//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs ----------*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Live Variables analysis for source-level CFGs. // //===----------------------------------------------------------------------===// #include "clang/Analysis/Analyses/LiveVariables.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtVisitor.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <vector> using namespace clang; namespace { class DataflowWorklist { SmallVector<const CFGBlock *, 20> worklist; llvm::BitVector enqueuedBlocks; PostOrderCFGView *POV; public: DataflowWorklist(const CFG &cfg, AnalysisDeclContext &Ctx) : enqueuedBlocks(cfg.getNumBlockIDs()), POV(Ctx.getAnalysis<PostOrderCFGView>()) {} void enqueueBlock(const CFGBlock *block); void enqueueSuccessors(const CFGBlock *block); void enqueuePredecessors(const CFGBlock *block); const CFGBlock *dequeue(); void sortWorklist(); }; } void DataflowWorklist::enqueueBlock(const clang::CFGBlock *block) { if (block && !enqueuedBlocks[block->getBlockID()]) { enqueuedBlocks[block->getBlockID()] = true; worklist.push_back(block); } } void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) { const unsigned OldWorklistSize = worklist.size(); for (CFGBlock::const_succ_iterator I = block->succ_begin(), E = block->succ_end(); I != E; ++I) { enqueueBlock(*I); } if (OldWorklistSize == 0 || OldWorklistSize == worklist.size()) return; sortWorklist(); } void DataflowWorklist::enqueuePredecessors(const clang::CFGBlock *block) { const unsigned OldWorklistSize = worklist.size(); for (CFGBlock::const_pred_iterator I = block->pred_begin(), E = block->pred_end(); I != E; ++I) { enqueueBlock(*I); } if (OldWorklistSize == 0 || OldWorklistSize == worklist.size()) return; sortWorklist(); } void DataflowWorklist::sortWorklist() { std::sort(worklist.begin(), worklist.end(), POV->getComparator()); } const CFGBlock *DataflowWorklist::dequeue() { if (worklist.empty()) return 0; const CFGBlock *b = worklist.back(); worklist.pop_back(); enqueuedBlocks[b->getBlockID()] = false; return b; } namespace { class LiveVariablesImpl { public: AnalysisDeclContext &analysisContext; std::vector<LiveVariables::LivenessValues> cfgBlockValues; llvm::ImmutableSet<const Stmt *>::Factory SSetFact; llvm::ImmutableSet<const VarDecl *>::Factory DSetFact; llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksEndToLiveness; llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues> blocksBeginToLiveness; llvm::DenseMap<const Stmt *, LiveVariables::LivenessValues> stmtsToLiveness; llvm::DenseMap<const DeclRefExpr *, unsigned> inAssignment; const bool killAtAssign; LiveVariables::LivenessValues merge(LiveVariables::LivenessValues valsA, LiveVariables::LivenessValues valsB); LiveVariables::LivenessValues runOnBlock(const CFGBlock *block, LiveVariables::LivenessValues val, LiveVariables::Observer *obs = 0); void dumpBlockLiveness(const SourceManager& M); LiveVariablesImpl(AnalysisDeclContext &ac, bool KillAtAssign) : analysisContext(ac), SSetFact(false), // Do not canonicalize ImmutableSets by default. DSetFact(false), // This is a *major* performance win. killAtAssign(KillAtAssign) {} }; } static LiveVariablesImpl &getImpl(void *x) { return *((LiveVariablesImpl *) x); } //===----------------------------------------------------------------------===// // Operations and queries on LivenessValues. //===----------------------------------------------------------------------===// bool LiveVariables::LivenessValues::isLive(const Stmt *S) const { return liveStmts.contains(S); } bool LiveVariables::LivenessValues::isLive(const VarDecl *D) const { return liveDecls.contains(D); } namespace { template <typename SET> SET mergeSets(SET A, SET B) { if (A.isEmpty()) return B; for (typename SET::iterator it = B.begin(), ei = B.end(); it != ei; ++it) { A = A.add(*it); } return A; } } void LiveVariables::Observer::anchor() { } LiveVariables::LivenessValues LiveVariablesImpl::merge(LiveVariables::LivenessValues valsA, LiveVariables::LivenessValues valsB) { llvm::ImmutableSetRef<const Stmt *> SSetRefA(valsA.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory()), SSetRefB(valsB.liveStmts.getRootWithoutRetain(), SSetFact.getTreeFactory()); llvm::ImmutableSetRef<const VarDecl *> DSetRefA(valsA.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory()), DSetRefB(valsB.liveDecls.getRootWithoutRetain(), DSetFact.getTreeFactory()); SSetRefA = mergeSets(SSetRefA, SSetRefB); DSetRefA = mergeSets(DSetRefA, DSetRefB); // asImmutableSet() canonicalizes the tree, allowing us to do an easy // comparison afterwards. return LiveVariables::LivenessValues(SSetRefA.asImmutableSet(), DSetRefA.asImmutableSet()); } bool LiveVariables::LivenessValues::equals(const LivenessValues &V) const { return liveStmts == V.liveStmts && liveDecls == V.liveDecls; } //===----------------------------------------------------------------------===// // Query methods. //===----------------------------------------------------------------------===// static bool isAlwaysAlive(const VarDecl *D) { return D->hasGlobalStorage(); } bool LiveVariables::isLive(const CFGBlock *B, const VarDecl *D) { return isAlwaysAlive(D) || getImpl(impl).blocksEndToLiveness[B].isLive(D); } bool LiveVariables::isLive(const Stmt *S, const VarDecl *D) { return isAlwaysAlive(D) || getImpl(impl).stmtsToLiveness[S].isLive(D); } bool LiveVariables::isLive(const Stmt *Loc, const Stmt *S) { return getImpl(impl).stmtsToLiveness[Loc].isLive(S); } //===----------------------------------------------------------------------===// // Dataflow computation. //===----------------------------------------------------------------------===// namespace { class TransferFunctions : public StmtVisitor<TransferFunctions> { LiveVariablesImpl &LV; LiveVariables::LivenessValues &val; LiveVariables::Observer *observer; const CFGBlock *currentBlock; public: TransferFunctions(LiveVariablesImpl &im, LiveVariables::LivenessValues &Val, LiveVariables::Observer *Observer, const CFGBlock *CurrentBlock) : LV(im), val(Val), observer(Observer), currentBlock(CurrentBlock) {} void VisitBinaryOperator(BinaryOperator *BO); void VisitBlockExpr(BlockExpr *BE); void VisitDeclRefExpr(DeclRefExpr *DR); void VisitDeclStmt(DeclStmt *DS); void VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS); void VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE); void VisitUnaryOperator(UnaryOperator *UO); void Visit(Stmt *S); }; } static const VariableArrayType *FindVA(QualType Ty) { const Type *ty = Ty.getTypePtr(); while (const ArrayType *VT = dyn_cast<ArrayType>(ty)) { if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(VT)) if (VAT->getSizeExpr()) return VAT; ty = VT->getElementType().getTypePtr(); } return 0; } static const Stmt *LookThroughStmt(const Stmt *S) { while (S) { if (const Expr *Ex = dyn_cast<Expr>(S)) S = Ex->IgnoreParens(); if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(S)) { S = EWC->getSubExpr(); continue; } if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(S)) { S = OVE->getSourceExpr(); continue; } break; } return S; } static void AddLiveStmt(llvm::ImmutableSet<const Stmt *> &Set, llvm::ImmutableSet<const Stmt *>::Factory &F, const Stmt *S) { Set = F.add(Set, LookThroughStmt(S)); } void TransferFunctions::Visit(Stmt *S) { if (observer) observer->observeStmt(S, currentBlock, val); StmtVisitor<TransferFunctions>::Visit(S); if (isa<Expr>(S)) { val.liveStmts = LV.SSetFact.remove(val.liveStmts, S); } // Mark all children expressions live. switch (S->getStmtClass()) { default: break; case Stmt::StmtExprClass: { // For statement expressions, look through the compound statement. S = cast<StmtExpr>(S)->getSubStmt(); break; } case Stmt::CXXMemberCallExprClass: { // Include the implicit "this" pointer as being live. CXXMemberCallExpr *CE = cast<CXXMemberCallExpr>(S); if (Expr *ImplicitObj = CE->getImplicitObjectArgument()) { AddLiveStmt(val.liveStmts, LV.SSetFact, ImplicitObj); } break; } case Stmt::ObjCMessageExprClass: { // In calls to super, include the implicit "self" pointer as being live. ObjCMessageExpr *CE = cast<ObjCMessageExpr>(S); if (CE->getReceiverKind() == ObjCMessageExpr::SuperInstance) val.liveDecls = LV.DSetFact.add(val.liveDecls, LV.analysisContext.getSelfDecl()); break; } case Stmt::DeclStmtClass: { const DeclStmt *DS = cast<DeclStmt>(S); if (const VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl())) { for (const VariableArrayType* VA = FindVA(VD->getType()); VA != 0; VA = FindVA(VA->getElementType())) { AddLiveStmt(val.liveStmts, LV.SSetFact, VA->getSizeExpr()); } } break; } case Stmt::PseudoObjectExprClass: { // A pseudo-object operation only directly consumes its result // expression. Expr *child = cast<PseudoObjectExpr>(S)->getResultExpr(); if (!child) return; if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(child)) child = OV->getSourceExpr(); child = child->IgnoreParens(); val.liveStmts = LV.SSetFact.add(val.liveStmts, child); return; } // FIXME: These cases eventually shouldn't be needed. case Stmt::ExprWithCleanupsClass: { S = cast<ExprWithCleanups>(S)->getSubExpr(); break; } case Stmt::CXXBindTemporaryExprClass: { S = cast<CXXBindTemporaryExpr>(S)->getSubExpr(); break; } case Stmt::UnaryExprOrTypeTraitExprClass: { // No need to unconditionally visit subexpressions. return; } } for (Stmt::child_iterator it = S->child_begin(), ei = S->child_end(); it != ei; ++it) { if (Stmt *child = *it) AddLiveStmt(val.liveStmts, LV.SSetFact, child); } } void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) { if (B->isAssignmentOp()) { if (!LV.killAtAssign) return; // Assigning to a variable? Expr *LHS = B->getLHS()->IgnoreParens(); if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { // Assignments to references don't kill the ref's address if (VD->getType()->isReferenceType()) return; if (!isAlwaysAlive(VD)) { // The variable is now dead. val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD); } if (observer) observer->observerKill(DR); } } } void TransferFunctions::VisitBlockExpr(BlockExpr *BE) { AnalysisDeclContext::referenced_decls_iterator I, E; llvm::tie(I, E) = LV.analysisContext.getReferencedBlockVars(BE->getBlockDecl()); for ( ; I != E ; ++I) { const VarDecl *VD = *I; if (isAlwaysAlive(VD)) continue; val.liveDecls = LV.DSetFact.add(val.liveDecls, VD); } } void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *DR) { if (const VarDecl *D = dyn_cast<VarDecl>(DR->getDecl())) if (!isAlwaysAlive(D) && LV.inAssignment.find(DR) == LV.inAssignment.end()) val.liveDecls = LV.DSetFact.add(val.liveDecls, D); } void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE = DS->decl_end(); DI != DE; ++DI) if (VarDecl *VD = dyn_cast<VarDecl>(*DI)) { if (!isAlwaysAlive(VD)) val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD); } } void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *OS) { // Kill the iteration variable. DeclRefExpr *DR = 0; const VarDecl *VD = 0; Stmt *element = OS->getElement(); if (DeclStmt *DS = dyn_cast<DeclStmt>(element)) { VD = cast<VarDecl>(DS->getSingleDecl()); } else if ((DR = dyn_cast<DeclRefExpr>(cast<Expr>(element)->IgnoreParens()))) { VD = cast<VarDecl>(DR->getDecl()); } if (VD) { val.liveDecls = LV.DSetFact.remove(val.liveDecls, VD); if (observer && DR) observer->observerKill(DR); } } void TransferFunctions:: VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *UE) { // While sizeof(var) doesn't technically extend the liveness of 'var', it // does extent the liveness of metadata if 'var' is a VariableArrayType. // We handle that special case here. if (UE->getKind() != UETT_SizeOf || UE->isArgumentType()) return; const Expr *subEx = UE->getArgumentExpr(); if (subEx->getType()->isVariableArrayType()) { assert(subEx->isLValue()); val.liveStmts = LV.SSetFact.add(val.liveStmts, subEx->IgnoreParens()); } } void TransferFunctions::VisitUnaryOperator(UnaryOperator *UO) { // Treat ++/-- as a kill. // Note we don't actually have to do anything if we don't have an observer, // since a ++/-- acts as both a kill and a "use". if (!observer) return; switch (UO->getOpcode()) { default: return; case UO_PostInc: case UO_PostDec: case UO_PreInc: case UO_PreDec: break; } if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) if (isa<VarDecl>(DR->getDecl())) { // Treat ++/-- as a kill. observer->observerKill(DR); } } LiveVariables::LivenessValues LiveVariablesImpl::runOnBlock(const CFGBlock *block, LiveVariables::LivenessValues val, LiveVariables::Observer *obs) { TransferFunctions TF(*this, val, obs, block); // Visit the terminator (if any). if (const Stmt *term = block->getTerminator()) TF.Visit(const_cast<Stmt*>(term)); // Apply the transfer function for all Stmts in the block. for (CFGBlock::const_reverse_iterator it = block->rbegin(), ei = block->rend(); it != ei; ++it) { const CFGElement &elem = *it; if (Optional<CFGAutomaticObjDtor> Dtor = elem.getAs<CFGAutomaticObjDtor>()) { val.liveDecls = DSetFact.add(val.liveDecls, Dtor->getVarDecl()); continue; } if (!elem.getAs<CFGStmt>()) continue; const Stmt *S = elem.castAs<CFGStmt>().getStmt(); TF.Visit(const_cast<Stmt*>(S)); stmtsToLiveness[S] = val; } return val; } void LiveVariables::runOnAllBlocks(LiveVariables::Observer &obs) { const CFG *cfg = getImpl(impl).analysisContext.getCFG(); for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) getImpl(impl).runOnBlock(*it, getImpl(impl).blocksEndToLiveness[*it], &obs); } LiveVariables::LiveVariables(void *im) : impl(im) {} LiveVariables::~LiveVariables() { delete (LiveVariablesImpl*) impl; } LiveVariables * LiveVariables::computeLiveness(AnalysisDeclContext &AC, bool killAtAssign) { // No CFG? Bail out. CFG *cfg = AC.getCFG(); if (!cfg) return 0; // The analysis currently has scalability issues for very large CFGs. // Bail out if it looks too large. if (cfg->getNumBlockIDs() > 300000) return 0; LiveVariablesImpl *LV = new LiveVariablesImpl(AC, killAtAssign); // Construct the dataflow worklist. Enqueue the exit block as the // start of the analysis. DataflowWorklist worklist(*cfg, AC); llvm::BitVector everAnalyzedBlock(cfg->getNumBlockIDs()); // FIXME: we should enqueue using post order. for (CFG::const_iterator it = cfg->begin(), ei = cfg->end(); it != ei; ++it) { const CFGBlock *block = *it; worklist.enqueueBlock(block); // FIXME: Scan for DeclRefExprs using in the LHS of an assignment. // We need to do this because we lack context in the reverse analysis // to determine if a DeclRefExpr appears in such a context, and thus // doesn't constitute a "use". if (killAtAssign) for (CFGBlock::const_iterator bi = block->begin(), be = block->end(); bi != be; ++bi) { if (Optional<CFGStmt> cs = bi->getAs<CFGStmt>()) { if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(cs->getStmt())) { if (BO->getOpcode() == BO_Assign) { if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(BO->getLHS()->IgnoreParens())) { LV->inAssignment[DR] = 1; } } } } } } worklist.sortWorklist(); while (const CFGBlock *block = worklist.dequeue()) { // Determine if the block's end value has changed. If not, we // have nothing left to do for this block. LivenessValues &prevVal = LV->blocksEndToLiveness[block]; // Merge the values of all successor blocks. LivenessValues val; for (CFGBlock::const_succ_iterator it = block->succ_begin(), ei = block->succ_end(); it != ei; ++it) { if (const CFGBlock *succ = *it) { val = LV->merge(val, LV->blocksBeginToLiveness[succ]); } } if (!everAnalyzedBlock[block->getBlockID()]) everAnalyzedBlock[block->getBlockID()] = true; else if (prevVal.equals(val)) continue; prevVal = val; // Update the dataflow value for the start of this block. LV->blocksBeginToLiveness[block] = LV->runOnBlock(block, val); // Enqueue the value to the predecessors. worklist.enqueuePredecessors(block); } return new LiveVariables(LV); } static bool compare_entries(const CFGBlock *A, const CFGBlock *B) { return A->getBlockID() < B->getBlockID(); } static bool compare_vd_entries(const Decl *A, const Decl *B) { SourceLocation ALoc = A->getLocStart(); SourceLocation BLoc = B->getLocStart(); return ALoc.getRawEncoding() < BLoc.getRawEncoding(); } void LiveVariables::dumpBlockLiveness(const SourceManager &M) { getImpl(impl).dumpBlockLiveness(M); } void LiveVariablesImpl::dumpBlockLiveness(const SourceManager &M) { std::vector<const CFGBlock *> vec; for (llvm::DenseMap<const CFGBlock *, LiveVariables::LivenessValues>::iterator it = blocksEndToLiveness.begin(), ei = blocksEndToLiveness.end(); it != ei; ++it) { vec.push_back(it->first); } std::sort(vec.begin(), vec.end(), compare_entries); std::vector<const VarDecl*> declVec; for (std::vector<const CFGBlock *>::iterator it = vec.begin(), ei = vec.end(); it != ei; ++it) { llvm::errs() << "\n[ B" << (*it)->getBlockID() << " (live variables at block exit) ]\n"; LiveVariables::LivenessValues vals = blocksEndToLiveness[*it]; declVec.clear(); for (llvm::ImmutableSet<const VarDecl *>::iterator si = vals.liveDecls.begin(), se = vals.liveDecls.end(); si != se; ++si) { declVec.push_back(*si); } std::sort(declVec.begin(), declVec.end(), compare_vd_entries); for (std::vector<const VarDecl*>::iterator di = declVec.begin(), de = declVec.end(); di != de; ++di) { llvm::errs() << " " << (*di)->getDeclName().getAsString() << " <"; (*di)->getLocation().dump(M); llvm::errs() << ">\n"; } } llvm::errs() << "\n"; } const void *LiveVariables::getTag() { static int x; return &x; } const void *RelaxedLiveVariables::getTag() { static int x; return &x; }