// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // sameeragarwal@google.com (Sameer Agarwal) // // System level tests for Ceres. The current suite of two tests. The // first test is a small test based on Powell's Function. It is a // scalar problem with 4 variables. The second problem is a bundle // adjustment problem with 16 cameras and two thousand cameras. The // first problem is to test the sanity test the factorization based // solvers. The second problem is used to test the various // combinations of solvers, orderings, preconditioners and // multithreading. #include <cmath> #include <cstdio> #include <cstdlib> #include <string> #include "ceres/autodiff_cost_function.h" #include "ceres/ordered_groups.h" #include "ceres/problem.h" #include "ceres/rotation.h" #include "ceres/solver.h" #include "ceres/stringprintf.h" #include "ceres/test_util.h" #include "ceres/types.h" #include "gflags/gflags.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { const bool kAutomaticOrdering = true; const bool kUserOrdering = false; // Struct used for configuring the solver. struct SolverConfig { SolverConfig(LinearSolverType linear_solver_type, SparseLinearAlgebraLibraryType sparse_linear_algebra_library, bool use_automatic_ordering) : linear_solver_type(linear_solver_type), sparse_linear_algebra_library(sparse_linear_algebra_library), use_automatic_ordering(use_automatic_ordering), preconditioner_type(IDENTITY), num_threads(1) { } SolverConfig(LinearSolverType linear_solver_type, SparseLinearAlgebraLibraryType sparse_linear_algebra_library, bool use_automatic_ordering, PreconditionerType preconditioner_type) : linear_solver_type(linear_solver_type), sparse_linear_algebra_library(sparse_linear_algebra_library), use_automatic_ordering(use_automatic_ordering), preconditioner_type(preconditioner_type), num_threads(1) { } string ToString() const { return StringPrintf( "(%s, %s, %s, %s, %d)", LinearSolverTypeToString(linear_solver_type), SparseLinearAlgebraLibraryTypeToString(sparse_linear_algebra_library), use_automatic_ordering ? "AUTOMATIC" : "USER", PreconditionerTypeToString(preconditioner_type), num_threads); } LinearSolverType linear_solver_type; SparseLinearAlgebraLibraryType sparse_linear_algebra_library; bool use_automatic_ordering; PreconditionerType preconditioner_type; int num_threads; }; // Templated function that given a set of solver configurations, // instantiates a new copy of SystemTestProblem for each configuration // and solves it. The solutions are expected to have residuals with // coordinate-wise maximum absolute difference less than or equal to // max_abs_difference. // // The template parameter SystemTestProblem is expected to implement // the following interface. // // class SystemTestProblem { // public: // SystemTestProblem(); // Problem* mutable_problem(); // Solver::Options* mutable_solver_options(); // }; template <typename SystemTestProblem> void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations, const double max_abs_difference) { int num_configurations = configurations.size(); vector<SystemTestProblem*> problems; vector<Solver::Summary> summaries(num_configurations); for (int i = 0; i < num_configurations; ++i) { SystemTestProblem* system_test_problem = new SystemTestProblem(); const SolverConfig& config = configurations[i]; Solver::Options& options = *(system_test_problem->mutable_solver_options()); options.linear_solver_type = config.linear_solver_type; options.sparse_linear_algebra_library = config.sparse_linear_algebra_library; options.preconditioner_type = config.preconditioner_type; options.num_threads = config.num_threads; options.num_linear_solver_threads = config.num_threads; options.return_final_residuals = true; if (config.use_automatic_ordering) { delete options.linear_solver_ordering; options.linear_solver_ordering = NULL; } LOG(INFO) << "Running solver configuration: " << config.ToString(); Solve(options, system_test_problem->mutable_problem(), &summaries[i]); CHECK_NE(summaries[i].termination_type, ceres::NUMERICAL_FAILURE) << "Solver configuration " << i << " failed."; problems.push_back(system_test_problem); // Compare the resulting solutions to each other. Arbitrarily take // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare // solutions by comparing their residual vectors. We do not // compare parameter vectors because it is much more brittle and // error prone to do so, since the same problem can have nearly // the same residuals at two completely different positions in // parameter space. if (i > 0) { const vector<double>& reference_residuals = summaries[0].final_residuals; const vector<double>& current_residuals = summaries[i].final_residuals; for (int j = 0; j < reference_residuals.size(); ++j) { EXPECT_NEAR(current_residuals[j], reference_residuals[j], max_abs_difference) << "Not close enough residual:" << j << " reference " << reference_residuals[j] << " current " << current_residuals[j]; } } } for (int i = 0; i < num_configurations; ++i) { delete problems[i]; } } // This class implements the SystemTestProblem interface and provides // access to an implementation of Powell's singular function. // // F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2) // // f1 = x1 + 10*x2; // f2 = sqrt(5) * (x3 - x4) // f3 = (x2 - 2*x3)^2 // f4 = sqrt(10) * (x1 - x4)^2 // // The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1. // The minimum is 0 at (x1, x2, x3, x4) = 0. // // From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S. // Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software, // Vol 7(1), March 1981. class PowellsFunction { public: PowellsFunction() { x_[0] = 3.0; x_[1] = -1.0; x_[2] = 0.0; x_[3] = 1.0; problem_.AddResidualBlock( new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]); problem_.AddResidualBlock( new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]); problem_.AddResidualBlock( new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]); problem_.AddResidualBlock( new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]); options_.max_num_iterations = 10; } Problem* mutable_problem() { return &problem_; } Solver::Options* mutable_solver_options() { return &options_; } private: // Templated functions used for automatically differentiated cost // functions. class F1 { public: template <typename T> bool operator()(const T* const x1, const T* const x2, T* residual) const { // f1 = x1 + 10 * x2; *residual = *x1 + T(10.0) * *x2; return true; } }; class F2 { public: template <typename T> bool operator()(const T* const x3, const T* const x4, T* residual) const { // f2 = sqrt(5) (x3 - x4) *residual = T(sqrt(5.0)) * (*x3 - *x4); return true; } }; class F3 { public: template <typename T> bool operator()(const T* const x2, const T* const x4, T* residual) const { // f3 = (x2 - 2 x3)^2 residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]); return true; } }; class F4 { public: template <typename T> bool operator()(const T* const x1, const T* const x4, T* residual) const { // f4 = sqrt(10) (x1 - x4)^2 residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]); return true; } }; double x_[4]; Problem problem_; Solver::Options options_; }; TEST(SystemTest, PowellsFunction) { vector<SolverConfig> configs; #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering) \ configs.push_back(SolverConfig(linear_solver, \ sparse_linear_algebra_library, \ ordering)) CONFIGURE(DENSE_QR, SUITE_SPARSE, kAutomaticOrdering); CONFIGURE(DENSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering); CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering); #ifndef CERES_NO_SUITESPARSE CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering); #endif // CERES_NO_SUITESPARSE #ifndef CERES_NO_CXSPARSE CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE, kAutomaticOrdering); #endif // CERES_NO_CXSPARSE CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering); #undef CONFIGURE const double kMaxAbsoluteDifference = 1e-8; RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference); } // This class implements the SystemTestProblem interface and provides // access to a bundle adjustment problem. It is based on // examples/bundle_adjustment_example.cc. Currently a small 16 camera // problem is hard coded in the constructor. Going forward we may // extend this to a larger number of problems. class BundleAdjustmentProblem { public: BundleAdjustmentProblem() { const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt"); ReadData(input_file); BuildProblem(); } ~BundleAdjustmentProblem() { delete []point_index_; delete []camera_index_; delete []observations_; delete []parameters_; } Problem* mutable_problem() { return &problem_; } Solver::Options* mutable_solver_options() { return &options_; } int num_cameras() const { return num_cameras_; } int num_points() const { return num_points_; } int num_observations() const { return num_observations_; } const int* point_index() const { return point_index_; } const int* camera_index() const { return camera_index_; } const double* observations() const { return observations_; } double* mutable_cameras() { return parameters_; } double* mutable_points() { return parameters_ + 9 * num_cameras_; } private: void ReadData(const string& filename) { FILE * fptr = fopen(filename.c_str(), "r"); if (!fptr) { LOG(FATAL) << "File Error: unable to open file " << filename; }; // This will die horribly on invalid files. Them's the breaks. FscanfOrDie(fptr, "%d", &num_cameras_); FscanfOrDie(fptr, "%d", &num_points_); FscanfOrDie(fptr, "%d", &num_observations_); VLOG(1) << "Header: " << num_cameras_ << " " << num_points_ << " " << num_observations_; point_index_ = new int[num_observations_]; camera_index_ = new int[num_observations_]; observations_ = new double[2 * num_observations_]; num_parameters_ = 9 * num_cameras_ + 3 * num_points_; parameters_ = new double[num_parameters_]; for (int i = 0; i < num_observations_; ++i) { FscanfOrDie(fptr, "%d", camera_index_ + i); FscanfOrDie(fptr, "%d", point_index_ + i); for (int j = 0; j < 2; ++j) { FscanfOrDie(fptr, "%lf", observations_ + 2*i + j); } } for (int i = 0; i < num_parameters_; ++i) { FscanfOrDie(fptr, "%lf", parameters_ + i); } } void BuildProblem() { double* points = mutable_points(); double* cameras = mutable_cameras(); for (int i = 0; i < num_observations(); ++i) { // Each Residual block takes a point and a camera as input and // outputs a 2 dimensional residual. CostFunction* cost_function = new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>( new BundlerResidual(observations_[2*i + 0], observations_[2*i + 1])); // Each observation correponds to a pair of a camera and a point // which are identified by camera_index()[i] and // point_index()[i] respectively. double* camera = cameras + 9 * camera_index_[i]; double* point = points + 3 * point_index()[i]; problem_.AddResidualBlock(cost_function, NULL, camera, point); } options_.linear_solver_ordering = new ParameterBlockOrdering; // The points come before the cameras. for (int i = 0; i < num_points_; ++i) { options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0); } for (int i = 0; i < num_cameras_; ++i) { options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1); } options_.max_num_iterations = 25; options_.function_tolerance = 1e-10; options_.gradient_tolerance = 1e-10; options_.parameter_tolerance = 1e-10; } template<typename T> void FscanfOrDie(FILE *fptr, const char *format, T *value) { int num_scanned = fscanf(fptr, format, value); if (num_scanned != 1) { LOG(FATAL) << "Invalid UW data file."; } } // Templated pinhole camera model. The camera is parameterized // using 9 parameters. 3 for rotation, 3 for translation, 1 for // focal length and 2 for radial distortion. The principal point is // not modeled (i.e. it is assumed be located at the image center). struct BundlerResidual { // (u, v): the position of the observation with respect to the image // center point. BundlerResidual(double u, double v): u(u), v(v) {} template <typename T> bool operator()(const T* const camera, const T* const point, T* residuals) const { T p[3]; AngleAxisRotatePoint(camera, point, p); // Add the translation vector p[0] += camera[3]; p[1] += camera[4]; p[2] += camera[5]; const T& focal = camera[6]; const T& l1 = camera[7]; const T& l2 = camera[8]; // Compute the center of distortion. The sign change comes from // the camera model that Noah Snavely's Bundler assumes, whereby // the camera coordinate system has a negative z axis. T xp = - focal * p[0] / p[2]; T yp = - focal * p[1] / p[2]; // Apply second and fourth order radial distortion. T r2 = xp*xp + yp*yp; T distortion = T(1.0) + r2 * (l1 + l2 * r2); residuals[0] = distortion * xp - T(u); residuals[1] = distortion * yp - T(v); return true; } double u; double v; }; Problem problem_; Solver::Options options_; int num_cameras_; int num_points_; int num_observations_; int num_parameters_; int* point_index_; int* camera_index_; double* observations_; // The parameter vector is laid out as follows // [camera_1, ..., camera_n, point_1, ..., point_m] double* parameters_; }; TEST(SystemTest, BundleAdjustmentProblem) { vector<SolverConfig> configs; #define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering, preconditioner) \ configs.push_back(SolverConfig(linear_solver, \ sparse_linear_algebra_library, \ ordering, \ preconditioner)) #ifndef CERES_NO_SUITESPARSE CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering, IDENTITY); CONFIGURE(SPARSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); CONFIGURE(SPARSE_SCHUR, SUITE_SPARSE, kUserOrdering, IDENTITY); #endif // CERES_NO_SUITESPARSE #ifndef CERES_NO_CXSPARSE CONFIGURE(SPARSE_SCHUR, CX_SPARSE, kAutomaticOrdering, IDENTITY); CONFIGURE(SPARSE_SCHUR, CX_SPARSE, kUserOrdering, IDENTITY); #endif // CERES_NO_CXSPARSE CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, IDENTITY); CONFIGURE(DENSE_SCHUR, SUITE_SPARSE, kUserOrdering, IDENTITY); CONFIGURE(CGNR, SUITE_SPARSE, kAutomaticOrdering, JACOBI); CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, JACOBI); #ifndef CERES_NO_SUITESPARSE CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, SCHUR_JACOBI); CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_JACOBI); CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kUserOrdering, CLUSTER_TRIDIAGONAL); #endif // CERES_NO_SUITESPARSE CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, JACOBI); #ifndef CERES_NO_SUITESPARSE CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI); CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI); CONFIGURE(ITERATIVE_SCHUR, SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL); #endif // CERES_NO_SUITESPARSE #undef CONFIGURE // Single threaded evaluators and linear solvers. const double kMaxAbsoluteDifference = 1e-4; RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, kMaxAbsoluteDifference); #ifdef CERES_USE_OPENMP // Multithreaded evaluators and linear solvers. for (int i = 0; i < configs.size(); ++i) { configs[i].num_threads = 2; } RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs, kMaxAbsoluteDifference); #endif // CERES_USE_OPENMP } } // namespace internal } // namespace ceres