// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/trust_region_minimizer.h" #include <algorithm> #include <cstdlib> #include <cmath> #include <cstring> #include <limits> #include <string> #include <vector> #include "Eigen/Core" #include "ceres/array_utils.h" #include "ceres/evaluator.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/sparse_matrix.h" #include "ceres/stringprintf.h" #include "ceres/trust_region_strategy.h" #include "ceres/types.h" #include "ceres/wall_time.h" #include "glog/logging.h" namespace ceres { namespace internal { namespace { // Small constant for various floating point issues. const double kEpsilon = 1e-12; } // namespace // Execute the list of IterationCallbacks sequentially. If any one of // the callbacks does not return SOLVER_CONTINUE, then stop and return // its status. CallbackReturnType TrustRegionMinimizer::RunCallbacks( const IterationSummary& iteration_summary) { for (int i = 0; i < options_.callbacks.size(); ++i) { const CallbackReturnType status = (*options_.callbacks[i])(iteration_summary); if (status != SOLVER_CONTINUE) { return status; } } return SOLVER_CONTINUE; } // Compute a scaling vector that is used to improve the conditioning // of the Jacobian. void TrustRegionMinimizer::EstimateScale(const SparseMatrix& jacobian, double* scale) const { jacobian.SquaredColumnNorm(scale); for (int i = 0; i < jacobian.num_cols(); ++i) { scale[i] = 1.0 / (1.0 + sqrt(scale[i])); } } void TrustRegionMinimizer::Init(const Minimizer::Options& options) { options_ = options; sort(options_.lsqp_iterations_to_dump.begin(), options_.lsqp_iterations_to_dump.end()); } bool TrustRegionMinimizer::MaybeDumpLinearLeastSquaresProblem( const int iteration, const SparseMatrix* jacobian, const double* residuals, const double* step) const { // TODO(sameeragarwal): Since the use of trust_region_radius has // moved inside TrustRegionStrategy, its not clear how we dump the // regularization vector/matrix anymore. // // Also num_eliminate_blocks is not visible to the trust region // minimizer either. // // Both of these indicate that this is the wrong place for this // code, and going forward this should needs fixing/refactoring. return true; } void TrustRegionMinimizer::Minimize(const Minimizer::Options& options, double* parameters, Solver::Summary* summary) { double start_time = WallTimeInSeconds(); double iteration_start_time = start_time; Init(options); summary->termination_type = NO_CONVERGENCE; summary->num_successful_steps = 0; summary->num_unsuccessful_steps = 0; Evaluator* evaluator = CHECK_NOTNULL(options_.evaluator); SparseMatrix* jacobian = CHECK_NOTNULL(options_.jacobian); TrustRegionStrategy* strategy = CHECK_NOTNULL(options_.trust_region_strategy); const int num_parameters = evaluator->NumParameters(); const int num_effective_parameters = evaluator->NumEffectiveParameters(); const int num_residuals = evaluator->NumResiduals(); VectorRef x_min(parameters, num_parameters); Vector x = x_min; double x_norm = x.norm(); Vector residuals(num_residuals); Vector trust_region_step(num_effective_parameters); Vector delta(num_effective_parameters); Vector x_plus_delta(num_parameters); Vector gradient(num_effective_parameters); Vector model_residuals(num_residuals); Vector scale(num_effective_parameters); IterationSummary iteration_summary; iteration_summary.iteration = 0; iteration_summary.step_is_valid = false; iteration_summary.step_is_successful = false; iteration_summary.cost_change = 0.0; iteration_summary.gradient_max_norm = 0.0; iteration_summary.step_norm = 0.0; iteration_summary.relative_decrease = 0.0; iteration_summary.trust_region_radius = strategy->Radius(); // TODO(sameeragarwal): Rename eta to linear_solver_accuracy or // something similar across the board. iteration_summary.eta = options_.eta; iteration_summary.linear_solver_iterations = 0; iteration_summary.step_solver_time_in_seconds = 0; // Do initial cost and Jacobian evaluation. double cost = 0.0; if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), NULL, jacobian)) { LOG(WARNING) << "Terminating: Residual and Jacobian evaluation failed."; summary->termination_type = NUMERICAL_FAILURE; return; } iteration_summary.cost = cost + summary->fixed_cost; int num_consecutive_nonmonotonic_steps = 0; double minimum_cost = cost; double reference_cost = cost; double accumulated_reference_model_cost_change = 0.0; double candidate_cost = cost; double accumulated_candidate_model_cost_change = 0.0; gradient.setZero(); jacobian->LeftMultiply(residuals.data(), gradient.data()); iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); if (options_.jacobi_scaling) { EstimateScale(*jacobian, scale.data()); jacobian->ScaleColumns(scale.data()); } else { scale.setOnes(); } // The initial gradient max_norm is bounded from below so that we do // not divide by zero. const double gradient_max_norm_0 = max(iteration_summary.gradient_max_norm, kEpsilon); const double absolute_gradient_tolerance = options_.gradient_tolerance * gradient_max_norm_0; if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { summary->termination_type = GRADIENT_TOLERANCE; VLOG(1) << "Terminating: Gradient tolerance reached." << "Relative gradient max norm: " << iteration_summary.gradient_max_norm / gradient_max_norm_0 << " <= " << options_.gradient_tolerance; return; } iteration_summary.iteration_time_in_seconds = WallTimeInSeconds() - iteration_start_time; iteration_summary.cumulative_time_in_seconds = WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds; summary->iterations.push_back(iteration_summary); // Call the various callbacks. switch (RunCallbacks(iteration_summary)) { case SOLVER_TERMINATE_SUCCESSFULLY: summary->termination_type = USER_SUCCESS; VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; return; case SOLVER_ABORT: summary->termination_type = USER_ABORT; VLOG(1) << "Terminating: User callback returned USER_ABORT."; return; case SOLVER_CONTINUE: break; default: LOG(FATAL) << "Unknown type of user callback status"; } int num_consecutive_invalid_steps = 0; while (true) { iteration_start_time = WallTimeInSeconds(); if (iteration_summary.iteration >= options_.max_num_iterations) { summary->termination_type = NO_CONVERGENCE; VLOG(1) << "Terminating: Maximum number of iterations reached."; break; } const double total_solver_time = iteration_start_time - start_time + summary->preprocessor_time_in_seconds; if (total_solver_time >= options_.max_solver_time_in_seconds) { summary->termination_type = NO_CONVERGENCE; VLOG(1) << "Terminating: Maximum solver time reached."; break; } iteration_summary = IterationSummary(); iteration_summary = summary->iterations.back(); iteration_summary.iteration = summary->iterations.back().iteration + 1; iteration_summary.step_is_valid = false; iteration_summary.step_is_successful = false; const double strategy_start_time = WallTimeInSeconds(); TrustRegionStrategy::PerSolveOptions per_solve_options; per_solve_options.eta = options_.eta; TrustRegionStrategy::Summary strategy_summary = strategy->ComputeStep(per_solve_options, jacobian, residuals.data(), trust_region_step.data()); iteration_summary.step_solver_time_in_seconds = WallTimeInSeconds() - strategy_start_time; iteration_summary.linear_solver_iterations = strategy_summary.num_iterations; if (!MaybeDumpLinearLeastSquaresProblem(iteration_summary.iteration, jacobian, residuals.data(), trust_region_step.data())) { LOG(FATAL) << "Tried writing linear least squares problem: " << options.lsqp_dump_directory << "but failed."; } double model_cost_change = 0.0; if (strategy_summary.termination_type != FAILURE) { // new_model_cost // = 1/2 [f + J * step]^2 // = 1/2 [ f'f + 2f'J * step + step' * J' * J * step ] // model_cost_change // = cost - new_model_cost // = f'f/2 - 1/2 [ f'f + 2f'J * step + step' * J' * J * step] // = -f'J * step - step' * J' * J * step / 2 model_residuals.setZero(); jacobian->RightMultiply(trust_region_step.data(), model_residuals.data()); model_cost_change = -(residuals.dot(model_residuals) + model_residuals.squaredNorm() / 2.0); if (model_cost_change < 0.0) { VLOG(1) << "Invalid step: current_cost: " << cost << " absolute difference " << model_cost_change << " relative difference " << (model_cost_change / cost); } else { iteration_summary.step_is_valid = true; } } if (!iteration_summary.step_is_valid) { // Invalid steps can happen due to a number of reasons, and we // allow a limited number of successive failures, and return with // NUMERICAL_FAILURE if this limit is exceeded. if (++num_consecutive_invalid_steps >= options_.max_num_consecutive_invalid_steps) { summary->termination_type = NUMERICAL_FAILURE; summary->error = StringPrintf( "Terminating. Number of successive invalid steps more " "than Solver::Options::max_num_consecutive_invalid_steps: %d", options_.max_num_consecutive_invalid_steps); LOG(WARNING) << summary->error; return; } // We are going to try and reduce the trust region radius and // solve again. To do this, we are going to treat this iteration // as an unsuccessful iteration. Since the various callbacks are // still executed, we are going to fill the iteration summary // with data that assumes a step of length zero and no progress. iteration_summary.cost = cost + summary->fixed_cost; iteration_summary.cost_change = 0.0; iteration_summary.gradient_max_norm = summary->iterations.back().gradient_max_norm; iteration_summary.step_norm = 0.0; iteration_summary.relative_decrease = 0.0; iteration_summary.eta = options_.eta; } else { // The step is numerically valid, so now we can judge its quality. num_consecutive_invalid_steps = 0; // Undo the Jacobian column scaling. delta = (trust_region_step.array() * scale.array()).matrix(); if (!evaluator->Plus(x.data(), delta.data(), x_plus_delta.data())) { summary->termination_type = NUMERICAL_FAILURE; summary->error = "Terminating. Failed to compute Plus(x, delta, x_plus_delta)."; LOG(WARNING) << summary->error; return; } // Try this step. double new_cost = numeric_limits<double>::max(); if (!evaluator->Evaluate(x_plus_delta.data(), &new_cost, NULL, NULL, NULL)) { // If the evaluation of the new cost fails, treat it as a step // with high cost. LOG(WARNING) << "Step failed to evaluate. " << "Treating it as step with infinite cost"; new_cost = numeric_limits<double>::max(); } else { // Check if performing an inner iteration will make it better. if (options.inner_iteration_minimizer != NULL) { const double x_plus_delta_cost = new_cost; Vector inner_iteration_x = x_plus_delta; Solver::Summary inner_iteration_summary; options.inner_iteration_minimizer->Minimize(options, inner_iteration_x.data(), &inner_iteration_summary); if(!evaluator->Evaluate(inner_iteration_x.data(), &new_cost, NULL, NULL, NULL)) { VLOG(2) << "Inner iteration failed."; new_cost = x_plus_delta_cost; } else { x_plus_delta = inner_iteration_x; // Bost the model_cost_change, since the inner iteration // improvements are not accounted for by the trust region. model_cost_change += x_plus_delta_cost - new_cost; VLOG(2) << "Inner iteration succeeded; current cost: " << cost << " x_plus_delta_cost: " << x_plus_delta_cost << " new_cost: " << new_cost; } } } iteration_summary.step_norm = (x - x_plus_delta).norm(); // Convergence based on parameter_tolerance. const double step_size_tolerance = options_.parameter_tolerance * (x_norm + options_.parameter_tolerance); if (iteration_summary.step_norm <= step_size_tolerance) { VLOG(1) << "Terminating. Parameter tolerance reached. " << "relative step_norm: " << iteration_summary.step_norm / (x_norm + options_.parameter_tolerance) << " <= " << options_.parameter_tolerance; summary->termination_type = PARAMETER_TOLERANCE; return; } VLOG(2) << "old cost: " << cost << " new cost: " << new_cost; iteration_summary.cost_change = cost - new_cost; const double absolute_function_tolerance = options_.function_tolerance * cost; if (fabs(iteration_summary.cost_change) < absolute_function_tolerance) { VLOG(1) << "Terminating. Function tolerance reached. " << "|cost_change|/cost: " << fabs(iteration_summary.cost_change) / cost << " <= " << options_.function_tolerance; summary->termination_type = FUNCTION_TOLERANCE; return; } const double relative_decrease = iteration_summary.cost_change / model_cost_change; const double historical_relative_decrease = (reference_cost - new_cost) / (accumulated_reference_model_cost_change + model_cost_change); // If monotonic steps are being used, then the relative_decrease // is the usual ratio of the change in objective function value // divided by the change in model cost. // // If non-monotonic steps are allowed, then we take the maximum // of the relative_decrease and the // historical_relative_decrease, which measures the increase // from a reference iteration. The model cost change is // estimated by accumulating the model cost changes since the // reference iteration. The historical relative_decrease offers // a boost to a step which is not too bad compared to the // reference iteration, allowing for non-monotonic steps. iteration_summary.relative_decrease = options.use_nonmonotonic_steps ? max(relative_decrease, historical_relative_decrease) : relative_decrease; iteration_summary.step_is_successful = iteration_summary.relative_decrease > options_.min_relative_decrease; if (iteration_summary.step_is_successful) { accumulated_candidate_model_cost_change += model_cost_change; accumulated_reference_model_cost_change += model_cost_change; if (relative_decrease <= options_.min_relative_decrease) { iteration_summary.step_is_nonmonotonic = true; VLOG(2) << "Non-monotonic step! " << " relative_decrease: " << relative_decrease << " historical_relative_decrease: " << historical_relative_decrease; } } } if (iteration_summary.step_is_successful) { ++summary->num_successful_steps; strategy->StepAccepted(iteration_summary.relative_decrease); x = x_plus_delta; x_norm = x.norm(); // Step looks good, evaluate the residuals and Jacobian at this // point. if (!evaluator->Evaluate(x.data(), &cost, residuals.data(), NULL, jacobian)) { summary->termination_type = NUMERICAL_FAILURE; summary->error = "Terminating: Residual and Jacobian evaluation failed."; LOG(WARNING) << summary->error; return; } gradient.setZero(); jacobian->LeftMultiply(residuals.data(), gradient.data()); iteration_summary.gradient_max_norm = gradient.lpNorm<Eigen::Infinity>(); if (iteration_summary.gradient_max_norm <= absolute_gradient_tolerance) { summary->termination_type = GRADIENT_TOLERANCE; VLOG(1) << "Terminating: Gradient tolerance reached." << "Relative gradient max norm: " << iteration_summary.gradient_max_norm / gradient_max_norm_0 << " <= " << options_.gradient_tolerance; return; } if (options_.jacobi_scaling) { jacobian->ScaleColumns(scale.data()); } // Update the best, reference and candidate iterates. // // Based on algorithm 10.1.2 (page 357) of "Trust Region // Methods" by Conn Gould & Toint, or equations 33-40 of // "Non-monotone trust-region algorithms for nonlinear // optimization subject to convex constraints" by Phil Toint, // Mathematical Programming, 77, 1997. if (cost < minimum_cost) { // A step that improves solution quality was found. x_min = x; minimum_cost = cost; // Set the candidate iterate to the current point. candidate_cost = cost; num_consecutive_nonmonotonic_steps = 0; accumulated_candidate_model_cost_change = 0.0; } else { ++num_consecutive_nonmonotonic_steps; if (cost > candidate_cost) { // The current iterate is has a higher cost than the // candidate iterate. Set the candidate to this point. VLOG(2) << "Updating the candidate iterate to the current point."; candidate_cost = cost; accumulated_candidate_model_cost_change = 0.0; } // At this point we have made too many non-monotonic steps and // we are going to reset the value of the reference iterate so // as to force the algorithm to descend. // // This is the case because the candidate iterate has a value // greater than minimum_cost but smaller than the reference // iterate. if (num_consecutive_nonmonotonic_steps == options.max_consecutive_nonmonotonic_steps) { VLOG(2) << "Resetting the reference point to the candidate point"; reference_cost = candidate_cost; accumulated_reference_model_cost_change = accumulated_candidate_model_cost_change; } } } else { ++summary->num_unsuccessful_steps; if (iteration_summary.step_is_valid) { strategy->StepRejected(iteration_summary.relative_decrease); } else { strategy->StepIsInvalid(); } } iteration_summary.cost = cost + summary->fixed_cost; iteration_summary.trust_region_radius = strategy->Radius(); if (iteration_summary.trust_region_radius < options_.min_trust_region_radius) { summary->termination_type = PARAMETER_TOLERANCE; VLOG(1) << "Termination. Minimum trust region radius reached."; return; } iteration_summary.iteration_time_in_seconds = WallTimeInSeconds() - iteration_start_time; iteration_summary.cumulative_time_in_seconds = WallTimeInSeconds() - start_time + summary->preprocessor_time_in_seconds; summary->iterations.push_back(iteration_summary); switch (RunCallbacks(iteration_summary)) { case SOLVER_TERMINATE_SUCCESSFULLY: summary->termination_type = USER_SUCCESS; VLOG(1) << "Terminating: User callback returned USER_SUCCESS."; return; case SOLVER_ABORT: summary->termination_type = USER_ABORT; VLOG(1) << "Terminating: User callback returned USER_ABORT."; return; case SOLVER_CONTINUE: break; default: LOG(FATAL) << "Unknown type of user callback status"; } } } } // namespace internal } // namespace ceres