// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/partitioned_matrix_view.h" #include <vector> #include "ceres/block_structure.h" #include "ceres/casts.h" #include "ceres/internal/eigen.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/random.h" #include "ceres/sparse_matrix.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres { namespace internal { const double kEpsilon = 1e-14; class PartitionedMatrixViewTest : public ::testing::Test { protected : virtual void SetUp() { scoped_ptr<LinearLeastSquaresProblem> problem( CreateLinearLeastSquaresProblemFromId(2)); CHECK_NOTNULL(problem.get()); A_.reset(problem->A.release()); num_cols_ = A_->num_cols(); num_rows_ = A_->num_rows(); num_eliminate_blocks_ = problem->num_eliminate_blocks; } int num_rows_; int num_cols_; int num_eliminate_blocks_; scoped_ptr<SparseMatrix> A_; }; TEST_F(PartitionedMatrixViewTest, DimensionsTest) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); EXPECT_EQ(m.num_col_blocks_e(), num_eliminate_blocks_); EXPECT_EQ(m.num_col_blocks_f(), num_cols_ - num_eliminate_blocks_); EXPECT_EQ(m.num_cols_e(), num_eliminate_blocks_); EXPECT_EQ(m.num_cols_f(), num_cols_ - num_eliminate_blocks_); EXPECT_EQ(m.num_cols(), A_->num_cols()); EXPECT_EQ(m.num_rows(), A_->num_rows()); } TEST_F(PartitionedMatrixViewTest, RightMultiplyE) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); srand(5); Vector x1(m.num_cols_e()); Vector x2(m.num_cols()); x2.setZero(); for (int i = 0; i < m.num_cols_e(); ++i) { x1(i) = x2(i) = RandDouble(); } Vector y1 = Vector::Zero(m.num_rows()); m.RightMultiplyE(x1.data(), y1.data()); Vector y2 = Vector::Zero(m.num_rows()); A_->RightMultiply(x2.data(), y2.data()); for (int i = 0; i < m.num_rows(); ++i) { EXPECT_NEAR(y1(i), y2(i), kEpsilon); } } TEST_F(PartitionedMatrixViewTest, RightMultiplyF) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); srand(5); Vector x1(m.num_cols_f()); Vector x2 = Vector::Zero(m.num_cols()); for (int i = 0; i < m.num_cols_f(); ++i) { x1(i) = RandDouble(); x2(i + m.num_cols_e()) = x1(i); } Vector y1 = Vector::Zero(m.num_rows()); m.RightMultiplyF(x1.data(), y1.data()); Vector y2 = Vector::Zero(m.num_rows()); A_->RightMultiply(x2.data(), y2.data()); for (int i = 0; i < m.num_rows(); ++i) { EXPECT_NEAR(y1(i), y2(i), kEpsilon); } } TEST_F(PartitionedMatrixViewTest, LeftMultiply) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); srand(5); Vector x = Vector::Zero(m.num_rows()); for (int i = 0; i < m.num_rows(); ++i) { x(i) = RandDouble(); } Vector y = Vector::Zero(m.num_cols()); Vector y1 = Vector::Zero(m.num_cols_e()); Vector y2 = Vector::Zero(m.num_cols_f()); A_->LeftMultiply(x.data(), y.data()); m.LeftMultiplyE(x.data(), y1.data()); m.LeftMultiplyF(x.data(), y2.data()); for (int i = 0; i < m.num_cols(); ++i) { EXPECT_NEAR(y(i), (i < m.num_cols_e()) ? y1(i) : y2(i - m.num_cols_e()), kEpsilon); } } TEST_F(PartitionedMatrixViewTest, BlockDiagonalEtE) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); scoped_ptr<BlockSparseMatrix> block_diagonal_ee(m.CreateBlockDiagonalEtE()); const CompressedRowBlockStructure* bs = block_diagonal_ee->block_structure(); EXPECT_EQ(block_diagonal_ee->num_rows(), 2); EXPECT_EQ(block_diagonal_ee->num_cols(), 2); EXPECT_EQ(bs->cols.size(), 2); EXPECT_EQ(bs->rows.size(), 2); EXPECT_NEAR(block_diagonal_ee->values()[0], 10.0, kEpsilon); EXPECT_NEAR(block_diagonal_ee->values()[1], 155.0, kEpsilon); } TEST_F(PartitionedMatrixViewTest, BlockDiagonalFtF) { PartitionedMatrixView m(*down_cast<BlockSparseMatrix*>(A_.get()), num_eliminate_blocks_); scoped_ptr<BlockSparseMatrix> block_diagonal_ff(m.CreateBlockDiagonalFtF()); const CompressedRowBlockStructure* bs = block_diagonal_ff->block_structure(); EXPECT_EQ(block_diagonal_ff->num_rows(), 3); EXPECT_EQ(block_diagonal_ff->num_cols(), 3); EXPECT_EQ(bs->cols.size(), 3); EXPECT_EQ(bs->rows.size(), 3); EXPECT_NEAR(block_diagonal_ff->values()[0], 70.0, kEpsilon); EXPECT_NEAR(block_diagonal_ff->values()[1], 17.0, kEpsilon); EXPECT_NEAR(block_diagonal_ff->values()[2], 37.0, kEpsilon); } } // namespace internal } // namespace ceres