// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/schur_eliminator.h" #include "Eigen/Dense" #include "ceres/block_random_access_dense_matrix.h" #include "ceres/block_sparse_matrix.h" #include "ceres/casts.h" #include "ceres/detect_structure.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/test_util.h" #include "ceres/triplet_sparse_matrix.h" #include "ceres/types.h" #include "glog/logging.h" #include "gtest/gtest.h" // TODO(sameeragarwal): Reduce the size of these tests and redo the // parameterization to be more efficient. namespace ceres { namespace internal { class SchurEliminatorTest : public ::testing::Test { protected: void SetUpFromId(int id) { scoped_ptr<LinearLeastSquaresProblem> problem(CreateLinearLeastSquaresProblemFromId(id)); CHECK_NOTNULL(problem.get()); SetupHelper(problem.get()); } void SetUpFromFilename(const string& filename) { scoped_ptr<LinearLeastSquaresProblem> problem(CreateLinearLeastSquaresProblemFromFile(filename)); CHECK_NOTNULL(problem.get()); SetupHelper(problem.get()); } void SetupHelper(LinearLeastSquaresProblem* problem) { A.reset(down_cast<BlockSparseMatrix*>(problem->A.release())); b.reset(problem->b.release()); D.reset(problem->D.release()); num_eliminate_blocks = problem->num_eliminate_blocks; num_eliminate_cols = 0; const CompressedRowBlockStructure* bs = A->block_structure(); for (int i = 0; i < num_eliminate_blocks; ++i) { num_eliminate_cols += bs->cols[i].size; } } // Compute the golden values for the reduced linear system and the // solution to the linear least squares problem using dense linear // algebra. void ComputeReferenceSolution(const Vector& D) { Matrix J; A->ToDenseMatrix(&J); VectorRef f(b.get(), J.rows()); Matrix H = (D.cwiseProduct(D)).asDiagonal(); H.noalias() += J.transpose() * J; const Vector g = J.transpose() * f; const int schur_size = J.cols() - num_eliminate_cols; lhs_expected.resize(schur_size, schur_size); lhs_expected.setZero(); rhs_expected.resize(schur_size); rhs_expected.setZero(); sol_expected.resize(J.cols()); sol_expected.setZero(); Matrix P = H.block(0, 0, num_eliminate_cols, num_eliminate_cols); Matrix Q = H.block(0, num_eliminate_cols, num_eliminate_cols, schur_size); Matrix R = H.block(num_eliminate_cols, num_eliminate_cols, schur_size, schur_size); int row = 0; const CompressedRowBlockStructure* bs = A->block_structure(); for (int i = 0; i < num_eliminate_blocks; ++i) { const int block_size = bs->cols[i].size; P.block(row, row, block_size, block_size) = P .block(row, row, block_size, block_size) .ldlt() .solve(Matrix::Identity(block_size, block_size)); row += block_size; } lhs_expected .triangularView<Eigen::Upper>() = R - Q.transpose() * P * Q; rhs_expected = g.tail(schur_size) - Q.transpose() * P * g.head(num_eliminate_cols); sol_expected = H.ldlt().solve(g); } void EliminateSolveAndCompare(const VectorRef& diagonal, bool use_static_structure, const double relative_tolerance) { const CompressedRowBlockStructure* bs = A->block_structure(); const int num_col_blocks = bs->cols.size(); vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0); for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) { blocks[i - num_eliminate_blocks] = bs->cols[i].size; } BlockRandomAccessDenseMatrix lhs(blocks); const int num_cols = A->num_cols(); const int schur_size = lhs.num_rows(); Vector rhs(schur_size); LinearSolver::Options options; options.elimination_groups.push_back(num_eliminate_blocks); if (use_static_structure) { DetectStructure(*bs, num_eliminate_blocks, &options.row_block_size, &options.e_block_size, &options.f_block_size); } scoped_ptr<SchurEliminatorBase> eliminator; eliminator.reset(SchurEliminatorBase::Create(options)); eliminator->Init(num_eliminate_blocks, A->block_structure()); eliminator->Eliminate(A.get(), b.get(), diagonal.data(), &lhs, rhs.data()); MatrixRef lhs_ref(lhs.mutable_values(), lhs.num_rows(), lhs.num_cols()); Vector reduced_sol = lhs_ref .selfadjointView<Eigen::Upper>() .ldlt() .solve(rhs); // Solution to the linear least squares problem. Vector sol(num_cols); sol.setZero(); sol.tail(schur_size) = reduced_sol; eliminator->BackSubstitute(A.get(), b.get(), diagonal.data(), reduced_sol.data(), sol.data()); Matrix delta = (lhs_ref - lhs_expected).selfadjointView<Eigen::Upper>(); double diff = delta.norm(); EXPECT_NEAR(diff / lhs_expected.norm(), 0.0, relative_tolerance); EXPECT_NEAR((rhs - rhs_expected).norm() / rhs_expected.norm(), 0.0, relative_tolerance); EXPECT_NEAR((sol - sol_expected).norm() / sol_expected.norm(), 0.0, relative_tolerance); } scoped_ptr<BlockSparseMatrix> A; scoped_array<double> b; scoped_array<double> D; int num_eliminate_blocks; int num_eliminate_cols; Matrix lhs_expected; Vector rhs_expected; Vector sol_expected; }; TEST_F(SchurEliminatorTest, ScalarProblem) { SetUpFromId(2); Vector zero(A->num_cols()); zero.setZero(); ComputeReferenceSolution(VectorRef(zero.data(), A->num_cols())); EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), true, 1e-14); EliminateSolveAndCompare(VectorRef(zero.data(), A->num_cols()), false, 1e-14); ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-14); EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-14); } #ifndef CERES_NO_PROTOCOL_BUFFERS TEST_F(SchurEliminatorTest, BlockProblem) { const string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp"); SetUpFromFilename(input_file); ComputeReferenceSolution(VectorRef(D.get(), A->num_cols())); EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), true, 1e-10); EliminateSolveAndCompare(VectorRef(D.get(), A->num_cols()), false, 1e-10); } #endif // CERES_NO_PROTOCOL_BUFFERS } // namespace internal } // namespace ceres