// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #include "ceres/solver_impl.h" #include <cstdio> #include <iostream> // NOLINT #include <numeric> #include "ceres/coordinate_descent_minimizer.h" #include "ceres/evaluator.h" #include "ceres/gradient_checking_cost_function.h" #include "ceres/iteration_callback.h" #include "ceres/levenberg_marquardt_strategy.h" #include "ceres/linear_solver.h" #include "ceres/map_util.h" #include "ceres/minimizer.h" #include "ceres/ordered_groups.h" #include "ceres/parameter_block.h" #include "ceres/parameter_block_ordering.h" #include "ceres/problem.h" #include "ceres/problem_impl.h" #include "ceres/program.h" #include "ceres/residual_block.h" #include "ceres/stringprintf.h" #include "ceres/trust_region_minimizer.h" #include "ceres/wall_time.h" namespace ceres { namespace internal { namespace { // Callback for updating the user's parameter blocks. Updates are only // done if the step is successful. class StateUpdatingCallback : public IterationCallback { public: StateUpdatingCallback(Program* program, double* parameters) : program_(program), parameters_(parameters) {} CallbackReturnType operator()(const IterationSummary& summary) { if (summary.step_is_successful) { program_->StateVectorToParameterBlocks(parameters_); program_->CopyParameterBlockStateToUserState(); } return SOLVER_CONTINUE; } private: Program* program_; double* parameters_; }; // Callback for logging the state of the minimizer to STDERR or STDOUT // depending on the user's preferences and logging level. class LoggingCallback : public IterationCallback { public: explicit LoggingCallback(bool log_to_stdout) : log_to_stdout_(log_to_stdout) {} ~LoggingCallback() {} CallbackReturnType operator()(const IterationSummary& summary) { const char* kReportRowFormat = "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e " "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e"; string output = StringPrintf(kReportRowFormat, summary.iteration, summary.cost, summary.cost_change, summary.gradient_max_norm, summary.step_norm, summary.relative_decrease, summary.trust_region_radius, summary.linear_solver_iterations, summary.iteration_time_in_seconds, summary.cumulative_time_in_seconds); if (log_to_stdout_) { cout << output << endl; } else { VLOG(1) << output; } return SOLVER_CONTINUE; } private: const bool log_to_stdout_; }; // Basic callback to record the execution of the solver to a file for // offline analysis. class FileLoggingCallback : public IterationCallback { public: explicit FileLoggingCallback(const string& filename) : fptr_(NULL) { fptr_ = fopen(filename.c_str(), "w"); CHECK_NOTNULL(fptr_); } virtual ~FileLoggingCallback() { if (fptr_ != NULL) { fclose(fptr_); } } virtual CallbackReturnType operator()(const IterationSummary& summary) { fprintf(fptr_, "%4d %e %e\n", summary.iteration, summary.cost, summary.cumulative_time_in_seconds); return SOLVER_CONTINUE; } private: FILE* fptr_; }; } // namespace void SolverImpl::Minimize(const Solver::Options& options, Program* program, CoordinateDescentMinimizer* inner_iteration_minimizer, Evaluator* evaluator, LinearSolver* linear_solver, double* parameters, Solver::Summary* summary) { Minimizer::Options minimizer_options(options); // TODO(sameeragarwal): Add support for logging the configuration // and more detailed stats. scoped_ptr<IterationCallback> file_logging_callback; if (!options.solver_log.empty()) { file_logging_callback.reset(new FileLoggingCallback(options.solver_log)); minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), file_logging_callback.get()); } LoggingCallback logging_callback(options.minimizer_progress_to_stdout); if (options.logging_type != SILENT) { minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), &logging_callback); } StateUpdatingCallback updating_callback(program, parameters); if (options.update_state_every_iteration) { // This must get pushed to the front of the callbacks so that it is run // before any of the user callbacks. minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(), &updating_callback); } minimizer_options.evaluator = evaluator; scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); minimizer_options.jacobian = jacobian.get(); minimizer_options.inner_iteration_minimizer = inner_iteration_minimizer; TrustRegionStrategy::Options trust_region_strategy_options; trust_region_strategy_options.linear_solver = linear_solver; trust_region_strategy_options.initial_radius = options.initial_trust_region_radius; trust_region_strategy_options.max_radius = options.max_trust_region_radius; trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal; trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal; trust_region_strategy_options.trust_region_strategy_type = options.trust_region_strategy_type; trust_region_strategy_options.dogleg_type = options.dogleg_type; scoped_ptr<TrustRegionStrategy> strategy( TrustRegionStrategy::Create(trust_region_strategy_options)); minimizer_options.trust_region_strategy = strategy.get(); TrustRegionMinimizer minimizer; double minimizer_start_time = WallTimeInSeconds(); minimizer.Minimize(minimizer_options, parameters, summary); summary->minimizer_time_in_seconds = WallTimeInSeconds() - minimizer_start_time; } void SolverImpl::Solve(const Solver::Options& original_options, ProblemImpl* original_problem_impl, Solver::Summary* summary) { double solver_start_time = WallTimeInSeconds(); Program* original_program = original_problem_impl->mutable_program(); ProblemImpl* problem_impl = original_problem_impl; // Reset the summary object to its default values. *CHECK_NOTNULL(summary) = Solver::Summary(); summary->num_parameter_blocks = problem_impl->NumParameterBlocks(); summary->num_parameters = problem_impl->NumParameters(); summary->num_residual_blocks = problem_impl->NumResidualBlocks(); summary->num_residuals = problem_impl->NumResiduals(); // Empty programs are usually a user error. if (summary->num_parameter_blocks == 0) { summary->error = "Problem contains no parameter blocks."; LOG(ERROR) << summary->error; return; } if (summary->num_residual_blocks == 0) { summary->error = "Problem contains no residual blocks."; LOG(ERROR) << summary->error; return; } Solver::Options options(original_options); options.linear_solver_ordering = NULL; options.inner_iteration_ordering = NULL; #ifndef CERES_USE_OPENMP if (options.num_threads > 1) { LOG(WARNING) << "OpenMP support is not compiled into this binary; " << "only options.num_threads=1 is supported. Switching " << "to single threaded mode."; options.num_threads = 1; } if (options.num_linear_solver_threads > 1) { LOG(WARNING) << "OpenMP support is not compiled into this binary; " << "only options.num_linear_solver_threads=1 is supported. Switching " << "to single threaded mode."; options.num_linear_solver_threads = 1; } #endif summary->num_threads_given = original_options.num_threads; summary->num_threads_used = options.num_threads; if (options.lsqp_iterations_to_dump.size() > 0) { LOG(WARNING) << "Dumping linear least squares problems to disk is" " currently broken. Ignoring Solver::Options::lsqp_iterations_to_dump"; } // Evaluate the initial cost, residual vector and the jacobian // matrix if requested by the user. The initial cost needs to be // computed on the original unpreprocessed problem, as it is used to // determine the value of the "fixed" part of the objective function // after the problem has undergone reduction. if (!Evaluator::Evaluate(original_program, options.num_threads, &(summary->initial_cost), options.return_initial_residuals ? &summary->initial_residuals : NULL, options.return_initial_gradient ? &summary->initial_gradient : NULL, options.return_initial_jacobian ? &summary->initial_jacobian : NULL)) { summary->termination_type = NUMERICAL_FAILURE; summary->error = "Unable to evaluate the initial cost."; LOG(ERROR) << summary->error; return; } original_program->SetParameterBlockStatePtrsToUserStatePtrs(); // If the user requests gradient checking, construct a new // ProblemImpl by wrapping the CostFunctions of problem_impl inside // GradientCheckingCostFunction and replacing problem_impl with // gradient_checking_problem_impl. scoped_ptr<ProblemImpl> gradient_checking_problem_impl; if (options.check_gradients) { VLOG(1) << "Checking Gradients"; gradient_checking_problem_impl.reset( CreateGradientCheckingProblemImpl( problem_impl, options.numeric_derivative_relative_step_size, options.gradient_check_relative_precision)); // From here on, problem_impl will point to the gradient checking // version. problem_impl = gradient_checking_problem_impl.get(); } if (original_options.linear_solver_ordering != NULL) { if (!IsOrderingValid(original_options, problem_impl, &summary->error)) { LOG(ERROR) << summary->error; return; } options.linear_solver_ordering = new ParameterBlockOrdering(*original_options.linear_solver_ordering); } else { options.linear_solver_ordering = new ParameterBlockOrdering; const ProblemImpl::ParameterMap& parameter_map = problem_impl->parameter_map(); for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin(); it != parameter_map.end(); ++it) { options.linear_solver_ordering->AddElementToGroup(it->first, 0); } } // Create the three objects needed to minimize: the transformed program, the // evaluator, and the linear solver. scoped_ptr<Program> reduced_program(CreateReducedProgram(&options, problem_impl, &summary->fixed_cost, &summary->error)); if (reduced_program == NULL) { return; } summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks(); summary->num_parameters_reduced = reduced_program->NumParameters(); summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks(); summary->num_residuals_reduced = reduced_program->NumResiduals(); if (summary->num_parameter_blocks_reduced == 0) { summary->preprocessor_time_in_seconds = WallTimeInSeconds() - solver_start_time; LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. " << "No non-constant parameter blocks found."; // FUNCTION_TOLERANCE is the right convergence here, as we know // that the objective function is constant and cannot be changed // any further. summary->termination_type = FUNCTION_TOLERANCE; double post_process_start_time = WallTimeInSeconds(); // Evaluate the final cost, residual vector and the jacobian // matrix if requested by the user. if (!Evaluator::Evaluate(original_program, options.num_threads, &summary->final_cost, options.return_final_residuals ? &summary->final_residuals : NULL, options.return_final_gradient ? &summary->final_gradient : NULL, options.return_final_jacobian ? &summary->final_jacobian : NULL)) { summary->termination_type = NUMERICAL_FAILURE; summary->error = "Unable to evaluate the final cost."; LOG(ERROR) << summary->error; return; } // Ensure the program state is set to the user parameters on the way out. original_program->SetParameterBlockStatePtrsToUserStatePtrs(); summary->postprocessor_time_in_seconds = WallTimeInSeconds() - post_process_start_time; return; } scoped_ptr<LinearSolver> linear_solver(CreateLinearSolver(&options, &summary->error)); if (linear_solver == NULL) { return; } summary->linear_solver_type_given = original_options.linear_solver_type; summary->linear_solver_type_used = options.linear_solver_type; summary->preconditioner_type = options.preconditioner_type; summary->num_linear_solver_threads_given = original_options.num_linear_solver_threads; summary->num_linear_solver_threads_used = options.num_linear_solver_threads; summary->sparse_linear_algebra_library = options.sparse_linear_algebra_library; summary->trust_region_strategy_type = options.trust_region_strategy_type; summary->dogleg_type = options.dogleg_type; // Only Schur types require the lexicographic reordering. if (IsSchurType(options.linear_solver_type)) { const int num_eliminate_blocks = options.linear_solver_ordering ->group_to_elements().begin() ->second.size(); if (!LexicographicallyOrderResidualBlocks(num_eliminate_blocks, reduced_program.get(), &summary->error)) { return; } } scoped_ptr<Evaluator> evaluator(CreateEvaluator(options, problem_impl->parameter_map(), reduced_program.get(), &summary->error)); if (evaluator == NULL) { return; } scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer; if (options.use_inner_iterations) { if (reduced_program->parameter_blocks().size() < 2) { LOG(WARNING) << "Reduced problem only contains one parameter block." << "Disabling inner iterations."; } else { inner_iteration_minimizer.reset( CreateInnerIterationMinimizer(original_options, *reduced_program, problem_impl->parameter_map(), &summary->error)); if (inner_iteration_minimizer == NULL) { LOG(ERROR) << summary->error; return; } } } // The optimizer works on contiguous parameter vectors; allocate some. Vector parameters(reduced_program->NumParameters()); // Collect the discontiguous parameters into a contiguous state vector. reduced_program->ParameterBlocksToStateVector(parameters.data()); Vector original_parameters = parameters; double minimizer_start_time = WallTimeInSeconds(); summary->preprocessor_time_in_seconds = minimizer_start_time - solver_start_time; // Run the optimization. Minimize(options, reduced_program.get(), inner_iteration_minimizer.get(), evaluator.get(), linear_solver.get(), parameters.data(), summary); // If the user aborted mid-optimization or the optimization // terminated because of a numerical failure, then return without // updating user state. if (summary->termination_type == USER_ABORT || summary->termination_type == NUMERICAL_FAILURE) { return; } double post_process_start_time = WallTimeInSeconds(); // Push the contiguous optimized parameters back to the user's parameters. reduced_program->StateVectorToParameterBlocks(parameters.data()); reduced_program->CopyParameterBlockStateToUserState(); // Evaluate the final cost, residual vector and the jacobian // matrix if requested by the user. if (!Evaluator::Evaluate(original_program, options.num_threads, &summary->final_cost, options.return_final_residuals ? &summary->final_residuals : NULL, options.return_final_gradient ? &summary->final_gradient : NULL, options.return_final_jacobian ? &summary->final_jacobian : NULL)) { // This failure requires careful handling. // // At this point, we have modified the user's state, but the // evaluation failed and we inform him of NUMERICAL_FAILURE. Ceres // guarantees that user's state is not modified if the solver // returns with NUMERICAL_FAILURE. Thus, we need to restore the // user's state to their original values. reduced_program->StateVectorToParameterBlocks(original_parameters.data()); reduced_program->CopyParameterBlockStateToUserState(); summary->termination_type = NUMERICAL_FAILURE; summary->error = "Unable to evaluate the final cost."; LOG(ERROR) << summary->error; return; } // Ensure the program state is set to the user parameters on the way out. original_program->SetParameterBlockStatePtrsToUserStatePtrs(); // Stick a fork in it, we're done. summary->postprocessor_time_in_seconds = WallTimeInSeconds() - post_process_start_time; } bool SolverImpl::IsOrderingValid(const Solver::Options& options, const ProblemImpl* problem_impl, string* error) { if (options.linear_solver_ordering->NumElements() != problem_impl->NumParameterBlocks()) { *error = "Number of parameter blocks in user supplied ordering " "does not match the number of parameter blocks in the problem"; return false; } const Program& program = problem_impl->program(); const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks(); for (vector<ParameterBlock*>::const_iterator it = parameter_blocks.begin(); it != parameter_blocks.end(); ++it) { if (!options.linear_solver_ordering ->IsMember(const_cast<double*>((*it)->user_state()))) { *error = "Problem contains a parameter block that is not in " "the user specified ordering."; return false; } } if (IsSchurType(options.linear_solver_type) && options.linear_solver_ordering->NumGroups() > 1) { const vector<ResidualBlock*>& residual_blocks = program.residual_blocks(); const set<double*>& e_blocks = options.linear_solver_ordering->group_to_elements().begin()->second; if (!IsParameterBlockSetIndependent(e_blocks, residual_blocks)) { *error = "The user requested the use of a Schur type solver. " "But the first elimination group in the ordering is not an " "independent set."; return false; } } return true; } bool SolverImpl::IsParameterBlockSetIndependent(const set<double*>& parameter_block_ptrs, const vector<ResidualBlock*>& residual_blocks) { // Loop over each residual block and ensure that no two parameter // blocks in the same residual block are part of // parameter_block_ptrs as that would violate the assumption that it // is an independent set in the Hessian matrix. for (vector<ResidualBlock*>::const_iterator it = residual_blocks.begin(); it != residual_blocks.end(); ++it) { ParameterBlock* const* parameter_blocks = (*it)->parameter_blocks(); const int num_parameter_blocks = (*it)->NumParameterBlocks(); int count = 0; for (int i = 0; i < num_parameter_blocks; ++i) { count += parameter_block_ptrs.count( parameter_blocks[i]->mutable_user_state()); } if (count > 1) { return false; } } return true; } // Strips varying parameters and residuals, maintaining order, and updating // num_eliminate_blocks. bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program, ParameterBlockOrdering* ordering, double* fixed_cost, string* error) { vector<ParameterBlock*>* parameter_blocks = program->mutable_parameter_blocks(); scoped_array<double> residual_block_evaluate_scratch; if (fixed_cost != NULL) { residual_block_evaluate_scratch.reset( new double[program->MaxScratchDoublesNeededForEvaluate()]); *fixed_cost = 0.0; } // Mark all the parameters as unused. Abuse the index member of the parameter // blocks for the marking. for (int i = 0; i < parameter_blocks->size(); ++i) { (*parameter_blocks)[i]->set_index(-1); } // Filter out residual that have all-constant parameters, and mark all the // parameter blocks that appear in residuals. { vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); int j = 0; for (int i = 0; i < residual_blocks->size(); ++i) { ResidualBlock* residual_block = (*residual_blocks)[i]; int num_parameter_blocks = residual_block->NumParameterBlocks(); // Determine if the residual block is fixed, and also mark varying // parameters that appear in the residual block. bool all_constant = true; for (int k = 0; k < num_parameter_blocks; k++) { ParameterBlock* parameter_block = residual_block->parameter_blocks()[k]; if (!parameter_block->IsConstant()) { all_constant = false; parameter_block->set_index(1); } } if (!all_constant) { (*residual_blocks)[j++] = (*residual_blocks)[i]; } else if (fixed_cost != NULL) { // The residual is constant and will be removed, so its cost is // added to the variable fixed_cost. double cost = 0.0; if (!residual_block->Evaluate( &cost, NULL, NULL, residual_block_evaluate_scratch.get())) { *error = StringPrintf("Evaluation of the residual %d failed during " "removal of fixed residual blocks.", i); return false; } *fixed_cost += cost; } } residual_blocks->resize(j); } // Filter out unused or fixed parameter blocks, and update // the ordering. { vector<ParameterBlock*>* parameter_blocks = program->mutable_parameter_blocks(); int j = 0; for (int i = 0; i < parameter_blocks->size(); ++i) { ParameterBlock* parameter_block = (*parameter_blocks)[i]; if (parameter_block->index() == 1) { (*parameter_blocks)[j++] = parameter_block; } else { ordering->Remove(parameter_block->mutable_user_state()); } } parameter_blocks->resize(j); } CHECK(((program->NumResidualBlocks() == 0) && (program->NumParameterBlocks() == 0)) || ((program->NumResidualBlocks() != 0) && (program->NumParameterBlocks() != 0))) << "Congratulations, you found a bug in Ceres. Please report it."; return true; } Program* SolverImpl::CreateReducedProgram(Solver::Options* options, ProblemImpl* problem_impl, double* fixed_cost, string* error) { CHECK_NOTNULL(options->linear_solver_ordering); Program* original_program = problem_impl->mutable_program(); scoped_ptr<Program> transformed_program(new Program(*original_program)); ParameterBlockOrdering* linear_solver_ordering = options->linear_solver_ordering; const int min_group_id = linear_solver_ordering->group_to_elements().begin()->first; const int original_num_groups = linear_solver_ordering->NumGroups(); if (!RemoveFixedBlocksFromProgram(transformed_program.get(), linear_solver_ordering, fixed_cost, error)) { return NULL; } if (transformed_program->NumParameterBlocks() == 0) { if (transformed_program->NumResidualBlocks() > 0) { *error = "Zero parameter blocks but non-zero residual blocks" " in the reduced program. Congratulations, you found a " "Ceres bug! Please report this error to the developers."; return NULL; } LOG(WARNING) << "No varying parameter blocks to optimize; " << "bailing early."; return transformed_program.release(); } // If the user supplied an linear_solver_ordering with just one // group, it is equivalent to the user supplying NULL as // ordering. Ceres is completely free to choose the parameter block // ordering as it sees fit. For Schur type solvers, this means that // the user wishes for Ceres to identify the e_blocks, which we do // by computing a maximal independent set. if (original_num_groups == 1 && IsSchurType(options->linear_solver_type)) { vector<ParameterBlock*> schur_ordering; const int num_eliminate_blocks = ComputeSchurOrdering(*transformed_program, &schur_ordering); CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks()) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; for (int i = 0; i < schur_ordering.size(); ++i) { linear_solver_ordering->AddElementToGroup( schur_ordering[i]->mutable_user_state(), (i < num_eliminate_blocks) ? 0 : 1); } } if (!ApplyUserOrdering(problem_impl->parameter_map(), linear_solver_ordering, transformed_program.get(), error)) { return NULL; } // If the user requested the use of a Schur type solver, and // supplied a non-NULL linear_solver_ordering object with more than // one elimination group, then it can happen that after all the // parameter blocks which are fixed or unused have been removed from // the program and the ordering, there are no more parameter blocks // in the first elimination group. // // In such a case, the use of a Schur type solver is not possible, // as they assume there is at least one e_block. Thus, we // automatically switch to one of the other solvers, depending on // the user's indicated preferences. if (IsSchurType(options->linear_solver_type) && original_num_groups > 1 && linear_solver_ordering->GroupSize(min_group_id) == 0) { string msg = "No e_blocks remaining. Switching from "; if (options->linear_solver_type == SPARSE_SCHUR) { options->linear_solver_type = SPARSE_NORMAL_CHOLESKY; msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY."; } else if (options->linear_solver_type == DENSE_SCHUR) { // TODO(sameeragarwal): This is probably not a great choice. // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can // take a BlockSparseMatrix as input. options->linear_solver_type = DENSE_QR; msg += "DENSE_SCHUR to DENSE_QR."; } else if (options->linear_solver_type == ITERATIVE_SCHUR) { msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner " "to CGNR with JACOBI preconditioner.", PreconditionerTypeToString( options->preconditioner_type)); options->linear_solver_type = CGNR; if (options->preconditioner_type != IDENTITY) { // CGNR currently only supports the JACOBI preconditioner. options->preconditioner_type = JACOBI; } } LOG(WARNING) << msg; } // Since the transformed program is the "active" program, and it is mutated, // update the parameter offsets and indices. transformed_program->SetParameterOffsetsAndIndex(); return transformed_program.release(); } LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options, string* error) { CHECK_NOTNULL(options); CHECK_NOTNULL(options->linear_solver_ordering); CHECK_NOTNULL(error); if (options->trust_region_strategy_type == DOGLEG) { if (options->linear_solver_type == ITERATIVE_SCHUR || options->linear_solver_type == CGNR) { *error = "DOGLEG only supports exact factorization based linear " "solvers. If you want to use an iterative solver please " "use LEVENBERG_MARQUARDT as the trust_region_strategy_type"; return NULL; } } #ifdef CERES_NO_SUITESPARSE if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && options->sparse_linear_algebra_library == SUITE_SPARSE) { *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because " "SuiteSparse was not enabled when Ceres was built."; return NULL; } if (options->preconditioner_type == SCHUR_JACOBI) { *error = "SCHUR_JACOBI preconditioner not suppored. Please build Ceres " "with SuiteSparse support."; return NULL; } if (options->preconditioner_type == CLUSTER_JACOBI) { *error = "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres " "with SuiteSparse support."; return NULL; } if (options->preconditioner_type == CLUSTER_TRIDIAGONAL) { *error = "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build " "Ceres with SuiteSparse support."; return NULL; } #endif #ifdef CERES_NO_CXSPARSE if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY && options->sparse_linear_algebra_library == CX_SPARSE) { *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because " "CXSparse was not enabled when Ceres was built."; return NULL; } #endif #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE) if (options->linear_solver_type == SPARSE_SCHUR) { *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor" "CXSparse was enabled when Ceres was compiled."; return NULL; } #endif if (options->linear_solver_max_num_iterations <= 0) { *error = "Solver::Options::linear_solver_max_num_iterations is 0."; return NULL; } if (options->linear_solver_min_num_iterations <= 0) { *error = "Solver::Options::linear_solver_min_num_iterations is 0."; return NULL; } if (options->linear_solver_min_num_iterations > options->linear_solver_max_num_iterations) { *error = "Solver::Options::linear_solver_min_num_iterations > " "Solver::Options::linear_solver_max_num_iterations."; return NULL; } LinearSolver::Options linear_solver_options; linear_solver_options.min_num_iterations = options->linear_solver_min_num_iterations; linear_solver_options.max_num_iterations = options->linear_solver_max_num_iterations; linear_solver_options.type = options->linear_solver_type; linear_solver_options.preconditioner_type = options->preconditioner_type; linear_solver_options.sparse_linear_algebra_library = options->sparse_linear_algebra_library; linear_solver_options.num_threads = options->num_linear_solver_threads; // The matrix used for storing the dense Schur complement has a // single lock guarding the whole matrix. Running the // SchurComplementSolver with multiple threads leads to maximum // contention and slowdown. If the problem is large enough to // benefit from a multithreaded schur eliminator, you should be // using a SPARSE_SCHUR solver anyways. if ((linear_solver_options.num_threads > 1) && (linear_solver_options.type == DENSE_SCHUR)) { LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = " << options->num_linear_solver_threads << " with DENSE_SCHUR will result in poor performance; " << "switching to single-threaded."; linear_solver_options.num_threads = 1; } options->num_linear_solver_threads = linear_solver_options.num_threads; linear_solver_options.use_block_amd = options->use_block_amd; const map<int, set<double*> >& groups = options->linear_solver_ordering->group_to_elements(); for (map<int, set<double*> >::const_iterator it = groups.begin(); it != groups.end(); ++it) { linear_solver_options.elimination_groups.push_back(it->second.size()); } // Schur type solvers, expect at least two elimination groups. If // there is only one elimination group, then CreateReducedProgram // guarantees that this group only contains e_blocks. Thus we add a // dummy elimination group with zero blocks in it. if (IsSchurType(linear_solver_options.type) && linear_solver_options.elimination_groups.size() == 1) { linear_solver_options.elimination_groups.push_back(0); } return LinearSolver::Create(linear_solver_options); } bool SolverImpl::ApplyUserOrdering(const ProblemImpl::ParameterMap& parameter_map, const ParameterBlockOrdering* ordering, Program* program, string* error) { if (ordering->NumElements() != program->NumParameterBlocks()) { *error = StringPrintf("User specified ordering does not have the same " "number of parameters as the problem. The problem" "has %d blocks while the ordering has %d blocks.", program->NumParameterBlocks(), ordering->NumElements()); return false; } vector<ParameterBlock*>* parameter_blocks = program->mutable_parameter_blocks(); parameter_blocks->clear(); const map<int, set<double*> >& groups = ordering->group_to_elements(); for (map<int, set<double*> >::const_iterator group_it = groups.begin(); group_it != groups.end(); ++group_it) { const set<double*>& group = group_it->second; for (set<double*>::const_iterator parameter_block_ptr_it = group.begin(); parameter_block_ptr_it != group.end(); ++parameter_block_ptr_it) { ProblemImpl::ParameterMap::const_iterator parameter_block_it = parameter_map.find(*parameter_block_ptr_it); if (parameter_block_it == parameter_map.end()) { *error = StringPrintf("User specified ordering contains a pointer " "to a double that is not a parameter block in the " "problem. The invalid double is in group: %d", group_it->first); return false; } parameter_blocks->push_back(parameter_block_it->second); } } return true; } // Find the minimum index of any parameter block to the given residual. // Parameter blocks that have indices greater than num_eliminate_blocks are // considered to have an index equal to num_eliminate_blocks. int MinParameterBlock(const ResidualBlock* residual_block, int num_eliminate_blocks) { int min_parameter_block_position = num_eliminate_blocks; for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) { ParameterBlock* parameter_block = residual_block->parameter_blocks()[i]; if (!parameter_block->IsConstant()) { CHECK_NE(parameter_block->index(), -1) << "Did you forget to call Program::SetParameterOffsetsAndIndex()? " << "This is a Ceres bug; please contact the developers!"; min_parameter_block_position = std::min(parameter_block->index(), min_parameter_block_position); } } return min_parameter_block_position; } // Reorder the residuals for program, if necessary, so that the residuals // involving each E block occur together. This is a necessary condition for the // Schur eliminator, which works on these "row blocks" in the jacobian. bool SolverImpl::LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks, Program* program, string* error) { CHECK_GE(num_eliminate_blocks, 1) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; // Create a histogram of the number of residuals for each E block. There is an // extra bucket at the end to catch all non-eliminated F blocks. vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1); vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks(); vector<int> min_position_per_residual(residual_blocks->size()); for (int i = 0; i < residual_blocks->size(); ++i) { ResidualBlock* residual_block = (*residual_blocks)[i]; int position = MinParameterBlock(residual_block, num_eliminate_blocks); min_position_per_residual[i] = position; DCHECK_LE(position, num_eliminate_blocks); residual_blocks_per_e_block[position]++; } // Run a cumulative sum on the histogram, to obtain offsets to the start of // each histogram bucket (where each bucket is for the residuals for that // E-block). vector<int> offsets(num_eliminate_blocks + 1); std::partial_sum(residual_blocks_per_e_block.begin(), residual_blocks_per_e_block.end(), offsets.begin()); CHECK_EQ(offsets.back(), residual_blocks->size()) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; CHECK(find(residual_blocks_per_e_block.begin(), residual_blocks_per_e_block.end() - 1, 0) != residual_blocks_per_e_block.end()) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; // Fill in each bucket with the residual blocks for its corresponding E block. // Each bucket is individually filled from the back of the bucket to the front // of the bucket. The filling order among the buckets is dictated by the // residual blocks. This loop uses the offsets as counters; subtracting one // from each offset as a residual block is placed in the bucket. When the // filling is finished, the offset pointerts should have shifted down one // entry (this is verified below). vector<ResidualBlock*> reordered_residual_blocks( (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL)); for (int i = 0; i < residual_blocks->size(); ++i) { int bucket = min_position_per_residual[i]; // Decrement the cursor, which should now point at the next empty position. offsets[bucket]--; // Sanity. CHECK(reordered_residual_blocks[offsets[bucket]] == NULL) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i]; } // Sanity check #1: The difference in bucket offsets should match the // histogram sizes. for (int i = 0; i < num_eliminate_blocks; ++i) { CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i]) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; } // Sanity check #2: No NULL's left behind. for (int i = 0; i < reordered_residual_blocks.size(); ++i) { CHECK(reordered_residual_blocks[i] != NULL) << "Congratulations, you found a Ceres bug! Please report this error " << "to the developers."; } // Now that the residuals are collected by E block, swap them in place. swap(*program->mutable_residual_blocks(), reordered_residual_blocks); return true; } Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options, const ProblemImpl::ParameterMap& parameter_map, Program* program, string* error) { Evaluator::Options evaluator_options; evaluator_options.linear_solver_type = options.linear_solver_type; evaluator_options.num_eliminate_blocks = (options.linear_solver_ordering->NumGroups() > 0 && IsSchurType(options.linear_solver_type)) ? (options.linear_solver_ordering ->group_to_elements().begin() ->second.size()) : 0; evaluator_options.num_threads = options.num_threads; return Evaluator::Create(evaluator_options, program, error); } CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer( const Solver::Options& options, const Program& program, const ProblemImpl::ParameterMap& parameter_map, string* error) { scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer( new CoordinateDescentMinimizer); scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering; ParameterBlockOrdering* ordering_ptr = NULL; if (options.inner_iteration_ordering == NULL) { // Find a recursive decomposition of the Hessian matrix as a set // of independent sets of decreasing size and invert it. This // seems to work better in practice, i.e., Cameras before // points. inner_iteration_ordering.reset(new ParameterBlockOrdering); ComputeRecursiveIndependentSetOrdering(program, inner_iteration_ordering.get()); inner_iteration_ordering->Reverse(); ordering_ptr = inner_iteration_ordering.get(); } else { const map<int, set<double*> >& group_to_elements = options.inner_iteration_ordering->group_to_elements(); // Iterate over each group and verify that it is an independent // set. map<int, set<double*> >::const_iterator it = group_to_elements.begin(); for ( ;it != group_to_elements.end(); ++it) { if (!IsParameterBlockSetIndependent(it->second, program.residual_blocks())) { *error = StringPrintf("The user-provided " "parameter_blocks_for_inner_iterations does not " "form an independent set. Group Id: %d", it->first); return NULL; } } ordering_ptr = options.inner_iteration_ordering; } if (!inner_iteration_minimizer->Init(program, parameter_map, *ordering_ptr, error)) { return NULL; } return inner_iteration_minimizer.release(); } } // namespace internal } // namespace ceres