokOffsets(Offsets) { } ~MCAsmParserSemaCallbackImpl() {} void *LookupInlineAsmIdentifier(StringRef Name, void *SrcLoc, unsigned &Length, unsigned &Size, unsigned &Type, bool &IsVarDecl){ SourceLocation Loc = SourceLocation::getFromPtrEncoding(SrcLoc); NamedDecl *OpDecl = SemaRef.LookupInlineAsmIdentifier(Name, Loc, Length, Size, Type, IsVarDecl); return static_cast<void *>(OpDecl); } bool LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset) { return SemaRef.LookupInlineAsmField(Base, Member, Offset, AsmLoc); } static void MSAsmDiagHandlerCallback(const llvm::SMDiagnostic &D, void *Context) { ((MCAsmParserSemaCallbackImpl*)Context)->MSAsmDiagHandler(D); } void MSAsmDiagHandler(const llvm::SMDiagnostic &D) { // Compute an offset into the inline asm buffer. // FIXME: This isn't right if .macro is involved (but hopefully, no // real-world code does that). const llvm::SourceMgr &LSM = *D.getSourceMgr(); const llvm::MemoryBuffer *LBuf = LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc())); unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart(); // Figure out which token that offset points into. const unsigned *OffsetPtr = std::lower_bound(TokOffsets.begin(), TokOffsets.end(), Offset); unsigned TokIndex = OffsetPtr - TokOffsets.begin(); // If we come up with an answer which seems sane, use it; otherwise, // just point at the __asm keyword. // FIXME: Assert the answer is sane once we handle .macro correctly. SourceLocation Loc = AsmLoc; if (TokIndex < AsmToks.size()) { const Token *Tok = &AsmToks[TokIndex]; Loc = Tok->getLocation(); Loc = Loc.getLocWithOffset(Offset - (*OffsetPtr - Tok->getLength())); } SemaRef.Diag(Loc, diag::err_inline_ms_asm_parsing) << D.getMessage(); } }; } NamedDecl *Sema::LookupInlineAsmIdentifier(StringRef Name, SourceLocation Loc, unsigned &Length, unsigned &Size, unsigned &Type, bool &IsVarDecl) { Length = 1; Size = 0; Type = 0; IsVarDecl = false; LookupResult Result(*this, &Context.Idents.get(Name), Loc, Sema::LookupOrdinaryName); if (!LookupName(Result, getCurScope())) { // If we don't find anything, return null; the AsmParser will assume // it is a label of some sort. return 0; } if (!Result.isSingleResult()) { // FIXME: Diagnose result. return 0; } NamedDecl *ND = Result.getFoundDecl(); if (isa<VarDecl>(ND) || isa<FunctionDecl>(ND)) { if (VarDecl *Var = dyn_cast<VarDecl>(ND)) { Type = Context.getTypeInfo(Var->getType()).first; QualType Ty = Var->getType(); if (Ty->isArrayType()) { const ArrayType *ATy = Context.getAsArrayType(Ty); Length = Type / Context.getTypeInfo(ATy->getElementType()).first; Type /= Length; // Type is in terms of a single element. } Type /= 8; // Type is in terms of bits, but we want bytes. Size = Length * Type; IsVarDecl = true; } return ND; } // FIXME: Handle other kinds of results? (FieldDecl, etc.) // FIXME: Diagnose if we find something we can't handle, like a typedef. return 0; } bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member, unsigned &Offset, SourceLocation AsmLoc) { Offset = 0; LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(), LookupOrdinaryName); if (!LookupName(BaseResult, getCurScope())) return true; if (!BaseResult.isSingleResult()) return true; NamedDecl *FoundDecl = BaseResult.getFoundDecl(); const RecordType *RT = 0; if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) { RT = VD->getType()->getAs<RecordType>(); } else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl)) { RT = TD->getUnderlyingType()->getAs<RecordType>(); } if (!RT) return true; if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0)) return true; LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(), LookupMemberName); if (!LookupQualifiedName(FieldResult, RT->getDecl())) return true; // FIXME: Handle IndirectFieldDecl? FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl()); if (!FD) return true; const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl()); unsigned i = FD->getFieldIndex(); CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i)); Offset = (unsigned)Result.getQuantity(); return false; } StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef<Token> AsmToks,SourceLocation EndLoc) { SmallVector<IdentifierInfo*, 4> Names; SmallVector<StringRef, 4> ConstraintRefs; SmallVector<Expr*, 4> Exprs; SmallVector<StringRef, 4> ClobberRefs; llvm::Triple TheTriple = Context.getTargetInfo().getTriple(); llvm::Triple::ArchType ArchTy = TheTriple.getArch(); bool UnsupportedArch = ArchTy != llvm::Triple::x86 && ArchTy != llvm::Triple::x86_64; if (UnsupportedArch) Diag(AsmLoc, diag::err_msasm_unsupported_arch) << TheTriple.getArchName(); // Empty asm statements don't need to instantiate the AsmParser, etc. if (UnsupportedArch || AsmToks.empty()) { StringRef EmptyAsmStr; MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true, /*IsVolatile*/ true, AsmToks, /*NumOutputs*/ 0, /*NumInputs*/ 0, Names, ConstraintRefs, Exprs, EmptyAsmStr, ClobberRefs, EndLoc); return Owned(NS); } std::string AsmString; SmallVector<unsigned, 8> TokOffsets; if (buildMSAsmString(*this, AsmLoc, AsmToks, TokOffsets, AsmString)) return StmtError(); // Get the target specific parser. std::string Error; const std::string &TT = TheTriple.getTriple(); const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error)); OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT)); OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT)); OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo()); OwningPtr<llvm::MCSubtargetInfo> STI(TheTarget->createMCSubtargetInfo(TT, "", "")); llvm::SourceMgr SrcMgr; llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr); llvm::MemoryBuffer *Buffer = llvm::MemoryBuffer::getMemBuffer(AsmString, "<inline asm>"); // Tell SrcMgr about this buffer, which is what the parser will pick up. SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc()); OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx)); OwningPtr<llvm::MCAsmParser> Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI)); OwningPtr<llvm::MCTargetAsmParser> TargetParser(TheTarget->createMCAsmParser(*STI, *Parser)); // Get the instruction descriptor. const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo(); llvm::MCInstPrinter *IP = TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI); // Change to the Intel dialect. Parser->setAssemblerDialect(1); Parser->setTargetParser(*TargetParser.get()); Parser->setParsingInlineAsm(true); TargetParser->setParsingInlineAsm(true); MCAsmParserSemaCallbackImpl MCAPSI(*this, AsmLoc, AsmToks, TokOffsets); TargetParser->setSemaCallback(&MCAPSI); SrcMgr.setDiagHandler(MCAsmParserSemaCallbackImpl::MSAsmDiagHandlerCallback, &MCAPSI); unsigned NumOutputs; unsigned NumInputs; std::string AsmStringIR; SmallVector<std::pair<void *, bool>, 4> OpDecls; SmallVector<std::string, 4> Constraints; SmallVector<std::string, 4> Clobbers; if (Parser->parseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR, NumOutputs, NumInputs, OpDecls, Constraints, Clobbers, MII, IP, MCAPSI)) return StmtError(); // Build the vector of clobber StringRefs. unsigned NumClobbers = Clobbers.size(); ClobberRefs.resize(NumClobbers); for (unsigned i = 0; i != NumClobbers; ++i) ClobberRefs[i] = StringRef(Clobbers[i]); // Recast the void pointers and build the vector of constraint StringRefs. unsigned NumExprs = NumOutputs + NumInputs; Names.resize(NumExprs); ConstraintRefs.resize(NumExprs); Exprs.resize(NumExprs); for (unsigned i = 0, e = NumExprs; i != e; ++i) { NamedDecl *OpDecl = static_cast<NamedDecl *>(OpDecls[i].first); if (!OpDecl) return StmtError(); DeclarationNameInfo NameInfo(OpDecl->getDeclName(), AsmLoc); ExprResult OpExpr = BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo, OpDecl); if (OpExpr.isInvalid()) return StmtError(); // Need address of variable. if (OpDecls[i].second) OpExpr = BuildUnaryOp(getCurScope(), AsmLoc, clang::UO_AddrOf, OpExpr.take()); Names[i] = OpDecl->getIdentifier(); ConstraintRefs[i] = StringRef(Constraints[i]); Exprs[i] = OpExpr.take(); } bool IsSimple = NumExprs > 0; MSAsmStmt *NS = new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple, /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs, Names, ConstraintRefs, Exprs, AsmStringIR, ClobberRefs, EndLoc); return Owned(NS); }